LIF ATY UNIVERSITY OF ALL FORNIA DAVIS # State of California THE RESOURCES AGENCY epartment of Water Resources BULLETIN No. 130-63 HYDROLOGIC DATA: 1963 Volume IV: SAN JOAQUIN VALLEY MAY 1965 UNIVERSITY OF CALIFORNIA DAVIS OCT 1 3 1965 LIBRARY HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources # State of California THE RESOURCES AGENCY # ERRATA SHEET Bulletin No. 130-63, Hydrologic Data 1963 Volume IV San Joaquin Valley | Page vi | Delete Surface Water Quality Conditions28 | |-----------|--| | Page C-33 | 6S/22E-23R01 M should read
16S/22E-23R01 M | | Page C-39 | 8S/25E-12Q01 M should read
18S/25E-12Q01 M | | Page C-42 | 9S/23E-14R01 M should read
19S/23E-14R01 M | | Page C-43 | Second state well number should read 20S/24E-16N01 M | | Page C-61 | Second state well number should read 28S/25E-34J01 M | | Page C-73 | Second state well number should read 28S/24E-28AO1 M | | Page C-79 | Second state well number should read 20S/15E-25D01 M | | | Third state well number should read 20S/15E-32AOl M | | Page E-5 | Eighth paragraph should read listed in Table $\underline{12}$, instead of Table E-5 | HUGO FISHER Administrator The Resources Agency Governor State of California EDMUND G. BROWN WILLIAM E. WARNE Director Department of Water Resources # State of California THE RESOURCES AGENCY Department of Water Resources BULLETIN No. 130-63 HYDROLOGIC DATA: 1963 Volume IV: SAN JOAQUIN VALLEY MAY 1965 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources # ORGANIZATION OF BULLETIN NO. 130 SERIES Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA Each volume consists of the following: # TEXT and Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY # TABLE OF CONTENTS | 11100 | |---| | AREA ORIENTATION MAP | | LETTER OF TRANSMITTAL | | ORGANIZATION, DEPARTMENT OF WATER RESOURCES x | | | | CHAPTER I. INTRODUCTION | | Location and General Features of the San Joaquin Valley | | Scope of Report | | Numbering System Designations | | Region Designation | | Climate Station Designation | | Surface Water Gaging Station Designation | | Ground Water Basin and Area Designation | | Well Numbering System | | CHAPTER II. CLIMATE | | Introduction | | Scope | | Precipitation | | Temperatures, Evaporation, and Wind Movement | | remperatures, Evaporation, and wind movement | | CHAPTER III. SURFACE WATER FLOW | | Introduction | | Scope | | Hydrography | | Hydrographic Activities of Other Agencies | | Runoff and Water Supply | | Runoff Comparisons | | Lakes and Reservoirs | | Streamflow Measurements | | Recorders | | Ratings | | Use of Water for Irrigation | | Criteria | | Irrigation Diversions | | Imported Water | | · | | CHAPTER IV. GROUND WATER MEASUREMENTS | | Introduction | | Scope | | Basic Data | | Processed Data | | Related Information | | | # TABLE OF CONTENTS (Continued) | | <u>PAGE</u> | |------------|--| | Cooperativ | re Programs | | Month | nly Program | | Annua | al and Semiannual Programs | | Ground Wat | ter Conditions | | | CHAPTER V. SURFACE WATER QUALITY | | | | | Introduct | | | Scope | | | Sampling 1 | | | Station Sa | | | | 27 Lity Recorders | | Surface Wa | ater Quality Conditions | | | CHAPTER VI. GROUND WATER QUALITY | | Introduct | ion | | Scope | | | Ground Was | ter Quality Conditions | | Sampling 1 | Program | | | | | | TABLES | | TABLE | | | 1 | Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley 6 | | 2 | Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley, 1962-63 | | 3 | Average Temperatures, Total Evaporation, and Average Wind Movement at Selected Stations in the San Joaquin Valley | | 4 | Annual Unimpaired Runoff | | 5 | Monthly Unimpaired Runoff | | 6 | Summary of Principal Reservoir Storage in the San Joaquin Valley 13 | | 7 | Summary of Diversion Points and Total Acre-Feet Diverted, October 1, 1962 - September 30, 1963 | | 8 | Summary of Ground Water Level Data Collected in the San Joaquin Valley, July 1, 1962 - June 30, 1963 | | 9 | Average Change in Ground Water Levels in Basins and Areas in the San Joaquin Valley, Spring 1962 - Spring 1963 | | 10 | Change in Average Ground Water Level from 1921 to 1951 and 1951 to 1963 in Nineteen Ground Water Areas in the San Joaquin Valley | | 11 | Surface Water Quality Monitoring Stations by Drainage Basins | | 12 | Wells Indicating Significant Deviation in Quality from Surrounding Area | | 13 | Cooperating Agencies, Ground Water Quality Monitoring Program, San Joaquin Valley Area 33 | | | | | | <u>APPENDIXES</u> | | APPENDIX | | | A | Climate | | В | Surface Water Flow | | С | Ground Water Measurements | | D | Surface Water Quality | | E | Ground Water Quality E-1 | | | | # TABLE OF CONTENTS (Continued) # PLATES (Bound at end of volume) PLATE | A-1 | Location of Climatological Stations | |-----|--| | A-2 | Lines of Equal Precipitation | | B-1 | Location of Surface Water Measurement Stations | | C-1 | Location and Changes in Ground Water Basins and Areas in San Joaquin Valley - Unconfined Aquifer
Spring 1962 - Spring 1963 | | C-2 | Location and Changes in Ground Water Basins and Areas in San Joaquin Valley - Confined Aquifer
Spring 1962 - Spring 1963 | | C-3 | Location of Selected Observation Wells | | C-4 | Poso Soil Conservation District Cooperative Program Area | | C-5 | Kern County Cooperative Program Area | | C-6 | Map of 19 Historic Ground Water Areas in San Joaquin Valley and Profiles along Section A-A'
showing Ground Water Levels in 1921, 1951, 1962, and 1963 | | C+7 | Fluctuation of Average Water Level, 1921 to 1963 in 19 Historic Ground Water Areas in
San Joaquin Valley | | C-8 | Fluctuation of Water Level in Selected Wells in San Joaquin Valley | | C-9 | Lines of Equal Elevation of Water in Wells - San Joaquin Valley - Spring 1963 | | D-1 | Surface Water Quality and Recorder Stations | | D-2 | Weekly Mean Specific Conductance at Selected Stations | | E-1 | Ground Water Quality Basins and Areas | | E-2 | Lines of Equal Electrical Conductivity | | E-3 | Mineral Types of Ground Water | # EPARTMENT OF WATER RESOURCES O. BOX 388 CRAMENTO March 15, 1965 Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California Gentlemen: Bulletin No. 130-63, entitled "Hydrologic Data, Volume IV, San Joaquin Valley", presents data on hydrologic conditions in the San Joaquin Valley during the 1963 reporting year. This bulletin is the first of a series which incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is discontinued. Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes, and appendixes. The collection and publication of data as contained in Bulletin No. 130 are authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the California Water Code. The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130 presents to the public useful, comprehensive, accurate, timely hydrologic data, which are prerequisites for effective planning, design, construction, and operation of water facilities. Collection of much of the data presented has been possible only because of the generous cooperation and assistance of other agencies and many individuals; these cooperators are shown in the tables where appropriate. Without this assistance Bulletin 130-63 would be a much less valuable tool. Sincerely yours, Mil Shame # State of California The Resources Agency Department of Water Resources EDMUND G. EROWN, Governor HUGO FISHER, Administrator, The Resources Agency of California WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN R. TEERINK, Assistant Chief Engineer # SAN JOAQUIN VALLEY BRANCH | Carl L. Stetson | |---| | Activities covered by this report were under the supervision of | | Victor B. McIntyre | | Collection, correlation, and computation of hydrographic data pertaining to surface water flows, ground water levels, and climatology were supervised by | | Ground Water Group | | Laurence O. Grossnickle | | Surface Water and Climatology Group | | Douglas F. Owens | | Office Engineer | | Harry R. Brenner | | Modesto Field Office supervised by | | Robert W. Grimshaw | | | |
Office and Field Personnel of the Hydraulic Unit | | Walter W. Bourez Keithal B. Dick Water Resources Technician II Donald R. Henley Water Resources Technician II William A. Mancebo Water Resources Technician II Barney H. Perkins Water Resources Technician II Barney H. Perkins Junior Civil Engineer William J. Ghormley Stanley H. Adams Water Resources Technician I Berbert D. Parlier Water Resources Technician I Donald W. Colburn Water Resources Technician I Roger G. Neal Water Resources Technician I Renry W. Rogers Delineator Anthony D. Camoroda Drafting Aid II C. Collette Blair Intermediate Stenographer | | The portions of the report covering water quality activities were prepared by | | Kenneth T. Nagatani | | Assisted by | | James W. Windsor Water Resources Engineering Associate Gordon L. Dugan Assistant Civil Engineer Laurence A. Burch Assistant Civil Engineer Bruce A. Butterfield Assistant Civil Engineer Harry H. Tenney Engineering Aid II Alice A. Nishimura Intermediate Stenographer | Reviewed and Coordinated by Division of Resources Planning Data Coordination Section #### CHAPTER I #### INTRODUCTION This is Volume IV in a series of basic data reports presented under a new format entitled "Bulletin 130-63, Hydrologic Data." The five volumes of the bulletin embrace the entire State of California, each volume being prepared by the area branch or district of the department responsible for the publication of basic data collected in its respective area. These areas are shown on the frontispiece map. This report contains a record of hydrologic data collected and assembled by the San Joaquin Valley Branch of the Department of Water Resources. It brings together in a permanent and usable form the following types of hydrologic basic data collected during the respective time intervals as shown below: Surface Water Flows October 1, 1962 - September 30, 1963 Diversion Data October 1, 1962 - September 30, 1963 Climate Data July 1, 1962 - June 30, 1963 Ground Water Level Measurements July 1, 1962 - June 30, 1963 Surface Water Quality October 1, 1962 - September 30, 1963 Ground Water Quality October 1, 1962 - September 30, 1963 # Location and General Features of the San Joaquin Valley The San Joaquin Valley includes approximately the southern two-thirds of the Great Central Valley of California. It is a broad structural trough surrounded on three sides by mountains: the Sierra Nevada on the east, the Coast Range on the west, and the Tehachapi and San Emigdio Mountains on the south. It is separated from the Sacramento Valley on the north by the combined deltas of the Sacramento and San Joaquin Rivers. The valley extends 250 miles southeasterly from Stockton to Grapevine at the foot of the Tehachapi Mountains; the width of the valley floor ranges from 25 miles near Bakersfield to 55 miles near Visalia and averages about 35 miles. The area of the valley floor is 10,000 square miles, excluding the rolling foothills that skirt the mountains. East of the San Joaquin Valley the Sierra Nevada rises in a distance of 45 to 60 miles to altitudes of 14,000 feet or more; to the west the Coast Range rises to 6,000 feet; and on the south the valley is enclosed by the San Emigdio and Tehachapi Mountains which rise to altitudes of about 8,000 feet. Only at Carquinez Strait, a break in the Coast Range east of San Francisco Bay, does the Great Central Valley open to the sea. The valley floor rises gently from sea level at the north end to 500 feet above sea level about 21 miles south of Bakersfield; alluvial fans along the valley borders rise to altitudes as high as 700 to 1,800 feet. The gentle northward gradient of the valley floor is interrupted by a low divide in the neighborhood of the Kings River, about 15 miles west of Hanford; the San Joaquin Valley is divided at that point into two separate drainage basins - the San Joaquin River Basin and the Tulare Basin. # Scope of Report The areal scope of this volume of the report is depicted on Plates A-1, B-1, C-1, D-1, and E-1. The location of climatological stations for which data are presented is shown on Plate A-1 and the location of surface water gaging stations on Plate B-1. The basins, subbasins, or areas in the San Joaquin Valley for which ground water levels are reported are shown on Plate C-1. The locations of surface water sampling stations are shown on Plate D-1, and the basins, subbasins, or areas used to locate the ground water quality samples are shown on Plate E-1. The following chapters present information on precipitation, evaporation, and temperature, surface runoff, diversions, reservoir storage, imported water supplies, ground water conditions, and quality of surface and ground water. The tabulated basic data are presented in Appendixes A through E. These appendixes include all basic data collected pertaining to climate, surface water flow, ground water level measurements and water quality analyses of surface and ground water. #### Numbering System Designations In the paragraphs which follow, there are presented descriptions of the various numbering and coding systems used in this report. These systems are utilized to facilitate machine data processing. # Region Designation The region designations used in this report pertain to geographic areas as defined in Section 13040 of the Water Code. The State is divided into nine regions and the San Joaquin Valley area encompasses that portion of the Central Valley region south of the north boundary of the Stanislaus River drainage area. # Climate Station Designation The climatological station designations used herein and in Appendix A are based on the drainage basin and alpha number. Stations are also named and latitude and longitude locations are determined to the nearest minute. Each main drainage basin is assigned a letter and each subbasin a number, as shown on Plate A-1 of this report. The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for station name; therefore, some abbreviations are necessary. # Surface Water Gaging Station Designation The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main river basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the river basins are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, indicates that the station is a surface gravity diversion station. Each station is listed by name as well as by machine index number. # Ground Water Basin and Area Designation With respect to the basin numbering system code, a decimal numbering system of the form 0-00.00 has been used. The number to the left of the dash refers to the geographic region described above. On the right of the dash, the first two digits refer to a hydrographic unit, generally designated as a basin, valley, or area. These are followed by decimals which designate a subbasin, area, or subarea within the basin. These basins, areas, or subareas are shown on Plates C-1 and C-2. # Well-numbering System The state well-numbering system used in this report is based on township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report, the number of a well assigned in accordance with this system is referred to as the state well number. Under this system, each section is divided into 40-acre tracts lettered as follows: | D | С | В | А | |---|---|---|---| | E | F | G | Н | | М | L | К | J | | И | Р | Q | R | Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17Kl M would be in Township 16 South, Range 15 East, Section 17, M.D.B.&M., and would be further designated as the first well assigned a state well number in Tract K. In this volume, well numbers are referenced to the Mount Diablo Base and Meridian (M), or the San Bernardino Base and Meridian (S). #### CHAPTER II #### CLIMATE #### Introduction The climate of the San Joaquin Valley is characterized by hot summers and mild winters. Midday temperatures in midsummer are high, occasionally 110° F. with extremes as high as 120° F. having been recorded. The diurnal temperature variation also is extreme, especially in summer when frequently it is 40° F. or more. Annual precipitation decreases from north to south and east to west across the valley. The average annual precipitation ranges from 5.38 inches at Buttonwillow in the southern part of the valley to 17.42 inches at Knights Ferry in Stanislaus County at the northern end of the valley. Precipitation figures are based on the 50-year mean period 1910-1960. As moist air moves in from the Pacific Ocean and ascends the western slope of the Sierra Nevada, precipitation increases and reaches a maximum in the higher parts of the range. The mean annual precipitation exceeds 40 inches in much of the higher mountainous part of the Sierra Nevada tributary to the San Joaquin Valley and exceeds 60 inches in small isolated areas. During winter, snowfall is heavy in the Sierra Nevada at elevations above 3,000 to 4,000 feet. Precipitation and runoff in the Central Valley vary not only from winter to summer, but from year to year. #### Scope The area covered by this report and its geographical relation to the Central Valley Drainage Basin are both shown on Plate A-1. The Department of Water Resources gathers basic data relating to
climatic phenomena in the San Joaquin Valley. This involves field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation. The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation—annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches per day; and (4) wind movement in miles per day. In addition, similar data are obtained from many public and private agencies and individuals. The department contributes to the cooperative program with the U. S. Weather Bureau by Providing services for the installation, maintenance, and operation of approximately 100 stations in the State, eight of which are located in the San Joaquin Valley. The U. S. Weather Bureau publishes these data in the official U. S. Weather Bureau publication, "Climatological Data." The office activities consist of computation and compilation of approximately 150 monthly climatological station observations to provide a continuous and current record. This includes the computation of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships. # Precipitation Precipitation during the 1962-63 season for the San Joaquin Valley area as a whole was normal. This is a continuation of two years of normal rainfall in the valley preceded by three years of below-normal precipitation. This year's precipitation, measured from July 1, 1962, through June 30, 1963, varied from 109 percent of normal at Modesto on the north to 74 percent at Bakersfield on the south. The greatest deviations from normal were 131 percent at Mariposa and 65 percent at Maricopa. The San Joaquin Valley area may be divided into three general parts: the west side, the valley floor, and the east side or Sierra Nevada. Table 1, "Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley," shows the distribution of rainfall west to east across the valley. Averages of precipitation normals show for the west side stations 6.3 inches, for the valley floor 9.7 inches, and for the east side 16.6 inches. The seasonal deviation from normal of the three general areas is 86 percent on the west side, 103 percent on the valley floor, and 109 percent on the east side. TABLE 1 SEASONAL AND MEAN PRECIPITATION AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY | Alpha | Station | County | 50-Year Mean | 1962-63 S
In inches | eason
Percen | |-----------------|----------------------|-------------|------------------------|------------------------|-----------------| | Order
Number | Station | County | 1910-1960
In inches | In inches | of
Mean | | West Side | | | | | | | B8 6675 | Panoche | San Benito | 7.51 | 8.20 | 109 | | CO 1867 | Coalinga 1 SE | Fresno | 6.80 | 7.04 | 104 | | C0 4536 | Kettleman Sta. | Kings | 6.21 | 5.69 | 92 | | CO 1244 | Buttonwillow | Kern | 5.38 | 3.86 | 72 | | C7 5338 | Maricopa | Kern | 5.54 | 3.60 | 65 | | Valley Floor | | | | | | | BO 5297-01 | Manteca No. 2 | San Joaquin | 11.65 | 12.32 | 106 | | BO 5738 | Modesto | Stanislaus | 11.56 | 12.59 | 109 | | во 9073 | Turlock | Stanislaus | 11.71 | 12.86 | 110 | | BO 5532 | Merced Fire Sta. 2 | Merced | 11.89 | 12.31 | 104 | | BO 5233 | Madera | Madera | 10.11 | 9.62 | 95 | | C0 3257 | Fresno WB A.P. | Fresno | 9.65 | 11.59 | 120 | | CO 9367 | Visalia | Tulare | 9.39 | 9.08 | 97 | | CO 3747 | Hanford | Kings | 8.10 | 8.15 | 101 | | C0 9452 | Wasco | Kern | 6.32 | 7.15 | 113 | | CO 0442 | Bakersfield A. P. | Kern | 6.19 | 4.55 | 74 | | East Side | | | | | | | BO 4590 | Knights Ferry 2 SE | Stanislaus | 17.42 | 20.31 | 117 | | B5 1588 | Cathay Bull Run Rch. | Mariposa | 19.72 | 24.50 | 124 | | B5 5346 | Mariposa | Mariposa | 28.94 | 37.80 | 131 | | B7 3261 | Friant Gov't. Camp | Fresno | 13.38 | 16.24 | 121 | | C2 6476 | Orange Cove | Fresno | 12.90 | 12.16E | 94 | | C2 4890 | Lemon Cove | Tulare | 13.68 | 11.88 | 87 | | CO 7077 | Porterville | Tulare | 10.39 | 8.99 | 87 | Three incidents of relative climatological importance occurred during the 1962-63 season: The storm of October 8 through October 15, 1962, raised the valley precipitation to 89 percent of normal after a dry fall; for the period January 30 through February 2, a high intensity storm struck the valley again, raising the averages to 71 percent of normal after the November and December doldrums of fog and cold; the gradual and general cool rains of April, followed by above-normal precipitation in May and June, resulted in normal to above normal precipitation for the year. The occurrences described above are shown in Table 2 "Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley." TABLE 2 CUMULATIVE MONTHLY PRECIPITATION AT KEY STATIONS IN THE SAN JOAQUIN VALLEY 1962-63 | | T | | | | _ | _ | _ | _ | | _ | | | _ | | _ | _ | _ | | | _ | |-------------|----------------|-------|---------|---|---|-----|-----|-----------|---------|---|---------|---|----------|----------|---|---------|--------|-------------------|-------|---------| | | Season | | Percent | of Mean | | 0 | 0 | 17 | 09 | | 27 | 13 | 12 | 48 | | 62 | 69 | 70 | 74 | | | BAKERSFIELD | 1962-63 | | | n inches of | | 00. | 00. | .02 | .25 | | . 25 | .25 | .37 | 1.91 | | 3.16 | 4.01 | 4.27 | 4.55 | | | BAK | 50-Year | Mean | 1910-60 | n inches | | .02 | .03 | .12 | .42 | | . 94 | 1.87 | 2.98 | 4.01 | | 5,10 | 5.79 | 6.11 | 6.19 | | | + | Season | | Percent | f Mean I | | 0 | 0 | 25 | 986 | | 34 | 17 | 27 | 52 | | 67 | 96 | 95 | 16 | | | | 1962-63 \$ | | Д | n inches | | 00. | 00. | .02 | .42 | | .42 | .47 | 1.29 | 3,42 | | 5.52 | 8.67 | 8.89 | 80.6 | | | > | 50-Year | Mean | 1910-60 | inches of Mean In inches In inches of Mean In inches In | | 00. | .01 | *08 | .49 | | 1.24 | 2,81 | 4.78 | 6.57 | | 8.18 | 00.6 | 9.33 | 9.39 | | | | Season | _ | Percent | of Mean I | | 0 | 0 | 0 | 118 | _ | 53 | 40 | 68 | 18 | - | 06 | 121 | 121 | 120 | | | FRESNO | 1962-63 Season | _ | | In inches | | E | 00. | H | .73 | | .76 | 1.24 | 3,40 | 5.41 | | 7.51 | 11.17 | 11.56 | 11.59 | | | 14 | 50-Year | Mean | 1910-60 | of Mean In inches In | | *01 | .02 | .10 | .62 | | 1.43 | 3.08 | 5.01 | 6.64 | | 8.34 | 9.22 | 9.54 | 9.65 | | | | Season | | Percent | of Mean I | | 0 | 0 | 0 | 85 | | 39 | 5.5 | 55 | 74 | | 75 | 96 | 96 | 95 | | | MADERA | 1962-63 \$ | _ | £34 | inches In inches | | 00. | 00. | 00. | .47 | | .57 | 1.75 | 2.85 | 5.19 | | 6.59 | 9.30 | 9.62 | 9.62 | | | Σ | 50-Year | Mean | 1910-60 | In inches I | | .01 | .02 | .10 | .55 | | 1.45 | 3,18 | 5,18 | 7.04 | | 8,80 | 9.70 | 10,04 | 10.11 | | | | Season | _ | Percent | Mean | | 200 | 100 | 17 | 06 | | 43 | 72 | 73 | 06 | | 91 | 104 | 104 | 104 | | | ERCED | 1962-63 Season | | | In inches of | | .02 | .02 | .02 | 55. | | .75 | 2.73 | 4,53 | 7.48 | | 9,41 | 11.79 | 12.25 | 12.31 | | | M | 50-Year | Mean | 1910-60 | inches | | .01 | -02 | . 12 | .61 | | 1.76 | 3,79 | 6.24 | 8,35 | | 10.34 | 11.37 | 11.81 | 11.89 | | | _ | Season | | Percent | of Mean In | | 0 | c | C | 87 | _ | 73 | 82 | 89 | 84 | | 92 | 111 | 011 | 109 | | | MODESTO | 1962-63 \$ | | D | n inches | | 00 | 0 | E- | 65. | | 1.23 | 3 23 | 4.22 | 06.9 | | 9.29 | 12.26 | 12 5.B | 12 59 | 1 1 2 4 | | Σ | 50-Year | Mean | 1910-60 | In inches In inches of | | .01 | 0.3 | | 64. | | 4 | | | 8.17 | | 11 01 | 11.02 | 11 46 | 11 56 | Trend | | | | Month | | - | | THE | E | TOOOD TOO | OCTOBER | | DEGMENE | 000000000000000000000000000000000000000 | TANTIADA | FEBRUARY | | n O C W | A DOTT | Trust of the same | TIME | CONE | The San Joaquin Valley area normally receives 80 percent of the total seasonal precipitation by April 1. Also, by this date, maximum snowpack has been attained in the Sierras. On April 1, 1963, the valley floor had received rainfall in accumulated totals ranging from 92 percent of normal at Modesto on the north to 62 percent at Bakersfield on the south. Snowpack accumulation in the adjacent Sierras was only 35 percent of normal; however, the precipitation patterns of April, May, and June were far above normal: A new April high of 2.88 inches was established at Hanford superseding a long-term record of 2.67 inches recorded in 1926, and covering most of the Sierra watershed with excessive amounts. This resulted in normal to above normal precipitation, varying from 100 percent for the Tule River watershed to 130 percent for the Kings River watershed. The distribution of rainfall on the entire area may be seen on Plate A-2, "Lines of Equal Precipitation, July 1, 1962, to June 30, 1963." # Temperatures, Evaporation, and Wind Movement The distribution of temperatures, evaporation, and wind movement is presented in Table 3, "Average Temperatures, Total Evaporation and Average Wind Movement at Selected Stations in the San Joaquin Valley." TABLE 3 AVERAGE TEMPERATURES, TOTAL EVAPORATION, AND AVERAGE WIND MOVEMENT AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY | Alpha | | S | easona | | Seasonal | Wind | |------------|------------------------|------|--------|------|--------------|-----------| | Order | Station Name | | Temp. | F° | Evaporation | Movement | | Number | | Max. | Min. | Mean | Total Inches | Av.Mi./Mo | | CO 0332-02 | Arvin-Frick | 73.6 | 42.9 | 58.8 | 65.5 | 1943 | | CO 2013 | Corcoran El Rico 1 | 76.2 | 45.6 | 60.9 | 77.3 | 1650 | | C6 2222 | Cummings Valley | 69.9 | 35.6 | 52.8 | 79.1 | 2312 | | B4 2473 | Don Pedro Res. | 75.1 | 47.4 | 61.3 | 79.6 | М | | C5 4304 | Isabella Res. | 74.9 | 46.2 | 60.6 | 79.7 | 2035 | | BO 5117 | Los Banos | 74.4 | 45.8 | 60.1 | 86.1 | 2524 | | Cl 6895 | Pine Flat Dam | 76.9 | 47.4 | 62.2 |
65.8 | 826 | | B6 7273 | Raymond 9N | 75.3 | 44.1 | 59.7 | 67.1 | 493 | | C3 8620 | Success Dam | 76.6 | 50.6 | 63.6 | 84.7 | 1489 | | C7 8755 | Taft KTKR | 75.2 | 48.9 | 62.1 | 93.1 | 970 | | C2 8868 | Terminus Dam | 75.4 | 52.0 | 63.7 | М | 1679* | | CO 9145 | U.S. Cotton Field Sta. | 76.5 | 49.2 | 62.8 | 81.4 | 1560 | | 30 9565 | Westley | М | М | M | 53.2 | М | | | | | | | | | ^{*} Last 10 months of record not complete M = Missing #### CHAPTER III #### SURFACE WATER FLOW # Introduction The variable flows of the streams entering the San Joaquin Valley on the east side result from the rainfall runoff occurring each winter and spring season, principally from December through April. The snowmelt runoff occurs during the spring and summer months from March through June. A combination of runoff from perennial tributaries and released stored water occurs during the summer and fall seasons. Flood flows in the valley floor channels are caused by runoff from rainfall and melting snow in the mountain areas in excess of mountain reservoir capacities, and by rainstorm runoff from the vast area of minor foothall watersheds and valley floor lands. In more recent years, flooding has become a lesser threat in the San Joaquin Valley as a result of additional reservoirs constructed on many of the tributary watersheds, including the Kern, Tule, Kaweah, Kings, San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. With the completion of the Lower San Joaquin River Flood Control Project and eventual construction of additional dams and reservoirs, such as Buchanan on the Chowchilla River, Hidden on the Fresno River, and New Melones on the Stanislaus River, flooding will cease to be a problem in the San Joaquin Valley except in years of excessive precipitation. #### Scope The area covered by this report and its geographical relation to the Central Valley Drainage Basin is shown on Plate B-1. Records of daily flows at 80 stream-gaging stations located on streams on the San Joaquin Valley floor and on streams entering the valley are presented in Appendix B of this report. Measurements of flows at 175 points of diversion from major streams on the valley floor, diversions and acreage irrigated by east side irrigation districts, and deliveries from canals of the Central Valley Project are also included in Appendix B. # Hydrography The Department of Water Resources' hydrographic activities in the San Joaquin Valley area are divided into two major categories - field and office. The field activities include: - 1. Operation and maintenance of 46 stream-gaging stations. - Measurement of streamflows passing the gaging stations at stages varied enough to establish a stage-discharge relationship. - Measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced, Tuolumne, Stanislaus, and Tule Rivers, and from Dry Creek near Modesto. - Construction of new installations as needed to augment the base network of gaging stations operated by the U. S. Geological Survey. - Cooperation with public and private agencies and with other branches within the department in the gathering of hydrographic data. The office activities include: - 1. Preparation of hydrographic data for computation by machine computation methods. - Manual computation and compilation of the discharge of stations not adaptable to machine computation. - Computation and compilation of quantities of water diverted for use in quantities per month for pumped diversions and quantities per day for gravity diversions. - 4. Preparation of rating curves based on a series of discharge measurements on each stream. - Computation of rating formulas for the curves written in machine language for machine computation purposes. # Hydrographic Activities of Other Agencies The U. S. Geological Survey maintains and operates 159 streamflow stations in addition to the stations operated by the department in the San Joaquin Valley area. A number of these are operated under the Federal-State Cooperative Surface Water Measurement Program. The records are published annually in a report by the U. S. Department of the Interior, Geological Survey, entitled "Surface Water Records of California, Volume 2, Northern Great Basin and Central Valley." The United States Bureau of Reclamation maintains and operates seven streamflow gaging stations which monitor natural inflow to the southern San Joaquin Valley. These stations are in addition to the Bureau's operation stations on project canals. Data from both types of stations appear in an annual report published by the Bureau of Reclamation entitled "Fresno Field Division Water Supply." The U. S. Corps of Engineers, the City and County of San Francisco, and other local agencies maintain and operate stream-gaging stations within the San Joaquin Valley area. These data are published in this report. The specific degree of cooperation by these agencies with the Department of Water Resources is detailed in footnotes to tables contained in this report. # Runoff and Water Supply The streams entering the valley on the east side produce the major runoff to the valley. Rainfall runoff occurs principally during the period December to April, while snowmelt is the source during the spring and summer seasons from March through June. During the summer and fall seasons, runoff is a combination of flows from perennial tributaries and releases from reservoir storage. #### Runoff Comparisons Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with any other year. Flow conditions on all major streams entering the valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to be the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1907 through September 1957. The annual unimpaired runoff in percent of average for the 50-year normal for the period 1923 through 1963 on the major streams tributary to the San Joaquin Valley is shown in Table 4. The monthly unimpaired runoff for 1963 in percent of average based on the same 50-year period is shown for the same streams in Table 5. The water supply available during the 1963 season was above normal on all major tributaries with the exception of the Tule River which was 89 percent of normal. TABLE 4 # ANNUAL UNIMPAIRED RUNOFF (In percent of average)(a) | (In bereeff of average). | | | | | | | | | | | | |---------------------------------|--|--|------------------------------------|--|---|---|--|--|---|--|--| | Water
Year | Stanislaus
River
below
Melones
P. H. | Tuolumne
River
near
La Grange | Merced
River
at
Exchequer | San
Joaquin
River
below
Friant | San
Joaquin
River near
Vernalis
(b) | Kings
River
Inflow
to
Pine Flat | Kaweah
River
near
Three
Rivers | Tule
River
Inflow
to
Success | Kern
River
Inflow
to
Isabella | | | | Average
Annual
Runoff (a) | 1111 | 1803 | 943 | 1703 | 5560 | 1607 | 394 | 133 | 624 | | | | 1922-23 | 101 | 99 | 100 | 97 | 99 | 97 | 92 | | | | | | 1923-24 | 23 | 30 | 27 | 26 | 27 | 24 | 26 | | | | | | 1924-25 | 111 | 107 | 97 | 85 | 99 | 80 | 82 | | | | | | 1925-26 | 54 | 62 | 64 | 68 | 63 | 65 | 56 | | | | | | 1926-27 | 123 | 114 | 115 | 118 | 117 | 123 | 123 | | | | | | 1927-28 | 86 | 84 | 78 | 68 | 79 | 60 | 52 | | | | | | 1928-29 | 46 | 55 | 52 | 52 | 52 | 53 | 57 | | | | | | 1929-30 | 66 | 64 | 54 | 52 | 59 | 54 | 55 | - | 53 | | | | 1930-31 | 28 | 33 | 28 | 29 | 30 | 29 | 29 | 19 | 29 | | | | 1931-32 | 122 | 117 | 118 | 121 | 119 | 130 | 132 | 104 | 112 | | | | 1932-33 | 54 | 62 | 55 | 65 | 60 | 73 | 72 | 60 | 68 | | | | 1933-34 | 39 | 45 | 38 | 41 | 41 | 41 | 33 | 15 | 37 | | | | 1934-35 | 110 | 117 | 125 | 114 | 116 | 101 | 91 | 67 | 73 | | | | 1935-36 | 119 | 120 | 123 | 110 | 117 | 117 | 124 | 129 | 120 | | | | 1936-37 | 100 | 111 | 129 | 129 | 117 | 146 | 172 | 230 | 178 | | | | 1937-38 | 184 | 190 | 220 | 216 | 202 | 204 | 221 | 267 | 206 | | | | 1938-39 | 47 | 55 | 51 | 55 | 53 | 61 | 63 | 62 | 72 | | | | 1939-40 | 126 | 123 | 116 | 112 | 119 | 111 | 130 | 159 | 111 | | | | 1940-41 | 120 | 139 | 154 | 155 | 143 | 158 | 163 | 177 | 200 | | | | 1941-42 | 134 | 132 | 136 | 133 | 133 | 125 | 125 | 102 | 120 | | | | 1942-43 | 141 | 132 | 1.37 | 120 | 130 | 126 | 170 | 274 | 161 | | | | 1943-44 | 61 | 73 | 73 | 70 | 69 | 73 | 80 | 77 | 93 | | | | 1944-45 | 115 | 116 | 116 | 125 | 119 | 128 | 140 | 153 | 129 | | | | 1945-46 | 106 | 105 | 100 | 102 | 104 | 100 | 90 | 71 | 104 | | | | 1946-47 | 57 | 61 | 60 | 66 | 61 | 69 | 67 | 39 | 68 | | | | 1947-48 | 80 | 78 | 73 | 71 | 76 | 62 | 66 | 48 | 53 | | | | 1948-49 | 67 | 70 | 67 | 68 | 68 | 60 | 56 | 37 | 47 | | | | 1949-50 | 97 | 86 | 76 | 77 | 84 | 80 | 76 | 47 | 70 | | | | 1950-51 | 152 | 138 | 129 | 109 | 130 | 100 | 107 | 116 | 85 | | | | 1951-52 | 172 | 170 | 166 | 179 | 173 | 178 | 209 | 241 | 223 | | | | 1952-53 | 87 | 85 | 65 | 69 | 78 | 72 | 78 | 74 | 87 | | | | 1953-54 | 80 | 80 | 71 | 75 | 77 | 81 | 78 | 67 | 81 | | | | 1954-55 | 62 | 63 | 56 | 68 | 63 | 69 | 70 | 49 | 57 | | | | 1955-56 | 169 | 183 | 179 | 179 | 177 | 158 | 184 | 157 | 140 | | | | 1956-57 | 78 | 79 | 69 | 81 | 78 | 78 | 75 | 49 | 70 | | | | 1957-58 | 151 | 147 | 150 | 155 | 150 | 153 | 162 | 168 | 169 | | | |
1958-59 | 53 | 55 | 48 | 56 | 54 | 50 | 39 | 24 | 43 | | | | 1959-60 | 54 | 59 | 51 | 49 | 53 | 44 | 46 | 36 | 45 | | | | 1960-61 | 35 | 40 | 33 | 38 | 37 | 35 | 30 | 14 | 28 | | | | 1961-62 | 89 | 98 | 98 | 113 | 101 | 115 | 103 | 66 | 106 | | | | 1962-63 | 113 | 114 | 104 | 114 | 112 | 116 | 128 | 89 | 117 | | | | | L | L | | | | | | | | | | ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1907 through September 1957. ⁽b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from valley floor. TABLE 5 MONTHLY UNIMPAIRED RUNOFF (In percent of average)(a) | Month | | Stanislaus
River
below
Melones
P. H. | Tuolumne
River
near
La Grange | Merced
River
at
Exchequer | San
Joaquin
River
below
Friant | San
Joaquin
River near
Vernalis
(b) | Kings
River
Inflow
to
Pine Flat | Kaweah
River
near
Three
Rivers | Tule
River
Inflow
to
Success | Kern
River
Inflow
to
Isabella | |-----------------------|--------------------|--|--|------------------------------------|--|---|---|--|--|---| | October | Percent (c) | 135 | 112 | 89 | 88 | 105 | 87 | 87 | 112 | 93 | | | Average | 8 | 15 | 7 | 20 | 50 | 19 | 4 | 1 | 14 | | November | Percent | 36 | 24 | 21 | 38 | 31 | 43 | 34 | 24 | 63 | | Movember | Average | 23 | 39 | 18 | 28 | 108 | 26 | 8 | 4 | 18 | | | | | | | | | | | | | | December | Percent | 35 | 31 | 16 | 19 | 26 | 18 | 15 | 14 | 42 | | | Average | 47 | 78 | 40 | 58 | 223 | 48 | 17 | 9 | 26 | | Tabularu | Dawgant | 63 | 62 | 68 | 113 | 76 | 120 | 152 | 76 | 98 | | January | Percent
Average | 68 | 108 | 60 | 74 | 310 | 63 | 22 | 13 | 27 | | | nverage | 33 | 100 | | | 310 | 03 | | 13 | | | February | Percent | 245 | 249 | 222 | 226 | 237 | 241 | 316 | 146 | 303 | | | Average | 84 | 135 | 79 | 92 | 390 | 80 | 28 | 20 | 33 | | | | | | , | | | | | | | | March | Percent | 88 | 64 | 61 | 74 | 71 | 70 | 71 | 36 | 85 | | | Average | 122 | 180 | 99 | 136 | 537 | 115 | 40 | 27 | 49 | | April | Percent | 100 | 92 | 88 | 79 | 89 | 79 | 96 | 109 | 76 | | | Average | 206 | 286 | 149 | 244 | 885 | 219 | 63 | 24 | 88 | | | | | | | | | | | | | | May | Percent | 130 | 120 | 109 | 108 | 116 | 106 | 122 | 114 | 90 | | | Average | 294 | 447 | 245 | 430 | 1416 | 431 | 102 | 22 | 148 | | June | Percent | 103 | 124 | 115 | 126 | 120 | 129 | 132 | 98 | 128 | | 1 | Average | 189 | 372 | 182 | 392 | 1135 | 389 | 77 | 10 | 126 | | | | | | | | | | | | | | July | Percent | 118 | 153 | 141 | 163 | 152 | 166 | 176 | 177 | 175 | | | Average | 53 | 115 | 50 | 163 | 381 | 155 | 24 | 2 | 58 | | August | Percent | 116 | 171 | 126 | 154 | 148 | 150 | 164 | 297 | 171 | | August | Average | 12 | 19 | 10 | 46 | 87 | 44 | 6 | 1 | 24 | | | | | | | | , | | | | | | September | Percent | 200 | 127 | 48 | 159 | 145 | 136 | 186 | 300 | 187 | | | Average | 5 | 9 | 4 | 20 | 38 | 19 | 3 | 0.3 | 14 | | 1962-63
Water Year | Percent | 112 | 114 | 104 | 114 | 112 | 116 | 120 | 80 | 117 | | water rear | Average | 113 | 114 | 104
943 | 114 | 112
5560 | 116 | 128 | 133 | 117
624 | | | nver aye | 1111 | 1603 | 943 | 1/03 | 2260 | 100/ | 394 | 133 | 024 | ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1907 through September 1957 ⁽b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from the valley floor. ⁽c) Percent figures are preliminary figures supplied by Water Supply and Snow Surveys, Division of Operations. <u>Lakes and Reservoirs</u> There are 59 principal reservoirs in the State, of which 25 are located in the San Joaquin Valley area. These 25 have a total storage capacity of 4,727,520 acre-feet. The storage capacity, water in storage on October 1, 1962, and storage on October 1, 1963, in the major reservoirs in the San Joaquin Valley area are shown in Table 6. The quantity of water in storage in these 25 reservoirs at the end of the 1962-63 season was about 49 percent of the total storage Capacity as compared to 36 percent at the end of the 1961-62 season. TABLE 6 SUMMARY OF PRINCIPAL RESERVOIR STORAGE IN THE SAN JOAOUTN VALLEY (In acre-feet) | Watershed | Reservoir | Total
Capacity | In Storage
Oct. 1, 1962 | In Storage
Oct. 1, 196 | |------------------|--|-------------------|----------------------------|---------------------------| | Stanislaus | | | | | | | Relief | 15,560 | 5,788 | 4,400 | | | Strawberry | 18,270 | 10,429 | 10,480 | | | Melones | 112,600 | 11,360 | 11,060 | | | Donnels | 64,500 | 48,276 | 49,576 | | | Beardsley | 97,500 | 88,141 | 83,296 | | | Tulloch | 68,400 | 16,648 | 33,948 | | <u> Tuolumne</u> | | | | | | | Lake Eleanor | 26,100 | 17,976 | 18,520 | | | Lake Lloyd | 268,000 | 183,058 | 182,450 | | | Hetch Hetchy | 360,400 | 277,410 | 289,461 | | | Don Pedro | 290,000 | 88,000 | 174,920 | | | Turlock Lake | 49,000 | 7,950 | 11,440 | | Merced | | 200 000 | | 62 860 | | | Lake McClure | 289,000 | 37,674 | 63,750 | | San Joaquin | 0 | 45 400 | 25 240 | 24,800 | | | Crane Valley | 45,400 | 25,240 | | | | Lake Thomas A. Edison
Florence Lake | 125,000
64,600 | 106,570
16,690 | 101,360 | | | | | | 31,020
17,490 | | | Mammoth Pool | 122,700 | 51,360
86,660 | 87,900 | | | Huntington Lake | 89,800
35,000 | 18,780 | 8,600 | | | Redinger Lake | | | | | | Shaver Lake
Millerton Lake | 135,400 | 79,640 | 103,830 | | | Millerton Lake | 520,500 | 146,000 | 205,000 | | Kings | Wishon | 128,300 | 45,200 | 90,060 | | | Pine Flat | 1,001,500 | 247,400 | 467,200 | | | rine riat | 1,001,500 | 247,400 | 407,200 | | Kaweah | Terminus | 150,000 | 2,880 | 8,460 | | | Terminas | 130,000 | 2,000 | 0,400 | | <u> Tule</u> | Success | 80,000 | 7,100 | 12,350 | | Kern | | | 05.100 | 21= 222 | | | Isabella | 570,000 | 95,100 | 217,030 | | TOTAL | | 4,727,530 | 1,721,330 | 2,308,401 | #### Streamflow Measurements The records of many of the stream-gaging stations reported in Appendix B are maintained and operated by agencies cooperating with the Department of Water Resources. The methods used by all cooperating parties are standardized and the results obtained are equally good. During the 1963 season 46 of the total of 80 gaging stations on streams for which records are reported herein were maintained, operated, rated, computed, and compiled by the Department of Water Resources. #### Recorders An automatic water stage recorder is in operation at each gaging station in the San Joaquin Valley area. The continuous record of water surface elevation at each station serves two major purposes in the preparation of the data in this report, and assists in the planning of flood control projects. First, the water surface elevation (gage height) is a factor in determining the quantity of flow of the stream in second-feet passing a given station. Second, the actual surface elevation at two adjacent stations on a stream afford the means of obtaining the water surface elevation at pumping plants along the stream between the stations. This information assists in the determination of the pumping head in order that the rate of diversion by the pumping plants can be obtained. #### Ratings A streamflow rating is made for each stream-gaging station. This rating gives the flow in second-feet for each gage height at the station. Normally, the gage-height-flow relation or rating is more or less permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel consists of loose, shifting sand, where heavy weed growth accumulates as the season progresses, or where there may be backwater effects due to ice or other downstream conditions. In these latter cases more frequent measurements of flow are made to obtain accurate records of flows passing the station. #### Use of Water for Irrigation The prevailing warm temperatures and a prolonged frost-free period during the summer season in the San Joaquin Valley favors the profitable production of a wide variety of marketable crops. The major irrigated crops in the San Joaquin Valley include rice, alfalfa, orchard fruits, nuts, grapes, cotton, corn, grain, flax, pasture grasses, and a large variety of truck crops. # Criteria The number of diversion points measured on the major streams in the San Joaquin Valley may vary from year to year. The criteria for selecting points to be measured were established in 1960. At that time it was determined that by measuring only those diversion points which had an average of two hundred acre-feet per season based on the previous three years of diversion record, 50 percent of the field work could be eliminated and still 95 percent of the total water diverted could be measured. Changes in crop pattern and the available water supply are major factors that influence the amounts of water diverted for irrigation purposes. #### Irrigation Diversions Measurements and records of diversions in 1963 included all the major points of diversion on the valley floor along the San Joaquin River and tributaries; along the Stanislaus, Tuolumne, and Merced Rivers, and Dry Creek tributary to Tuolumne River; and along the Tule River. This report contains records for a total of 170 points of diversion. Table 7 shows, by streams, the number of points of diversion and the acre-feet diverted. TABLE 7 SUMMARY OF DIVERSION POINTS AND TOTAL ACRE-FEET DIVERTED Oct. 1,
1962-Sept. 30, 1963 | Stream | Number
Of Points
Measured | Total
Acre-feet
Diverted | |--|---------------------------------|--------------------------------| | San Joaquin River Vernalis to Fremont Ford Bridge Fremont Ford Bridge to Gravelly Ford (a) Gravelly Ford to Friant Dam | 39
16
24 | 168,800
865,800
9,583 | | Tuolumne River | 22 | 14,630 | | Stanislaus River | 23 | 43,170 | | Merced River | 34 | 56,750 | | Dry Creek (Tributary to the Tuolumne River) | 3 | 1,368 | | Tule River TOTAL | 7 | 52,470
1,212,571 | (a) Records furnished by U. S. Bureau of Reclamation. Waters diverted by Central Valley Project canals and east side irrigation districts are shown on Table B-95. The monthly amount of water diverted at the individual points of diversion along all the streams covered in the San Joaquin Valley area is shown along with the total acre-feet diverted for the season in Appendix B, Tables B-86 through B-93 of this report. The monthly use in percentage of seasonal total is also shown. The location of each diversion point on a given stream is measured from the mouth of that stream, progressing upward by river-mile. References to left or right bank assume an orientation facing downstream. All of the diversions are accomplished by pumping except for 18 by gravity. The records of diversion by gravity are obtained by means of canal ratings established by flow measurements. The records of pumping diversions are obtained in a few instances by means of canal rating but, in the main, are obtained by actual measurement of the pump discharge. Most of the pumps are electrically operated, making it possible to establish a relationship between water pumped and power input. Sufficient measurements are made to establish a rate of discharge for each pump, and the electric meters are read monthly to determine the power used. The monthly amount of diversions in acre-feet by the large east side irrigation districts from the Stanislaus, Tuolumne, and Merced Rivers during the 1963 season is shown in Appendix B, Table B-94. The monthly amount of diversions in acre-feet by the Friant-Kern and Madera Canals from Friant Reservoir on the San Joaquin River is shown in Appendix B, Table B-95. Fresno Slough and James Bypass normally convey excess flood flows from the Kings River into the San Joaquin River at a point above Mendota Dam, but during the irrigation season, San Joaquin River water is backed up through those channels by the Mendota Dam to afford irrigation supplies to the James and Tranquillity Irrigation Districts and to certain other diverters. The diversion data for these streams shown in Table B-87 were furnished by the U. S. Bureau of Reclamation. # Imported Water Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water diverted and its distribution for use are shown in Table B-95. #### CHAPTER IV #### GROUND WATER MEASUREMENTS ### Introduction The ground water resources of California have long been recognized as one of the major natural resources of the State. The ever-increasing rate of draft on the ground water basins makes the problems associated with the use and conservation of this resource numerous and complex, and the solution more urgent. More than one-quarter of all the ground water pumped for irrigation in the United States is used in the San Joaquin Valley. Widespread pumping began about 1900 and, especially since 1940, has increased at an accelerated rate. In response to this heavy withdrawal, ground water levels in extensive areas of the valley have declined rapidly. The water level decline will continue as long as ground-water pumpage exceeds the natural and artificial recharge of the ground water basin. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground water reservoirs are present. In downward succession there are (1) a body of unconfined and semiconfined fresh water in alluvial deposits of recent, Pleistocene, and possibly later Pliocene age overlying the Corcoran Clay Member of the Tulare Formation; (2) a body of fresh water confined beneath the Corcoran Clay Member which occurs in alluvial and lacustrine deposits of late Pliocene age or older; and (3) a body of saline connate water contained in marine sediments of middle Pliocene or older age which underlies the freshwater body throughout the area. (U. S. Geological Survey Water-Supply Paper 1618 Abstract.) In much of the eastern part of the valley, especially in the area of the major streams, the Corcoran clay member is not present and ground water occurs as one fresh-water body to considerable depth. Ground water is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the valley from tributary streams and from canyons, and by infiltration of excess irrigation waters. The ground-water storage capacity of the San Joaquin Valley to a depth of 200 feet has been estimated to be approximately 93 million acre-feet, equal to roughly 9 times the capacity of the present and proposed surface-water reservoirs in the valley. All studies of ground-water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and quality analysis of water samples obtained over a period of years. The Department of Water Resources began the collection of ground-water level data in 1930 in connection with special investigation of water resources of specific areas, and has gradually developed a continuous program of basic water level data collection. Through cooperative activities of the federal and local agencies, coordinated and augmented by the department, the program of annual, semiannual, and monthly measurements of ground-water levels has gradually expanded. #### Scope The area covered by this report and its geographical relation to the Central Valley Drainage Basin are shown on Plate B-1. The areal scope of Appendix C of this volume is depicted on Plates C-1 through C-6. During the period July 1, 1962, to June 30, 1963, the San Joaquin Valley Branch of the Department of Water Resources obtained approximately 13,000 water level measurements on some 7,500 wells. The period of record for many of these wells ranges from one to over 40 years. ## Basic Data Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 600 wells for which the records are presented in Appendix C of this volume. These wells, designated as selected wells, were chosen on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuation in the ground water area; and availability of a log, mineral analysis, and/or production record. Table C-1 presents the water level measurements made from July 1, 1962, through June 30, 1963. This volume continues the records for those wells published in Bulletin 77-62 which fall within the boundary of the San Joaquin Valley area. #### Processed Data Hydrographs depicting average water level fluctuations in 19 selected ground water areas are presented on Plate C-7. Individual well hydrographs depicting graphically the fluctuation of water levels are shown on Plate C-8. These wells distributed among significant areas were selected insofar as possible to be representative of their respective areas. A ground-water map showing lines of equal elevation of water in wells for spring of 1963 appears on Plate C-9. Where sufficient data are available, lines of equal elevation of water are shown for the unconfined or semiconfined aquifer, and the confined aquifer or pressure surface. Maps showing the areas where the ground-water level changed five feet or more in the unconfined, semiconfined, and confined aquifers are presented in Plates C-1 and C-2. ### Related Information For some basins or areas, maps showing depth to ground water are also prepared. At appropriate times, commonly every five years, maps are prepared showing lines of equal change occurring in the water level in wells during the time intervals. These maps are available in the office of the San Joaquin Valley Branch of the Department of Water Resources, and will be presented in future reports. #### Cooperative Programs The Department of Water Resources has cooperative ground water programs with the U. S. Geological Survey, U. S. Bureau of Reclamation, Kern County, Kings County Water District, and the Poso Soil Conservation District. #### Monthly Program Approximately 350 selected wells are measured monthly and the resulting figures are published in a monthly summary report. These wells were selected as being representative of their respective areas. Most of the field work is done by cooperating agencies, while the department measures 36 of the 350 selected wells. The department compiles and publishes the collected field data in a monthly report. The water level measurements on the selected monthly wells are included in Appendix C of this volume. ## Annual and Semiannual Programs In Kern County approximately 1000 wells are measured semiannually under a cooperative agreement between the U. S. Bureau of Reclamation, the Kern County Surveyors office, and the Department of Water Resources, with approximately 500 additional water level measurements being made by the Kern County Land Company and made available to the department. Maps of Kern County showing lines of equal depth to water and lines of equal elevation of water in wells are prepared for both spring and fall of each year. In the Kings County Water District approximately 325 selected wells are measured
semiannually by that agency and submitted to the department for use in preparation of ground water maps under a cooperative agreement. Ground water maps are prepared for both spring and fall showing lines of equal elevation of water in wells in the district. In the Poso Soil Conservation District approximately 40 wells are measured by that agency and submitted to the department. Ground water maps are prepared for the district showing depth to water in wells in January and July. ### Ground Water Conditions Data are presented in this report for two zones or aquifers in nine of the 46 areas reported in Appendix C. During the period July 1962 to June 1963, 28 areas in the San Joaquin Valley showed a rise in the unconfined and semiconfined aquifers. There was no change in one area, but in 13 other areas there was a decline. Six of the eleven areas for which the pressure surface is reported show a decline and five show a rise in the water level. In the shallow zone the maximum declines occurred in the Vandalia Irrigation District and the Shafter-Wasco Irrigation District, where changes of 10.9 feet and 9.1 feet respectively are noted. The greatest rise in the shallow zone was 11.2 feet in the Lindsay-Strathmore Irrigation District. The maximum decline of 23.6 feet occurred in the Mendota-Huron area deep zone. The greatest rise in the deep zone was 23.5 feet in the Corcoran Irrigation District. In those areas for which water levels are based on a composite of shallow and deep zones, the main change was a decline of 6.8 feet in the Buena-Vista Water Storage District. Table 8 presents a summary of ground water level data collected in the San Joaquin Valley by TABLE 8 SUMMARY OF GROUND WATER LEVEL DATA COLLECTED IN THE SAN JOAQUIN VALLEY July 1, 1962 - June 30, 1963 | | | | Number
of Wells Meas | | sured | |--|---------|---|-------------------------|-----------------------|--------------------| | Ground Water Basin or Area | Number | Measuring Agency | Monthly | Fall
1962 | Spring
1963 | | San Joaquin Valley | 5-22.00 | | | | | | South San Joaquin Irrigation
District | 5-22.05 | South San Joaquin Irrigation
District
San Joaquin County | | 88 | 89 | | Oakdale Irrigation District | 5-22.06 | Oakdale Irrigation District | 6 | 136 | 136 | | Modesto Irrigation District | 5-22.07 | Modesto Irrigation District | | | 173 | | Turlock Irrigation District | 5-22.08 | Turlock Irrigation District | | | 200 | | Merced Irrigation District | 5-22.09 | Merced Irrigation District | | | 226 | | El Nido Irrigation District | 5-22.10 | Merced Irrigation District | | | 29 | | Delta-Mendota Area | 5-22.11 | U.S. Bureau of Reclamation
Department of Water Resources
San Luis Canal Company
San Joaquin County
Panoche Water District | 112 | 538
259 | 531
240
6 | | Chowchilla Water District | 5-22.12 | Chowchilla Water District
U.S. Bureau of Reclamation | 8 | 137
18 | 137
24 | | Madera Irrigation District | 5-22.13 | Madera Irrigation District
U.S. Bureau of Reclamation
Chowchilla Water District | 13 | 214
36
4 | 210
40
4 | | West Chowchilla-Madera Area | 5-22.14 | Chowchilla Water District
U.S. Bureau of Reclamation
Madera Irrigation District | 7 | 9
76
2 5 | 9
76
25 | | Fresno Irrigation District | 5-22.15 | Fresno Irrigation District | 9 | 119 | 111 | | | | Consolidated Irrigation
District
U.S. Bureau of Reclamation
Madera Irrigation District
Department of Water Resources | 9 | 5
87
1
41 | 3
87
1
43 | | City of Fresno | 5-22.16 | City of Fresno | 2 | 62 | 66 | ## TABLE 8 (Continued) ## SUMMARY OF GROUND WATER LEVEL DATA COLLECTED IN THE SAN JOAQUIN VALLEY July 1, 1962 - June 30, 1963 | | | | of Wel | umber
ls Mea | sured | |---|---------|--|---------|---------------------------|----------------------------| | Ground Water Basin or Area | Number | Measuring Agency | Monthly | Fall
1962 | Sprine
1963 | | San Joaquin Valley (continued) | | | | | | | Fresno Slough Area | 5-22.17 | Fresno Irrigation District
Consolidated Irrigation
District | 1 | 3 | 4 | | | | U.S. Bureau of Reclamation Department of Water Resources U.S. Geological Survey | 10 | 207
50 | 207
50 | | Consolidated Irrigation
District | 5-22.18 | Consolidated Irrigation
District | 11 | 71 | 72 | | Alta Irrigation District | 5-22.19 | Alta Irrigation District
U.S. Bureau of Reclamation
Orange Cove Irrigation District | 8 | 160
49
6 | 160
49
6 | | Lower Kings River Area | 5-22.20 | Kaweah Delta Water Conservation
District
Consolidated Irrigation District
U.S. Bureau of Reclamation
Department of Water Resources | :
7 | 6
6
17 | 6
7
17
155 | | Orange Cove Irrigation
District | 5-22.21 | Orange Cove Irrigation District U.S. Bureau of Reclamation | 4 | 113
31 | 114
30 | | Stone Corral Irrigation
District | 5-22.22 | U.S. Bureau of Reclamation | 2 | 31 | 31 | | Ivanhoe Irrigation District | 5-22.23 | Ivanhoe Irrigation District U.S. Bureau of Reclamation | 2 | 42 | 42 | | Kaweah Delta Water Conservation
District | 5-22.24 | Kaweah Delta Water Conservation
District
Tulare Irrigation District
Lindmore Irrigation District
U.S. Bureau of Reclamation
Department of Water Resources | 12 | 133
5
7
14
79 | 115
15
7
32
86 | | Tulare Irrigation District | 5-22.25 | U.S. Bureau of Reclamation
Tulare Irrigation District | 5 | 10
105 | 14
96 | | Exeter Irrigation District | 5-22.26 | Exeter Irrigation District U.S. Bureau of Reclamation | 1 2 | 78
3 | 78
3 | | Lindsay-Strathmore Irrigation
District | 5-22,27 | Lindsay-Strathmore Irrigation
District
Lindmore Irrigation District
U.S. Bureau of Reclamation | 2 | 21 | 21 | | Lindmore Irrigation District | 5-22.28 | Lindmore Irrigation District
Porterville Irrigation District
Exeter Irrigation District
U.S. Bureau of Reclamation | 4 | 170
4
2
17 | 170
4
2
18 | | Porterville Irrigation District | 5-22.29 | Porterville Irrigation District
Lower Tule River Irrigation
District
U.S. Bureau of Reclamation | 3 | 22
3
6 | 22
3
7 | | Lower Tule River Irrigation
District | 5-22.30 | Lower Tule River Irrigation District Saucelito Irrigation District U.S. Bureau of Reclamation | 5 | 175
5
13 | 174
2
17 | | Vandalia Irrigation District | 5-22.31 | Department of Water Resources
U.S. Bureau of Reclamation | 2 | | 5 | | Saucelito Irrigation District | 5-22.32 | Saucelito Irrigation District
U.S. Bureau of Reclamation | 4 | 45 | 48 | | Pixley Irrigation District | 5-22.33 | Lower Tule River Irrigation District U.S. Geological Survey | 3 | 1 | 2 | | | | U.S. Bureau of Reclamation | 7 | 81 | 81 | | Alpaugh-Allensworth Area | 5-22.34 | U.S. Bureau of Reclamation
Delano-Earlimart Irrigation | 6 | 35
63 | 30 | ## TABLE 8 (Continued) ## SUMMARY OF GROUND WATER LEVEL DATA COLLECTED IN THE SAN JOAQUIN VALLEY July 1, 1962 - June 30, 1963 | | | | Number
of Wells Meas | | asured | | |--|---------|---|-------------------------|-----------------|-----------------|--| | Ground Water Basin or Area | Number | Measuring Agency | Monthly | Fall
1962 | Spring
1963 | | | San Joaquin Valley (continued) | | | | | | | | Delano-Earlimart Irrigation
District | 5-22.35 | Delano-Earlimart Irrigation
District
U.S. Geological Survey
U.S. Bureau of Reclamation | 4
1 | 102
53 | 65
53 | | | Southern San Joaquin Municipal
Utility District | 5-22.36 | Southern San Joaquin Municipal
Utility District
U.S. Geological Survey
Delano-Earlimart Irrigation
District | 6 | 65
4 | 65
4 | | | | | Kern County Land Company
U.S. Bureau of Reclamation | | 8
7 | 8
8 | | | North Kern Water Storage
District | 5-22.37 | Kern County Land Company
Department of Water Resources
U.S. Geological Survey | 4 | 182
12 | 182 | | | Shafter-Wasco Irrigation
District | 5-22.38 | Shafter-Wasco Irrigation Distric
U.S. Bureau of Reclamation
Kern County Land Company
U.S. Geological Survey | | 74
6
30 | 74
6
30 | | | City of Bakersfield | 5-22.39 | California Water Service | | | 32 | | | Kern River Delta Area | 5-22.40 | Shafter-Wasco Irrigation District
Kern County Surveyor
Buena Vista Water Storage Distri | | 6
125 | 6
104 | | | | | U.S. Bureau of Reclamation
Kern County Land Company | | 77
201 | 77
201 | | | Edison-Maricopa Area | 5-22.41 | Kern County Land Company
U.S. Geological Survey
Kern County Surveyor
U.S. Bureau of Reclamation | 12 | 32
36
195 | 32
33
206 | | | Buena Vista Water Storage
District | 5-22.42 | Department of Water Resources Buena Vista Water Storage District Kern County Land Company U.S. Geological Survey Kern County Surveyor | 28
6 | 6 23 | 94
6
18 | | | Semitropic Water Storage
District | 5-22.43 | U.S. Bureau of Reclamation
Kern County Surveyor
U.S. Geological Survey
Kern County Land Company
Buena Vista Water Storage
District | 11 | 56
117
25 | 56
99
25 | | | Avenal-McKittrick Area | 5-22.44 | U.S. Geological Survey
Department of Water Resources | 2 | | 189 | | | Tulare Lake-Lost Hills Area | 5-22.45 | Kern County Surveyor
Department of Water Resources
U.S. Geological Survey | 4 | | 12
190 | | | Corcoran Irrigation District
| 5-22.46 | Kaweah Delta Water Conservation
District
Department of Water Resources | 3 | 1 | 1 | | | Mendota-Huron Area | 5-22.47 | U.S. Geological Survey
U.S. Bureau of Reclamation
Department of Water Resources | 14 | 44 | 48
650 | | | Poso Soil Conservation District | 5-22.48 | Poso Soil Conservation District
San Luis Canal Company | 25
11 | | | | | Terra Bella Irrigation District | 5-22.50 | U.S. Bureau of Reclamation | 3 | 33 | 25 | | Table 9 presents the average change in ground water levels, spring 1962 to spring 1963, and the wells showing the maximum and minimum depth to ground water in the spring of 1963, for each basin or area. The average change in water level for each basin or area was determined where possible by planimetering ground water contour maps. In areas where insufficient data were available to define reliable contours, a numerical average was made from the actual well measurements. TABLE 9 AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963 | Ground Water Basin or Ar | Ground Water Basin or Area | | Average
Change in
Ground Water
Level 1962
to 1963 | Location and Recorded Maximum
and Minimum Depth to Water in
the Spring of 1963
(In feet) | | | |---|----------------------------|----------|---|---|--------------------------------|--| | Name | Number | Analysis | (In feet) | Maximum | Minimum | | | San Joaquin Valley | 5-22.00 | | | | | | | South San Joaquin Irrigation District | 5-22.05 | 1/ | -0.3 | 02 S /08E-01M01
28.7 | 01S/07E-21R01
5.9 | | | Oakdale Irrigation District | 5-22.06 | 1/ | +3.2 | 02S/11E-28J01
143.8 | 02S/10E-10E01
6.6 | | | Modesto Irrigation District | 5-22.07 | 1/ | -0.5 | 03 S /10E-32G01
56.6 | 03S/07E-36C01
5.2 | | | Turlock Irrigation District | 5-22.08 | 158 | +2.0 | 06S/10E-26N01
14.9 | 05S/09E-07N01
2.8 | | | Merced Irrigation District | 5-22.09 | 1/ | +0.6 | 07S/13E-04D01
23.1 | 08S/13E-03N01
2.1 | | | El Nido Irrigation District | 5-22.10 | 1/ | +0.9 | 09S/13E-23H01
87.1 | 09S/14E-21C01
63.7 | | | Delta-Mendota Area | 5-22.11 | 457 | -1.2 | 12S/11E-36Q01
396.5 | 08S/10E-31C01
0.1 | | | Chowchilla Water District | 5-22.12 | 1/ | +3.9 | 09 S /16E-27A01
87.0 | 09 S /16E-33E01
38.5 | | | Madera Irrigation District | 5-22.13 | 1/ | +1.5 | 12S/18E-05C01
85.7 | 13S/17E-07J03
29.0 | | | West Chowchilla-Madera Area | 5-22.14 | 1/ | -1.5 | 10S/14E-08B01
77.2 | 10S/13E-35K01
5.2 | | | Fresno Irrigation District | 5-22.15 | 1/ | +0.9 | 12S/21E-19D01
94.9 | 14S/23E-04G01
12.6 | | | City of Fresno | 5-22.16 | 1/ | +0.3 | 14S/20E-02B01
85.6 | 14S/20E-15M01
61.4 | | | Fresno Slough Area | 5-22.17 | 1/ | -5.0 | 15S/16E-29P01
196.0 | 14S/16E-28N01
11.0 | | | Consolidated Irrigation
District | 5-22.18 | 1/ | +0.5 | 16S/19E-14A01
74.7 | 17S/22E-01C01
19.8 | | | Alta Irrigation District | 5-22.19 | 1/ | +5.4 | 14S/23E-25N01
69.5 | 14S/23E-02E01
10.1 | | | Lower Kings River Area | 5-22.20 | 1/ | +1.6 | 20S/21E-04M01
172.1 | 19S/19E-25A01
4.5 | | | Orange Cove Irrigation
District | 5-22.21 | 1/ | +6.5 | 15S/24E-26J01
75.2 | 14S/24E-27P01
2.0 | | | Stone Corral Irrigation
District | 5-22.22 | 1/ | +9.4 | 17S/25E-12D01
49.2 | 16S/26E-32R01
0.8 | | | Ivanhoe Irrigation District | 5-22.23 | 1/ | +1.9 | 17S/25E-26C01
89.3 | 17S/26E-21D02
26.1 | | | Kaweah-Delta Water Conserva-
tion District | 5-22.24 | 1/ | +3.2 | 20S/22E-10C01
121.2 | 18S/26E-14D01
5.5 | | | Tulare Irrigation District | 5-22.25 | 1/ | +5.4 | 20S/23E-18C01
120.9 | 19S/25E-17J01
59.2 | | ## TABLE 9 (Continued) ## AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963 | Ground Water Basin or Area | | Number of
Wells
Considered
in | Average
Change in
Ground Water
Level 1962 | Location and Recorded Maximum
and Minimum Depth to Water in
the Spring of 1963
(In feet) | | | |---|-----------|--|--|---|------------------------------|--| | Name | Number | Analysis | to 1963
(In feet) | Maximum | Minimum | | | an Joaquin Valley (continued) | | | | | | | | Exeter Irrigation District | 5-22.26 | <u>1</u> / | +9.9 | 19S/26E-13R01
106.0 | 18S/26E-24B0
20.9 | | | Lindsay-Strathmore Irrigation | 5-22.27 | 1/ | +11.2 | 19S/26E-36F01
93.9 | 20S/27E-15R0
3.1 | | | Lindmore Irrigation District | 5-22.28 | 1/ | +8.6 | 20S/26E-28R02
126.0 | 21S/27E-03K0
39.0 | | | Porterville Irrigation
District | 5-22.29 | 1/ | +5.4 | 21S/27E-29H01
87.4 | 21S/27E-34J0
16.2 | | | Lower Tule River Irrigation
District | 5-22.30 | 1/ | +2.4 | 22S/24E-14R01
160.0 | 21S/26E-09N0
27.0 | | | Vandalia Irrigation District | 5-22.31 | 8 | -10.9 | 22S/27E-13C01
158.9 | 22S/28E-18A0
120.2 | | | Saucelito Irrigation District | 5-22.32 | | | | | | | Unconfined Aquifer | | 1/ | +8.3 | 22S/26E-13R01
146.7 | 22S/26E-09B0
116.0 | | | Pressure Surface | | 1/ | +10.6 | 22S/26E-32E01
201.5 | 22S/26E-05P
126.1 | | | Pixley Irrigation District | 5-22.33 | | | | | | | Unconfined Aquifer | | 1/ | -2.8 | 22S/25E-19A04
136.7 | 23 S /24E-16J
57.9 | | | Pressure Surface | | 1/ | -6.7 | 22S/25E-36H01
211.2 | 23S/24E-29H
105.1 | | | Alpaugh-Allensworth Area | 5-22.34 | | | | | | | Unconfined Aquifer | | 1/ | -4.5 | 24S/25E-17P01
130.0 | 24S/23E-21B
47.2 | | | Pressure Surface | | 1/ | +3.0 | 24S/24E-20R01
193.0 | 24S/23E-22A
117.0 | | | Delano-Earlimart Irrigation
District | 5-22.35 | | | | | | | Unconfined Aquifer | | 1/ | -2.5 | 24S/26E-29R02
161.0 | 24S/25E-25P
65.0 | | | Pressure Surface | | 1/ | +3.9 | 24S/26E-25H01
349.0 | 24S/25E-22F
125.0 | | | Southern San Joaquin Municipa
Utility District | 1 5-22.36 | | | | | | | Unconfined Aquifer | | 1/ | +8.3 | 25S/26E-28H02
204.4 | 25S/24E-12E
64.0 | | | Pressure Surface | | 1/ | +5.1 | 25S/26E-23Q01
350.0 | 25S/26E-18M
134.8 | | | North Kern Water Storage
District | 5-22.3 | 7 | | | | | | Unconfined Aquifer | | <u>1</u> / | +0.7 | 28S/26E-16L01
214.0 | 26S/25E-28
78.0 | | | Pressure Surface | | 1/ | -15.2 | 27S/26E-20D01
302.0 | 26S/25E-09
157.8 | | | Shafter-Wasco Irrigation
District | 5-22.3 | | | 000 100- 00- | 200/200 21 | | | Unconfined Aquifer | | 1/ | -9.1 | 27S/25E-06N02
190.5 | 28S/26E-31
131.5 | | | Pressure Surface | | 1/ | -14.8 | 27S/25E-20A01
210.5 | 26S/24E-33
171.5 | | ## TABLE 9 (Continued) ## AVERAGE CHANGE IN GROUND WATER LEVELS IN BASINS AND AREAS IN THE SAN JOAQUIN VALLEY Spring 1962 - Spring 1963 | Ground Water Basin of Area | | Number of Wells Considered in Analysis | Average
Change in
Ground Water
Level 1962
to 1963 | Location and Recorded Maximum
and Minimum Depth to Water in
the Spring of 1963
(In feet) | | | |---------------------------------------|-------------|--|---|---|------------------------|--| | Name | Number | Analysis | (In feet) | Maximum | Minimum | | | San Joaquin Valley (continued) | | | | | | | | City of Bakersfield | 5-22.39 | 27 | -11.2 | 295/28E-17R01
300.0 | 29S/28E-19D01
95.0 | | | Kern River Delta Area | 5-22.40 | 1/ | -3.7 | 28S/24E-23D03
171.2 | 31S/28E-29B01
12.0 | | | Edison-Maricopa Area | 5-22.41 | | | | | | | Pressure Surface | | 1/ | -11.4 | 11N/20W-14B01
571.0 | 32S/25E-20G01
101.5 | | | Buena Vista Water Storage
District | 5-22.42 | 1/ | -6.8 | 27S/22E-08R01
112.5 | 30S/23E-01C01
28.7 | | | Semitropic Water Storage
District | 5-22.43 | | | • | | | | Unconfined Aquifer | | 1/ | +0.6 | 25S/24E-08H01
147.0 | 28S/23E-03R01
29.0 | | | Pressure Surface | | 1/ | -1.0 | 27S/23E-08G01
217.5 | 25S/23E-07A01
103.0 | | | Avenal-McKittrick Area | 5-22.44 | 46 | +0.9 | 26S/18E-16E01
244.2 | 24S/20E-14C01
15.9 | | | Tulare Lake-Lost Hills Area | 5-22.45 | 21 | +1.3 | 21S/20E-09M01
246.1 | 24S/20E-14C01
15.9 | | | Corcoran Irrigation District | 5-22.46 | | | | | | | Unconfined Aquifer | | 1/ | +8.9 | 21S/22E-02H01
95.4 | 21S/22E-08M01
13.0 | | | Pressure Surface | | 1/ | +23.5 | 21S/21E-13A01
187.9 | 20S/22E-20A01
96.6 | | | Mendota-Huron Area | 5-22.47 | | | | | | | Pressure Surface | | 1/ | -23.6 <u>2</u> / | 17S/15E-30M01
805.4 | 15S/16E-23P01
105.9 | | | Poso Soil Conservation Distri | ct 5-22.48 | 1/ | -1.2 | 12S/14E-08P01
13.0 | 11S/12E-22N01
1.8 | | | San Luis Canal Company | 5-22.49 | 1/ | +0.6 | 10S/12E-08A01
15.2 | 10S/11E-16R01
1.0 | | | Terra Bella Irrigation Distri | lct 5-22.50 | 5 | 0.0 | 23S/27E-10H01
229.5 | 23S/27E-01A01
75.6 | | $[\]underline{1}$ / Averages were determined by planimetering ground water contour maps. $[\]underline{\rm 2/}$ Change determined from water level measurements made March 1962 and December 1962. Table 10 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1963 in nineteen historic ground water areas in the San Joaquin Valley. TABLE 10 CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 to 1951 and 1951 to 1963 IN NINETEEN GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY | Name of Ground Water Area | Area
in
Square
Miles | | Net
Change
in Water
Level
1921-511/
(In feet) | Net
Change
in
Water
Level
1951-63 ² /
(In feet) | |----------------------------------|-------------------------------|---|--|---| | Madera | 342.6 | Madera Irrigation District, Chowchilla
Water District | -24.1 <u>3</u> / | -14.5 | | Fresno | 404.0 | Fresno Irrigation District | -22.4 | -16.9 | | Consolidated | 243.0 | Consolidated Irrigation District | -19.0 | -10.5 | | Fresno, Consolidated and Outside | 700.1 | Fresno Irrigation District, Consolidated Irrigation District | -23.2 | -15.1 | | Outside Only | 53.1 | | -25.6 | -28.6 | | Centerville Bottoms | 18.1 | | + 1.0 | + 3.0 | | Alta | 190.9 | Alta Irrigation District | -17.2 <u>3</u> / | - 5.1 | | Ivanhoe | 17.4 | Ivanhoe Irrigation District | - 55.9 | +10.3 | | Outside Ivanhoe | 76.6 | Part of Alta Irrigation District, Stone
Corral Irrigation District | -28.5 | - 3.0 | | Mill Creek | 128.2 | | -31.1 | -16.4 | | Tulare | 121.1 | Tulare Irrigation District | -59.1 | - 7.3 | | Elk Bayou | 67.6 | | -47.8 | -15.1 | | Lindsay-Exeter | 136.4 | Exeter Irrigation District, Lindsay-
Strathmore Irrigation District, Lindmore
Irrigation District | -77.7 | +48.3 | | Tule River | 156.6 | Porterville Irrigation District, most of
Lower Tule River Irrigation District, part
of Saucelito Irrigation District | -62.5 | +15.0 | | Lower Deer Creek | 162.2 | Part of Lower Tule River Irrigation District,
most of Saucelito Irrigation District, part
of Delano-Earlimart Irrigation District | -106.7 | - 9.9 <u>4/</u>
-10.8 <u>5/</u> | | Middle Deer Creek | 54.6 | Terra Bella Irrigation District | -61.8 | -13.2 <u>4/</u>
-37.5 <u>5/</u> | | Delano-Earlimart | 140.0 | Most of Delano-Earlimart Irrigation District,
small part of South San Joaquin Municipal
Utility District | -133.8 | + 1.4 <u>4/</u>
- 7.8 <u>5/</u> | | McFarland-Shafter | 306.0 | Southern San Joaquin Municipal Utility
District, North Kern Water Storage District,
Shafter-Wasco Irrigation District | -99.0 | - 4.0 4/
-21.4 5/ | | Rosedale | 78.9 | | -36.3 | -60.4 | | Arvin-Edison | 205.2 | Arvin-Edison Water Storage District | -69.9 6/ | -19.0 5/ | ^{1/ 1951} was the first year of substantial deliveries from the Friant-Kern Canal. 2/ Fall of 1951 to spring of 1963. 3/ Fall of 1929 to fall of 1951. 4/ Spring 1961 to spring 1963, unconfined aquifer. 5/ Spring 1961 to spring 1963, confined aquifer; only one aquifer reported prior to 1961. 6/ Fall 1941 to fall 1951. E4 te Tass Mate o ⊃ 6 b91 #### CHAPTER V ## SURFACE WATER QUALITY #### Introduction The Department of Water Resources maintains a program of surveillance of the quality of water to detect any degradation of the surface waters of California due to contributions of wastes by agricultural, industrial, and municipal water users and to notify the proper control agencies of any such occurrences. The Surface Water Quality Monitoring Program was initiated to meet this surveillance need in April 1951 with the following objectives: (1) to determine the quality of the State's surface waters through a network of strategically located sampling stations representative of the major surface streams and lakes; (2) to detect changes in the quality of surface waters and notify control agencies of adverse changes; (3) to determine trends in surface water quality; and (4) to compile data into readily available form for distribution to cooperators and interested agencies. #### Scope The areal extent of activities discussed in this chapter and in Appendix D is shown on Plate D-1. Data on the quality of surface waters are presented in graphs and tables in Appendix D for the 1963 water year (October 1, 1962, to September 30, 1963). These data represent the observed physical, chemical, bacteriological, and radiological characteristics of water collected at the surface water quality stations shown also on Plate D-1. The stations are listed alphabetically in Table D-1 and are listed in Table 11 by river units within the valley's two drainage basins, the San Joaquin River Basin and the Tulare Lake Basin. ### Sampling Program The Department of Water Resources has 29 surface water quality monitoring stations in the San Joaquin Valley area. Of these, 19 are sampled monthly, eight quarterly, and the remaining two semiannually. The variation in the sampling frequency is dependent upon past records, need, and the type of data required. The U. S. Army Corps of Engineers and the City and County of San Francisco (Oakdale office) cooperate by the collection of samples obtained at nine and five stations, respectively. ## Station Sampling Sampling at each station consists of obtaining water samples for partial mineral and bacteriological analyses and field data including pH, temperature, gage height, and dissolved oxygen determination. The samples collected in May and September are subject to: (1) complete mineral analysis, (2) bacteriological analysis, (3) radiological analysis, and (4) determination of concentrations of phosphate, arsenic, and detergents (alkyl benzene sulfonate-ABS). A heavy metal sample is collected twice a year at ten selected stations for spectrographic analysis. The results of the spectrographic analyses for the ten stations are contained in Table D-32. ## Conductivity Recorders Conductivity recorders are installed at selected surface water stations to obtain continuous records of the specific electrical conductance of the waters. The recorder charts are removed, edited, and processed at the end of each month. The data are converted and tabulated into mean hourly and weekly electrical conductivity values. A plot of the mean weekly values versus time for each of these stations is shown on Plate D-2. Information from these recorders is used to approximate concentrations of several water quality parameters, including concentrations of total dissolved solids (TDS), chlorides, sulfates, and total hardness. These approximations are possible because of the relationship between specific conductance and each of the above parameters. ## TABLE 11 ## SURFACE WATER QUALITY MONITORING STATIONS BY DRAINAGE BASINS | SAN JOAQUIN RIVER BASIN | Station
number | |---|--| | San Joaquin River Unit | Hamber . | | San Joaquin River near Vernalis San Joaquin River at Maze Road Bridge San Joaquin River near Grayson San Joaquin River at Patterson Bridge San Joaquin River at Crows Landing Bridge San Joaquin River at Hills Ferry Bridge San Joaquin River at Fremont Ford Bridge San Joaquin River near Mendota San Joaquin River at Friant Dam Salt Slough at San Luis Ranch (near Los Banos) | 27
26a
26
27a
26b
25b
25c
25
24
24c | | Delta-Mendota Canal | | | Delta-Mendota Canal near Tracy
Delta-Mendota Canal near Mendota | 93
92 | | Stanislaus River Unit | | | Stanislaus River near Mouth
Stanislaus River below Tulloch Dam | 29
29a | | Tuolumne River Unit | | | Tuolumne River at Tuolumne City
Tuolumne River at Hickman-Waterford Bridge
Tuolumne River below Don Pedro Dam | 31
30
31a | | Merced River Unit | | | Merced River near Stevinson
Merced River below Exchequer Dam | 32
32a | | Chowchilla River Unit | | | Chowchilla River near Raymond | 113 | | Fresno River Unit | | | Fresno River near Daulton | 114 | | TULARE LAKE BASIN | | | Kings River Unit | | | Kings River below Peoples Weir
Kings River below Pine Flat Dam
Kings River below North Fork
Big Creek above Pine Flat Dam | 34
33b
33c
33d | | Kaweah River Unit | | | Kaweah River below Terminus Dam | 35 | | Tule River Unit | | | Tule River below Success Dam | 91 | | Kern River Unit | | | Kern River near Bakersfield
Kern River below Isabella Dam
Kern River near Kernville | 36
36a
36b | #### CHAPTER VI ## GROUND WATER QUALITY #### Introduction Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although the use of ground water has been, and is, one of the major factors contributing to the economy of the State, insufficient data are available regarding the mineral quality of such ground water supplies. The present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary, to assure that the quality of ground water remains suitable for all intended uses. In view of this need, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953. #### Scope The areal scope of the activities discussed in this chapter and in Appendix E of this volume is shown on Plate E-1. Approximately 415 wells were sampled throughout the San Joaquin Valley, Panoche Valley, Tehachapi Valley and Cummings Valley. Panoche Valley was added to the monitoring program in 1960 as part of the continuing study of ground water basins of California. Tehachapi and Cummings Valleys were added in 1963 subsequent to a report by the Department of Water Resources on "A Water Supply for the Tehachapi Institution for Men," August 1961, which established the need for ground water quality data in the area. The location of the monitored wells for 1963 are shown on Plate C-3. "Location of Selected Wells." #### Ground Water Quality Conditions Adequate monitoring of the quality of a ground water basin requires the
establishment of norms from which deviations can be determined. Considerable information has been gathered during the early years of this program and through other programs where ground water quality data were collected to assist in establishing the norms. Individual wells for the monitoring program were selected by an evaluation of well drillers' logs, water analyses, and water level data to best represent the quality of the ground water in the surrounding area. The number of wells needed to satisfy this objective was mainly determined by the complexity of the ground water basin in a given area. The analyses of samples collected from selected wells in the San Joaquin Valley for the 1963 water year are contained in this report. Included are tables of complete and partial mineral analyses, heavy metal and radiological determinations. The type of analysis made on a sample from a well is based mainly on the history of the data on that well. Data collected during the 1963 water year were used to determine the quality of the main body of ground water in the San Joaquin Valley area. Plates E-2 and E-3 show the areal distribution of ground water quality characteristics in the San Joaquin Valley area. Plate E-2, "Lines of Equal Electrical Conductivity in Ground Water," depicts the variation in the concentration of dissolved minerals in ground water, as measured by electrical conductivity. Plate E-3, "Mineral Types of Ground Water," shows the areal variation of the chemical character of ground water in the San Joaquin Valley. The chemical character classification is determined by the predominant cation and anion. Wells that deviate from the norm for the reporting period are listed on Table 12. Samples of various wells throughout the valley, especially on the west side, indicate increasing electrical conductivity (EC). This could be caused by many factors: pollution by highly mineralized waste discharges, heavy pumping in the deep zones causing connate waters to be drawn up, and/or heavy pumping in the shallow zones causing a drawdown of percolating irrigation and drainage waters containing high salts. On the other hand, importation of good quality water often reduces the concentration of salts by dilution in shallow aquifers and by reduction of ground water withdrawal. High concentrations of nitrates occur in various places throughout the valley, both naturally and as a result of pollution. Pollution abatement in this regard is important; however, the differentiation between natural nitrates and nitrates resulting from pollution is difficult. Lithium, a relatively rare constituent of ground water, usually appears in very small quantities. In concentrations greater than ## WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | WELL NUMBER
USE | DEVIATION | STATUS | |-------------------------------------|---|---| | | Merced Irrigation Distric | et | | 7S/15E - 30E1-M
Irrigation | $EC^{1} = 676$
Area EC = 300-400 | Investigation underway | | | Delta Mendota Area | | | 9S/9E - 2Ll-M
Irrigation & stock | EC increasing from 964 in 1961 to 2050 in 1963 | Investigation underway | | | Madera Irrigation Distric | et | | 13S/17E - 5P1-M
Irrigation | Radioactivity ² = 61.6 ± 5.6 | 6 ³ Investigation underwa | | | Fresno Irrigation Distric | et | | 13S/17E - 22B1-M
Irrigation | $NO_3^4 = 25 \text{ ppm}^5$
Area $NO_3 = < 10.0 \text{ ppm}$ | Current investigation o | | 13S/19E - 24Q1-M
Irrigation | 1955 EC = 2763
1963 EC = 990 | This well was previousl polluted and was includ in an investigation on pollutant in 1955. The subsequent pollution abatement is the reason for EC reduction | | 13S/19E - 32Ml-M
Domestic | EC increasing
from 486 in 1952
to 832 in 1963 | Current investigation on this area underway | | | Fresno Slough Area | | | 16S/17E - 10G-M
Irrigation | Radioactivity = 68.5 ± 5.8 | Possible result of rad
active waste discharge
Investigation underway | ^{1 -} EC = Electrical Conductivity in micromhos ^{2 -} Radioactivity in picocuries per liter $^{^3}$ - \pm X is statistical deviation (0.9 confidence level) ^{4 -} NO₃ = Nitrates ^{5 -} ppm = parts per million ^{6 -} value not exact due to interference in determination ^{7 -} ABS = Alkyl-Benzene-Sulfonate (Detergents) ## WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | WELL NUMBER
USE | DEVIATION | STATUS | |---|---|---| | | Alta Irrigation Distric | t | | 17S/23E - 8H1-M
Domestic | $NO_3 = 40 \text{ ppm}$
Area $NO_3 = < 10 \text{ ppm}$ | Current investigation on this area underway | | | Lower Kings River Area | | | 20S/21E - 12A1-M
Domestic | EC increasing steadily
from 826 in 1958
to 1400 in 1963 | Investigation underway | | | Edison-Maricopa Area | | | 32S/29E - 35M2-M
Irrigation | NO ₃ = 159 ppm
Area NO ₃ =<10 ppm | Investigation of this area to be conducted during 1964-65 | | Semi | tropic Water Storage Di | strict | | 28s/23E - 25PlM
Irrigation | EC increasing steadily
from 267 in 1956
to 537 in 1963 | Investigation underway | | | Avenal-McKittrick Area | | | 26S/18E - 1A-M
Irrigation | Lithium ⁶ = <3.8 ppm | Resampling to determine a more exact value | | T | ulare Lake-Lost Hills A | rea | | 23S/21E - 18D1-M
Artesian - Irrigation | Total analysis high
EC = 11,700 | Previous investigation of this well. Presently monitored as a result of that study. | | 24S/22E - 35N1-M
Irrigation & stock | Arsenic = 0.25 ppm
Copper = 1.00 ppm | Investigation underway | | 1 - EC = Electrical C | onductivity in micromho | s | - 2 Radioactivity in picocuries per liter 3 ± X is statistical deviation (0.9 confidence level) - 4 NO3 = Nitrates - 5 ppm = parts per million - 6 value not exact due to interference in determination - 7 ABS = Alkyl-Benzene-Sulfonate (Detergents) ## WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | WELL NUMBER
USE | DEVIATION | STATUS | |---|---|--| | 13S/14E - 34M1-M
Domestic & irrigation | Mendota Huron Area EC decreasing steadily from 5350 in 1951 to 4670 in 1963 | y Investigation underway | | 3S/12E - 26P1-M | Stanislaus Plains
EC = 4300
Area EC = 200 to 300 | Natural gas well -
previous investigation
on local gas wells
resulted with this well
being monitored | | 18S/26E - 10N1-M
Irrigation | North Tulare Plains NO ₃ = 78 ppm Area NO ₃ =< 10 ppm | Investigation underway | | 21S/27E - 27F1-M | South Tulare Plains ABS ⁷ = 0.44 ppm | Investigation underway | | 26s/27e - 9g1-m | Kern Plains Lithium = 0.2 ppm | Investigation undersay | 4 - NO3 = Nitrates ^{1 -} EC = Electrical Conductivity in micromhos ^{2 -} Radioactivity in picocuries per liter $^{^3}$ - \pm X is statistical deviation (0.9 confidence level) ^{5 -} ppm = parts per million ^{6 -} value not exact due to interference in determination ^{7 -} ABS = Alkyl-Benzene-Sulfonate (Detergents) 0.1 part per million, however, lithium has been found to be detrimental to citrus and other fruit trees in much the same manner as boron. Arsenic and copper, although generally rare, also are found in some ground waters of the valley and can be significant in small concentrations. Detergents (ABS: alkyl benzene sulfonate) have been determined to be an indicator of pollution and therefore should not occur in ground water. For this reason ABS determinations are made on samples from wells in the vicinity of sewage or industrial waste discharges. Although no critical values of radioactivity have been reached in the valley, certain wells have had higher than normal values. These could be naturally occurring conditions or pollution from radioactive sources. ## Sampling Program Samples from the monitored areas are collected from early spring, when pumping begins, through the fall, when pumping generally slows down. Most of the samples collected are obtained by cooperating agencies, the remainder being obtained by the department. Table 13 lists the agency, the corresponding area, and the number of wells sampled by that agency. TABLE 13 COOPERATING AGENCIES GROUND WATER QUALITY MONITORING PROGRAM SAN JOAQUIN VALLEY AREA | Agency | Area | No. of Samples | |--|--|----------------| | Stanislaus County Farm Advisor | Stanislaus County | 15 | | Turlock Irrigation District | Turlock Irrigation District | 21 | | Merced Irrigation District | Merced Irrigation District | 15 | | Central California Irrigation District | Central California Irrigation District | 27 | | Fresno Irrigation District | Fresno Irrigation District | 6 | | Kings County Farm Advisor | Kings County | 28 | | Tulare County Farm Advisor | Tulare County | 23 | | Kern County Farm Advisor | Kern County | 60 | | Buena Vista Water Storage District | Buena Vista Water Storage District | 10 | | U. S. Geological Survey | Portions of Fresno and Kings Counties | 59 | APPENDIX A CLIMATE ## TABLE OF CONTENTS | | | PAGE | |-------|--|----------------------| | INTRO | DDUCTION | A- 5 | | | ANATION OF TABLES Precipitation Station Index Monthly Precipitation Monthly Temperatures Monthly Summary of Evaporation Station Data Reference Notes | A- 5
A- 5
A- 5 | | |
LIST OF TABLES | | | TABLE | 3 | | | A-1 | Precipitation Station Index | A-13 | | A-2 | Monthly Precipitation | A-17 | | A-3 | Monthly Temperatures | A-20 | | A-4 | Monthly Summary of Evaporation Station Data | A-2 | | DIAME | <u>LIST OF PLATES</u> (Bound at end of volume) | | | PLATE | | | | A-1 | Location of Climatological Stations | | | A-2 | Lines of Equal Precipitation | | #### INTRODUCTION This appendix presents the climatological data for the period July 1, 1962, to June 30, 1963. The data consists of precipitation station descriptions, monthly precipitation quantities, monthly temperature summaries and monthly evaporation totals. #### EXPLANATION OF TABLES #### Precipitation Station Index Table A-1 shows the precipitation station index. The climatological station designations used are based on the drainage basin and alpha number. Stations are also named and latitude and longitude are shown to the nearest minute. The county, elevation above sea level, the year the record began and the name of the current observer of record is also shown. Each main drainage basin is assigned a letter and each subbasin a number as shown on Plate A-I of this report. The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for the station name making some abbreviations necessary. Each station is generally named after and referenced to the nearest post office (Livingston 5W - a point 5 miles west of the post office in the town of Livingston), or named for a geographic location (Chiquito Creek). Occasionally the observer's name is incorporated in the station name (Hornitos Giles Ranch). ## Monthly Precipitation Table A-2 shows the monthly and seasonal total rainfall for some 395 weather stations within and near the San Joaquin Valley area. This table summarizes all of the available precipitation observations from July 1962 through June 1963. Daily records are available in department office files. ### Monthly Temperatures Table A-3 shows a temperature summary for a monthly period at 60 weather stations throughout the San Joaquin Valley area. The individual observations were obtained using the observations, techniques, types of thermometers, and exposure conditions recommended by the U. S. Weather Bureau. The Fahrenheit scale is used in all references to temperature. Terms used in connection with the temperature data are explained in the following: | Term | <u>Definition</u> | Abbreviation | |---------------------|--|--------------| | Maximum | The highest temperature of record for the month | Max. | | Minimum | The lowest temperature of record for the month. | Min. | | Average maximum | The arithmetic average of daily maximum temperatures for indicated $\ensuremath{period}\xspace$ | Avg. max. | | Average minimum | The arithmetic average of daily minimum temperatures for indicated period. $ \label{eq:continuous} % \begin{subarray}{ll} \end{subarray} \begin$ | Avg. min. | | Average temperature | The average of the daily maximum and minimum for each day; the daily averages are averaged to make the monthly averages. | Avg. | ## Monthly Summary of Evaporation Station Data Table A-4 shows the monthly net evaporation at 12 stations throughout the San Joaquin Valley area. Observations of the amount of water evaporating from an open pan are made in the manner recommended by the U. S. Weather Bureau. The standard Weather Bureau pan is 47.5 inches in diameter and 10 inches deep. It contains clean water to a depth of 7 to 8 inches. The pan is placed on a lumber frame to insulate it from significant conductive heat exchange with the ground. The evaporation is measured by the actual difference in the pan water surface elevation over a 24-hour period with the appropriate adjustments for rainfall. Terms used in connection with evaporation data are explained below: | Term | <u>Definition</u> | Abbreviation | |-----------------
--|--------------| | Evaporation | The net amount of water evaporated from the pan for the period given. $ \\$ | Evap. | | Precipitation | The total amount of rainfall in inches which occurred during the period. $% \left\{ 1\right\} =\left\{ =\left$ | Precip. | | Wind | The total movement of air over the pan, in miles, for the period. | Wind | | Average maximum | See explanation in temperature data table. | | | Average minimum | See explanation in temperature data table. | | #### Reference Notes - A list of the reference notes used in the climatological portion of this report follows: - CD Record published in "Climatological Data" by U. S. Weather Bureau. - WB All or part of record published by U. S. Weather Bureau. - HPD Record published in "Hourly Precipitation Data" by U. S. Weather Bureau. - HPD CD $\,$ Published in both "CD" and "HPD" from separate gages. Record from "CD" reproduced in this report. - CD(P) Precipitation data published in "CD". Other data published by DWR. - R CD Published in both "CD" and "HPD" from recording rain gage. Record from "CD" reproduced in this report. - R Recording raim gage. Hourly precipitation distribution not necessarily available at DWR. - (R) Hourly precipitation record also available for this station. - S Storage gage. Data published in "Storage Gage Precipitation Data" by U. S. Weather Bureau. - Ss Storage gage using standard rain gage. Data published by DWR. - T Trace. - AS After storm only. Small amounts may not be recorded. - b Preliminary data subject to revision. - E Wholly or partially estimated. - No record. - M All or part of record missing. - RB Beginning of record. - RE End of record. - * Amount included in following measurement; time distribution unknown. - V Includes total for previous month. - D Water equivalent of snowfall wholly or partly estimated using a ratio of 1 inch water equivalent to every 10 inches of new snowfall. - SCE Data obtained from Southern California Edison Company. #### Additional criteria are: Dimensional units used in this report are: Temperature in degrees Fahrenheit, precipitation and evaporation in inches, and wind movement in miles (per month). Evaporation, wind movement and temperature data in this report are not published by the U. S. Weather Bureau. All temperature data represent air temperatures. TABLE A-1 PRECIPITATION STATION INDEX | 9.5 | Alpha | | | | T | L | ot. | Lo | ng. | Record | | |----------------------------|---|---|----------------|---|--|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Orainage
Basin | Order
Number | Station Name | | County | Elev | Deg. | Min. | Deg. | Min. | Began | Observer | | C0
B6
C0
C7
D6 | 0009
0049
0204
0215
0239 | Academy
Ahwahnee 2 NNW
Angiola
Annette
Apache Camp | WB
WB | Fresno
Madera
Tulare
Kern
Ventura | 545
2790
205
2140
4965 | 36
37
35
35
35 | 53
24
59
39
52 | 119
119
119
120
119 | 32
44
29
10
20 | 1958
1959
1899
1951
1940 | Edwin W. Simpson
Mrs. Eleanor P. Crooks
Angiola Elev. & Whse.
Ernest Still
Kern Co. Road Camp | | C7
C7
C0
C0
C2 | 0314
0315
0332
0332-02
0343 | Arroyo Hondo
Arroyo Leona
Arvin
Arvin-Frick
Ash Mountain | WB | Fresno
Fresno
Kern
Kern
Tulare | 1650
1480
445
437
1708 | 36
36
35
35
36 | 26
24
12
14
29 | 120
120
118
118
118 | 34
32
49
52
50 | 1951
1947
1936
1959
1925 | Closed June 30, 1962
Closed June 30, 1962
Kern Co. Fstry. & F.D.
Dept. Water Resources
US Natl. Park Service | | B0
C2
B7
B7
C0 | 0374
0379
0381
0396-02 | Atwater Craig
Atwell
Auberry
Auberry Valley
Avenal-Walden | S
WB | Merced
Tulare
Fresno
Fresno
Kings | 150
6400
2005
1300
810 | 37
36
37
37
36 | 21
28
05
02
00 | 120
119
119
119
120 | 37
40
29
34
08 | 1961
1949
1915
1954
1957 | H. J. Craig
Corps of Engineers
Pete E. Dubose
Mrs. George Marshall
L. F. Walden | | C7
C7
C7
C2
B5 | 0399
0399-01
0399-02
0422
0425 | Avenal Orchard Ranch
Avenal 8 SW
Avenal 6 SSW
Badger
Badger Pass | WB
S | Kings
Kings
Kings
Tulare
Mariposa | 712
1424
1565
3030
7300 | 35
35
35
36
37 | 48
58
56
38
40 | 120
120
120
119
119 | 05
13
10
01
40 | 1919
1957
1953
1940
1941 | E. R. Orchard
J. A. Sagaser
Leslie Sagaser
Lucille E. Weddle
US Natl. Park Service | | B5
C0
C0
C1 | 0430
0440
0442
0449
0534 | Bagby
Bakersfield l W
Bakersfield
WE Airport
Balch Power House
Barton Flat | WB
WB
S | Mariposa
Kern
Kern
Fresno
Fresno | 824
400
495
1720
3760 | 37
35
35
36
36 | 37
23
25
55
49 | 120
119
119
119
118 | 08
02
03
05
53 | 1958
1913
1933
1921
1961 | Chris Mills
Kern County Land Co.
US Weather Bureau
PG&E Company
Corps of Engineers | | B5
B3
C2
B4
C0 | 0570
0573
0596
0617
0631 | Bear Valley Trabucco
Beardsley Dam
Beartrap Meadow
Beehive Meadow
Bellevue | s
s | Mariposa
Tuolumne
Tulare
Tuolumne
Kern | 2000
3416
6800
6500
369 | 37
38
36
38
35 | 34
12
41
00
20 | 120
120
118
119
119 | 07
05
52
47
07 | 1952
1958
1959
1947
1961 | Harold Trabucco
Oakdale Irrig. Dist.
Corps of Engineers
Hetch Hetcy Wtr. Sup.
Kern County Land Co. | | V2
B0
B7
B7
B7 | 0684
0688-02
0755
0755-01
0755-02 | Benton Insp. Sta
Berenda 2 N
Big Creek PH No. 1
Big Creek PH No. 2
Big Creek PH No. 3 | | Mono
Madera
Fresno
Fresno
Fresno | 5460
270
4928
3000
1400 | 37
37
37
37
37 | 50
04
12
12
09 | 118
120
119
119
119 | 29
08
15
18
23 | 1959
1959
1915
1913
1922 | John M. Patterson
Dept. Water Resources
So. Calif. Edison Co.
So. Calif. Edison Co.
So. Calif. Edison Co. | | B7
V2
V2
V2
C1 | 0755-05
0767
0776
0819
0821 | Big Creek PH No. 8
Big Pine Creek
Big Pine PH No. 3
Bishop Creek Intake 2
Bishop Pass Snow Course | S
WB
S | Fresno
Inyo
Inyo
Inyo
Fresno | 2260
10000
4680
8154
11040 | 37
37
37
37
37 | 12
08
08
15
06 | 119
118
118
118
118 | 20
28
19
35
34 | 1921
1948
1925 | So. Calif. Edison Co.
Dept. Water Resources
LA Dept Water & Power
Calif. Elec. Power Co.
Corps of Engineers | | V2
C6
C0
C1
C1 | 0824
0825-01
0875
1069-01 | Bishop Union Carbide
Bitter Creek
Blackwells Corner
Blasingame
Bretz Mill | WB
Ss
WB | Inyo
Kern
Kern
Fresno
Fresno | 9390
1250
644
1050
3250 | 37
35
35
36
37 | 22
00
37
58
02 | 118
119
119
119 | 43
20
52
27
14 | 1957
1961
1944
1961
1960 | Union Carbide Co.
B. J. Snedden
Dean Sams
Calif. Div. Forestry
US Forest Service | | D1
C0
C0
C0
C6 | 1170
1174
1175
1199-01 | Buena Vista
Buena Vista Ranch
Buena Vista Ranch M & L
Buena Vista Ranch M & L
Burgess Corrals | WB
Ss | San Benito
Kern
Kern
Kern
Kern | 1640
310
286
290
1600 | 36
35
35
35
34 | 46
20
12
14
58 | 121
119
119
119
119 | 11
17
18
18 | 1932
1914
1955
1962
1960 | Mrs. Lola F. Galli Kern County Land Co. Miller & Lux Inc. J. G. Boswell Co. B. J. Snedden | | C0
B2
B3
C4
C3 | 1244
1277
1280
1300
1425 | Buttonwillow
Calaveras Big Trees
Calaveras Ranger Sta
Calif. Hot Springs RS
Camp Nelson | WB
WB
WB | Kern
Calaveras
Calaveras
Tulare
Tulare | 268
4696
3343
2950
4825 | 35
38
38
35
36 | 24
17
12
53
08 | 119
120
120
118
118 | 28
19
22
41
37 | 1940
1929
1944
1907
1959 | Buena Vista W.S. Dist.
Calif. Div Beaches & Pks
US Forest Service
US Forest Service
John F. Lewis | | C0
V7
C0
C0 | 1479
1488
1490
1557
1580 | Canfield Ranch
Cantil
Cantua Ranch
Caruthers 4 E
Castle AFB | WB | Kern
Kern
Fresno
Fresno
Merced | 334
2010
295
265
170 | 35
35
36
36
37 | 17
18
30
33
22 | 119
117
120
119
120 | 10
58
19
46
34 | 1952
1955
1955
1960
1951 | Kern County Land Co.
Postmaster
Giffen Ranch
R. L. Kincade
US Air Force | | B8
B5
B5
B5
B6 | 1583
1588
1588-01
1588-03
1590 | Castle Rock Rad. Lab.
Cathay Bull Run Ranch
Cathay Meyer Ranch
Cathay 3 NNW
Cathay Sawyer Ranch | WB | San Joaquin
Mariposa
Mariposa
Mariposa
Mariposa | 625
1425
2250
1250
1275 | 37
37
37
37
37 | 38
24
29
29
26 | 121
120
120
120
120 | 32
03
04
07
06 | 1956
1940
1957
1957
1957 | Lawrence Rad. Lab.
Wm. H. Alison
Horace Meyer
William Pierce
W. H. Sawyer | TABLE A-1 PRECIPITATION STATION INDEX (Continued) | oge
u | Alpha | | | | | L | .at. | Lo | ang. | Record | | |----------------------------|--|--|---------------------|---|---------------------------------------|----------------------------------|-----------------------------|---------------------------------|------------------------------|--------------------------------------|--| | Oroinoge
Basin | Order
Number | Station Name | | County | Elev. | Deg | Min. | Deg. | Min. | Began | Observer | | B6
B6
B4
B7
D3 | 1591
1611
1697
1737
1743 | Cathay Stonehouse
Cedar Point Ranch
Cherry Valley Dam
Chiquito Creek
Cholame Hatch Ranch | WB
WB
S
WB | Mariposa
Mariposa
Tuolumne
Madera
San Luis Obpo | 1210
3230
4765
7290
1975 | 37
37
37
37
37
35 | 25
28
58
30
41 | 120
119
119
119
120 | 05
44
55
23
12 | 1951
1957
1955
1961
1925 | S. S. Spurgin
Closed July 1, 1962
Hetch Hetchy Wtr. Sup.
Dept. Water Resources
Everett C. Hatch | | C7
Z2
C0
B7
C0 | 1743-02
1754
1844
1864 | Cholame Twisselman
Chuchupate Ranger Sta.
Citrus
Clover Meadows G.S.
Coalinga | WB
S
WB | San Luis Obpo
Ventura
Kern
Madera
Fresno | 1675
5260
660
7002
671 | 35
34
35
37
36 | 34
48
02
32
09 | 120
119
118
119
120 | 07
01
58
17
21 | 1951
1941
1945
1942 | H. A. Twisselman
US Forest Service
Kern County Land Co.
Dept. Water Resources
Coalinga Fire Dept. | | C7 | 1864-02
1867
1869
1878 | Coalinga C.D.F.
Coalinga Roberts Ranch
Coalinga 1 SE
Coalinga 14 WNW
Coarsegold | WB
WB | Fresno
Fresno
Fresno
Madera | 690
1350
663
1640
2363 | 36
36
36
36
37 | 08
02
08
14
16 | 120
120
120
120
120 | 22
27
21
34
42 | 1961
1953
1911
1949
1952 | Calif Div of Forestry
R. J. Roberts
Union Oil Company
Mrs. Charles Howell
Mrs. Dorothy McAlliste | | C0
B4
B3
C0 | 1885
1904
2003
2012
2013 | Coit Ranch Hdqtrs.
Cold Springs
Copperopolis
Corcoran Irrig. Dist.
Corcoran El Rico l | WB | Fresno
Tuolumne
Calaveras
Kings
Kings | 278
5680
970
200
198 | 36
38
37
36
36 | 42
10
59
06
03 | 120
120
120
119
119 | 28
03 *
38
34
39 | 1954
1961
1954
1912
1958 | Coit Ranch John D. Morrison Corps of Engineers S. S. Whitehead J. G. Boswell Co. | | C0
V2
V2
B5
B5 | 2013-05
2069
2071
2072
2072-05 | Corcoran El Rico 33
Cottonwood Creek
Cottonwood Gates
Coulterville FFS
Coulterville 5 B | s | Kings
Inyo
Inyo
Mariposa
Mariposa | 190
10600
3710
1870
3010 | 35
36
36
37
37 | 58
29
25
43
43 | 119
118
118
120
120 | 42
11
02
12
06 | 1951
1947
-
1959
1959 | J. G. Boswell Co.
Dept Water Resources
LA Dept Water & Power
Calif Div of Forestry
Norman Jaenecke | | C5
B7
V2
C6
D6 | 2114
2122
2181
2222
2236 | Crabtree Meadow
Crane Valley PH
Crowley Lake
Cummings Valley
Cuyama | S
WB | Tulare
Madera
Mono
Kern
Santa Barbara | 10720
3500
6870
3825
2240 | 36
37
37
35
34 | 34
17
35
07
56 | 118
119
118
118
119 | 20
32
42
35
37 | 1950
1903
1920
1931
1944 | Corps of Engineers
PG&E Company
LA Dept Water & Power
Dept Water Resources
John S. Rowell | | D6
B6
C0
B8
B0 | 2248
2288
2346
2369
2375 | Cuyama Ranch
Daulton
Delano
Del Puerto Road Camp
Delta Ranch | WB
WB
WB | San Luis Obpo
Madera
Kern
Stanislaus
Merced | 2170
410
323
1125
90 | 34
37
35
37
37 | 59
07
47
25
07 | 119
119
119
121
120 | 40
59
15
23
45 | 1948
1946
1876
1958
1948 | Corps of Engineers
M. M. Greenman
Delano Fire Dept.
Stanislaus County
Pasquale Bisignani | | B0
C0
C0
C0 | 2389
2408
2436
2440-01
2464 | Denair
Devils Den SLF
Di Giorgio
Dinuba Alta ID
Domengine Ranch | WB | Stanislaus
Kern
Kern
Tulare
Fresno | 124
500
483
334
1000 | 37
35
35
36
36 | 32
46
15
33
20 | 120
119
118
119
120 | 48
58
51
23
22 | 1917
1959
1937
1944
1959 | W. F. Moore
South Lake Farms
Di Giorgio Fruit Corp.
Alta Irrigation Dist.
V. Ciesielski | | C7
B4
C5
B5
B4 | 2464-01
2473
2492
2539
2609 | Domengine Spring
Don Pedro Reservoir
Doublebunk Meadow
Dudley's
Early Intake PH | S
WB | Fresno
Tuolumne
Tulare
Mariposa
Tuolumne | 1700
700
6200
3000
2356 | 36
37
35
37
37 | 20
43
57
45
53 | 120
120
118
120
119 | 24
24
36
06
57 |
1958
1940
1955
1909
1925 | V. Ciesielski
Hetch Hetchy Wtr Sup
Corps of Engineers
W. D. McLean
Hetch Hetchy Wtr Sup | | C1
C0
V0
C7
B0 | 2653
2756
2785
2820 | East Vidette Meadow
Eighth Standard Ranch
Ellery Lake
El Rancho Cantua
El Solyo Ranch | S
WB | Kern | 10400
338
9600
1020
50 | 36
35
37
36
37 | 44
06
56
25
37 | 118
119
119
120
121 | 23
02
14
20
14 | 1955
1963
1924
1938
1953 | Corps of Engineers
Kern County Land Co.
Calif Elec Power Co.
Lyle Christie
John K. Ohm | | B0
B0
B5
C0
B0 | 2860
2909
2920
2922
2968 | Escalon Swanson
Eugene
Exchequer Reservoir
Exeter Fauver Ranch
Fancher Ranch Camp 3 | WB
WB | San Joaquin
Stanislaus
Mariposa
Tulare
Merced | 125
173
484
439
225 | 37
37
37
36
37 | 47
55
35
21
19 | 121
120
120
119
120 | 51 | 1944
1923
1935
1938
1959 | Clark Swanson
Corps of Engineers
Merced Irrigation Dist
Charles O. Coulter
Calif. Packing Corp. | | C7
B0
C0
C0
B7 | 3005
3063
3083
3084
3093 | Fellows
Firebaugh 9 W
Five Points 5 SSW
Five Points Diener
Florence Lake | | Kern
Fresno
Fresno
Fresno
Fresno | 1340
185
285
263
7344 | 35
36
36
36
37 | 11
51.
21
22
16 | 119
120
120
120
118 | 09
06 | 1956
1934
1942
1933
1940 | Kern Co. Fire Dept.
Thomas & Thomas Ranch
Raymond Thomas Ranch
Frank C. Diener
So Calif Edison Co. | | B7
V0
E5 | 3257
3261
3369
3387
3397 | Fresno WB Airport
Friant Government Camp
Gem Lake
Gerber Ranch
Giant Forest | WB
WB
WB | Fresno
Fresno
Mono
Santa Clara
Tulare | 326
410
8970
2140
6412 | 36
36
37
37
36 | 46
59
45
22
34 | 119
119
119
121
118 | 43
08
29 | 1899
1896
1924
1912
1921 | US Weather Bureau
US Bur. Reclamation
Calif Elec Power Co.
Mrs. Hilda Draghi
US Natl Park Service | TABLE A-1 PRECIPITATION STATION INDEX (Continued) | o ge | Alpha | | | | | L | at. | Lo | ng. | Record | | |----------------------------|--|---|--------------------|---|---------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drainage
Basin | Order
Number | Station Name | | County | Elev. | Deg. | Min. | Deg. | Min. | Began | Observer | | D1
C0
C4
C4
C0 | 3422
3428-01
3463
3465
3512 | Gilroy 14 ENE Gin Yard Glennville Glennville Fulton RS Gosford Feed Mill | WB
WB | Santa Clara
Kern
Kern
Kern
Kern | 1350
295
3140
3500
360 | 37
35
35
35
35 | 06
09
43
44
19 | 121
119
118
118
119 | 20
14
42
40
05 | 1940
1960
1951
1940
1953 | Seth E. Auser Miller & Lux Inc. Kern Co Fstry & FD US Forest Service Kern County Land Co. | | B4
C1
C1
B5
B4 | 3529
3548
3551
3612-03
3669 | Grace Meadow
Granite Basin
Grant Grove
Green Valley Ranch
Groveland 2 | S
S
WB | Tuolumne Fresno Tulare Mariposa Tuolumne | 8900
10000
6580
3170
2825 | 38
36
36
37
37 | 09
52
44
46
50 | 119
118
118
120
120 | 36
36
58
09
14 | 1947
1949
1924
1957
1940 | Hetch Hetchy Wtr Sup
Corps of Engineers
US Natl Park Service
Mrs. D. Davidson
Duane J. Cox | | B4
B0
B0
B0
B0 | 3672
3690-02
3690-04
3694 | Groveland Ranger Sta
Gustine 5 SW
Gustine Snyder
Gustine 7 SSW
Gustine Avoset | WB | Tuolumne
Merced
Merced
Merced
Merced | 3135
145
150
156
98 | 37
37
37
37
37 | 49
13
12
10
15 | 120
121
121
121
121 | 06
03
03
02
00 | 1940
1927
1954
1959
1928 | USForest Service
W. P. Jorgensen
Harry M. Snyder
Mrs. George E. Butts
Foremost Co. | | V7
C0
C1
D1 | 3710
3747
3811-11
3925
3928 | Haiwee
Hanford
Haslett Basin
Hernandez 2 NW
Hernandez 7 SE | WB
WB
WB | Inyo
Kings
Fresno
San Benito
San Benito | 3810
242
2400
2160
2765 | 36
36
36
36
36 | 08
20
58
25
18 | 117
119
119
120
120 | 57
40
13
55
42 | 1923
1899
1960
1940
1940 | LA Dept Water & Power
Calif Div of Forestry
US Forest Service
Max D. Ley
Mrs. Clorene Akers | | B4
B6
B2
B0
C2 | 3939
3948
3952
3981
4012 | Hetch Hetchy
Hidden Valley
Highland Lakes
Hilmar
Hockett Meadows | WB
S | Tuolumne
Mariposa
Alpine
Merced
Tulare | 3870
1880
8700
90
8500 | 37
37
38
37
36 | 57
26
30
25
22 | 119
119
119
120
118 | 47
56
48
51
39 | 1910
1949
1960
1948
1959 | Hetch Hetchy Wtr Sup
Howard Brady
Dept Water Resources
Hilmar Fire Dept
Corps of Engineers | | C0
C0
C0
B5
B5 | 4061-01
4061-02
4061-03
4102-01 | Homeland Dist. Sec 9
Homeland Dist. Sec 17
Homeland Dist. Sec 34
Hornitos
Hornitos Erickson Ranch | | Kings
Kings
Kings
Mariposa
Mariposa | 190
206
195
850
1150 | 35
35
35
37
37 | 57
50
53
30
30 | 119
119
119
120
120 | 36
37
34
14
09 | 1952
1952
1951
1960
1955 | J. G. Boswell Co. J. G. Boswell Co. J. G. Boswell Co. Corps of Engineers Louie Erickson | | B5
C3
B4
B3
B7 | 4103
4120
4148
4170
4176 | Hornitos Giles Ranch
Hossack
Huckleberry Lake
Hunters Dam
Huntington Lake | S
S
WB
WB | Calaveras | 1050
7100
7800
3220
7020 | 37
36
38
38
37 | 28
11
06
12
14 | 120
118
119
120
119 | 14
37
45
22
13 | 1939
1959
1959
1950
1915 | Arthur Giles
Corps of Engineers
Hetch Hetchy Wtr Sup
PG&E Company
So. Calif Edison Co. | | C7
V2
B5
V7
C5 | 4204
4235
4246
4278
4303 | Idria
Independence Onion Vly
Indian Gulch
Inyokern
I s abella Dam | WB
WB | San Benito
Inyo
Mariposa
Kern
Kern | 2650
9175
1000
2440
2660 | 36
36
37
35
35 | 25
46
26
39
39 | 120
118
120
117
118 | 40
20
12
49
29 | 1918
1948
1952
1937
1949 | New Idria Mine & Chem
LA Dept Water & Power
Frank N. Solari
Kern County Fire Dept
Corps of Engineers | | B5
C5
B7
C2
C6 | 4369
4389
4442
4452
4463 | Jerseydale GS
Johnsondale
Kaiser Meadows
Kaweah PH 3
Keene | WB
S | Mariposa
Tulare
Fresno
Tulare
Kern | 3605
4680
9110
1370
2575 | 37
35
37
36
35 | 33
58
18
29 | 119
118
119
118
118 | 50
32
06
50
34 | 1958
1954
1946
1913
1948 | US Forest Service
US Forest Service
So. Calif Edison Co.
So. Calif Edison Co.
Kern Co. Fire Dept. | | B8
C0
C5
C5 | 4508
4510-02
4513
4518
4519 | Kerlinger
Kerman 2 ESE
Kern Canyon
Kern River Intake No. 3
Kern R. Intake 3 SCE | WB
WB | San Joaquin
Fresno
Tulare
Tulare
Tulare | 172
225
700
3650
3642 | 37
36
35
35
35 | 41
43
26
57
57 | 121
120
118
118
118 | 26
01
48
29
29 | 1947
1960
1916
1952
1921 | Pac. Coast Aggregates
Dept Water Resources
PG&E Company
Mrs. Lila Lofberg
So. Calif Edison Co. | | C5
C5
C5
C0 | 4520
4523
4527~01
4534
4535 | Kern River PH No. 1
Kern River PH No. 3
Kernville RS
Kettleman City 1 SSW
Kettleman Hills | WB
WB | Kern
Kern
Kern
Kings
Kings | 970
2703
2600
310
1255 | 35
35
35
36
36 | 28
47
45
00
02 | 118
118
118
119
120 | 47
26
25
58
06 | 1904
1946
1953
1930
1931 | So. Calif Edison Co.
So. Calif Edison Co.
Velma Aravjo
Standard Oil Co Calif
Standard Oil Co Calif. | | C0
B0
B3
B4
V2 | 4536
4590
4664
4679
4705 | Kettleman Station
Knights Ferry 2 SE
Lake Alpine
Lake Eleanor
Lake Sabrina | WB
WB
S
S | Kings
Stanislaus
Alpine
Tuolumne
Inyo | 508
315
7500
4662
9065 | 36
37
38
37
37 | 04
48
28
58
13 | 120
120
120
119
118 | 05
39
01
53
37 | 1933
1905
1948
1909
1948 | PG&E Company
Raymond Willms
Dept Water Resources
Hetch Hetchy Wtr Sup
Calif Elec Power Co | | D3
C6
B5
B0
B0 | 4767
4863
4883
4884
4884-05 | La Panza Ranch
Lebec
LeGrand Preston Ranch
LeGrand
LeGrand 5 N | WB
WB | San Luis Obpo
Kern
Mariposa
Merced
Merced | 1550
3585
984
255
280 | 35
34
37
37
37 | 23
50
20
14
19 | 120
118
120
120
120 | 10
52
02
15
15 | 1948
1940
1950
1899
1945 | Abe E. Zimmerman
Kern Co Fire Dept
Ray Preston
Merced Co Fire Dept
James Massengale | TABLE A-1 PRECIPITATION STATION INDEX (Continued) | 8.5 | Alpha | | | | T | Ι. | at. | Lo | ng. | | | |----------------------------|---|---|---------------
--|--------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---| | Drainage
Basin | Order
Number | Station Name | | County | Elev. | Deg | . Min. | Deg. | Min. | Record
Begon | | | C2
B0
C0
B0
C7 | 4890
4953-02
4957
4999-03
5008 | Lemon Cove
Linden Fire Station
Lindsay
Livingston 5 W
Loca Mariana | WB
WB | San Joaquin | 513
90
395
112
1700 | 36
38
36
37
36 | 23
01
11
22
21 | 119
121
119
120
120 | 02
05
04
48
25 | 1899
1948
1913
1952
1951 | Kaweah Lemon Co.
E. J. Murphy
Frank DeChaine
E&J Gallo Winery Rch
Closed July 1, 1962 | | B7
V2
B8
B4
B3 | 5040
5067
5074
5077
5078 | Logan Meadow
Lone Pine Cottonwood PH
Lone Tree Canyon
Long Barn
Long Barn Exp. Sta | WB | Madera
Inyo
San Joaquin
Tuolumne
Tuolumne | 3400
3790
420
4963
5200 | 37
36
37
38
38 | 20
27
37
06
11 | 119
118
121
120
120 | 19
03
23
08
01 | 1947
1940
1933
1960
1940 | So. Calif Edison Co.
LA Dept Water & Power
Edward C. Gerlach
Closed June, 1962
US Forest Service | | C6
V2
B0
B0
B0 | 5098
5111-09
5116
5117
5118 | Loraine
LA Aqueduct Intake
Los Banos 5 S
Los Banos Field Sta
Los Banos | WB
WB | Kern
Inyo
Merced
Merced
Merced | 2720
3841
175
160
125 | 35
36
36
37
37 | 18
58
59
01
03 | 118
118
120
120
120 | 26
12
51
54
51 | 1941
1919
1948
1956
1873 | Charles W. Poole
LA Dept Water & Power
H. G. Fawcett
US Bur. Reclamation
Roger C. Rice | | B8
C0
C1
B4
B6 | 5119
5151
5155-51
5160
5202 | Los Banos Arburua Rch
Lost Hills
Lower Big Creek
Lower Kibbey Ridge
Lushmeadows Ranch | WB
WB | Merced
Kern
Fresno
Tuolumne
Mariposa | 860
285
1100
6500
3215 | 36
35
36
38
37 | 53
37
55
01
29 | 120
119
119
119
119 | 56
41
15
53
50 | 1932
1912
1960
1948
1959 | Arburua Ranch
Kern Co. Fstry & FD
US Forest Service
Hetch Hetchy Wtr Sup
F. L. Raby | | B0
C0
V2
B0
B0 | 5233
5257
5284
5297-01
5297-02 | Magunden
Mammoth Pass | | Madera
Kern
Mono
San Joaquin
San Joaquin | 268
440
9500
46
42 | 36
35
37
37
37 | 58
22
37
48
48 | 120
118
119
121
121 | 04
55
02
12
13 | 1899
1927
1947
1930
1935 | Calif Div of Forestry
So. Calif Edison Co.
LA Dept Water & Power
Spreckles Sugar Co.
Southern Pacific Co. | | C7
C7
B5
B5
B6 | 5338
5338-01
5346
5346-01
5346-04 | Maricopa FS
Mariposa
Mariposa Reynolds
Mariposa 8 ESE | WB
WB | Kern
Kern
Mariposa
Mariposa
Mariposa | 685
885
2011
2000
2780 | 35
35
37
37
37 | 05
04
29
29
27 | 119
119
119
119
119 | 23
24
58
58
50 | 1911
1958
1909
1958
1952 | Signal Oil & Gas Co.
Kern Co. Fire Dept.
Mrs. Gabrielle Wilson
E. F. Reynolds
D. A. Boyce | | B5
B5
C7
B4
B0 | 5348
5352
5372-01
5400 | Mariposa Circle 9 Rch
Mariposa RS
Martinez Spring
Mather
Mather
Mattos Ranch | WB | Mariposa
Mariposa
Fresno
Tuolumne
Merced | 3536
2100
1875
4515
170 | 37
37
36
37
36 | 33
30
20
53
59 | 119
119
120
119
120 | 51
59
25
51
51 | 1957
1943
1959
1930
1961 | Dorothy D. Sevedge
Calif Div of Forestry
V. Ciesielski
City of San Francisco
Roger C. Rice | | B0
B5
C7
B7
B3 | 5460
5480-01
5496
5511 | | WB | Stanislaus
Mariposa
Kern
Fresno
Tuolumne | 35
2990
1051
4480
900 | 37
37
35
37
37 | 37
43
18
05
57 | 121
120
119
119
120 | 13
06
37
26
31 | 1958
1959
1956
1948
1955 | Dept Water Resources
James R. Alvis
Kern Co. Fire Dept
Radio Station KRFM
Oakdale Irrig. Dist. | | B0
C0
B0
C0
C0 | 5526
5526-04
5528
5529
5530 | Mendota 1 NNW
Mendota Murietta Ranch
Mendota Dam
Mendota Halfway Pump
Mendota VDL Farms | WB | Fresno
Fresno
Fresno
Fresno
Fresno | 172
261
166
450
230 | 36
36
36
36
36 | 46
39
47
28
45 | 120
120
120
120
120 | 23
27
22
24
28 | 1941
1958
1873
1956
1948 | Henry E. Schreiner
Closed July, 1962
Frank F. Moitoza
Tidewater Oil Co.
Vista Del Llano Farms | | B0
B0
B0
B0 | 5532
5532-01
5532-03
5534
5535 | Merced Fire Station 2
Merced SP
Merced 5 SE
Merced Fancher Ranch
Merced 2 | | Merced
Merced
Merced
Merced
Merced | 169
170
198
212
168 | 37
37
37
37
37 | 18
18
16
18
19 | 120
120
120
120
120 | 29
29
23
21
29 | 1872
1872
1959
1920
1938 | City of Merced
Southern Pacific Co.
Dept Water Resources
Calif Packing Corp
Merced Irrig Dist | | B8
C3
B7
C2
C2 | 5550
5669
5680
5708 | Mercey Hot Springs
Milo 5 NE
Minarets RS
Mineral King
Miramonte Honor Camp | WB | Fresno
Tulare
Madera
Tulare
Fresno | 1165
3400
5180
7975
3005 | 36
36
37
36
36 | 42
17
25
26
40 | 120
118
119
118
119 | 52
46
21
35
05 | 1932
1957
1962
1956
1957 | Horace C. Swatzel
Mrs. Ethel Walker
US Forest Service
Corps of Engineers
Calif Div of Forestry | | C1
B4
B0
B0
B0 | 5723
5735
5738
5740
5741 | Mitchell Meadow
Moccasin
Modesto
Modesto KTRB
Modesto 2 | WB | Fresno
Tuolumne
Stanislaus
Stanislaus
Stanislaus | 9700
950
91
93
92 | 36
37
37
37
37 | 45
49
39
40
38 | 118
120
121
120
121 | 43
18
00
59 | 1957
1935
1926
1959
1942 | Corps of Engineers
Hetch Hetchy Wtr Sup
Modesto Irrig Dist
Clifford Price
City of Modesto | | V8
V8
C5
C0
C1 | 5756
5758
5777
5893 | Mojave 2 ESE
Mojave 2 ESE
Monache Meadows
Moody Ranch
Mountain Rest FFS | WB
WB
S | Kern
Kern
Tulare
Kern
Fresno | 2735
2680
8000
405
4100 | 35
35
36
35
37 | 06 | 118
118
118
118
119 | 10
09
10
58
22 | 1947
1963
1950
1963
1960 | Kern Co Fire Dept
KDOL Radio Station
Corps of Engineers
Kern County Land Co.
US Forest Service | TABLE A-1 PRECIPITATION STATION INDEX (Continued) | in 00 e | Alpha | | | _ | | Lot. | | Lo | ng. Record | | | |----------------------------|---|---|---------------------|--|-------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Droinage
Bosin | Order
Number | Statian Name | | County | Elex | De g. | Min. | Deg. | Min. | Began | Observer | | V8
B0
B0
C0 | 6122
6168
6168-01
6230-50
6252 | Neenach
Newman 2 NW
Newman 1 SE
North Belridge
North Fork Ranger Sta | WB | Los Angeles
Stanislaus
Merced
Kern
Madera | 2890
108
80
630
2630 | 34
37
37
35
37 | 43
21
18
33
14 | 118
121
121
119
119 | 35
03
00
47
30 | 1931
1899
1960
1953
1904 | LA Dept Water & Power
Richard A. Smith
Dept Water Resources
Belridge Oil Co.
US Forest Service | | B0
B0
B6
C4
C0 | 6303
6305
6391
6393 | Oakdale
Oakdale Woodward Dam
Oakhurst
Oildale Smoot Ranch
Oilfields FFS | WB | Stanislaus
Stanislaus
Madera
Kern
Fresno | 155
215
2347
805
950 | 37
37
37
35
36 | 46
52
20
31
15 | 120
120
119
118
120 | 51
52
39
54
19 | 1880
1918
1961
1949
1952 | A. L. Gilbert Co.
S San Joaquin I.D.
Basil E. Judd
Closed July, 1962
Gene Martin | | C7
C5
C2
B0
B5 | 6395
6476
6490
6552 | Oilfields Joaquin Ridge
Onyx
Orange Cove
Orestimba
Ostrander Lake | S
WB
S | Fresno
Kern
Fresno
Stanislaus
Mariposa | 3620
2750
431
110
8600 | 36
35
36
37
37 | 18
42
37
22
38 | 120
118
119
121
119 | 24
13
18
04
33 | 1949
1962
1931
1896
1947 | US Weather Bureau
Corps of Engineers
Orange Cove Citrus Asn
Central Cal Irr Dist
US Natl Park Service | | B8
C0
B8
B8
B0 | 6583
6651
6675
6676
6677 | Pacheco Pass
Paloma Ranch
Panoche
Panoche 2 W
Panoche Creek | WB
WB | Merced
Kern
San Benito
San Benito
Fresno | 880
290
1265
1320
370 | 37
35
36
36
36 | 04
11
36
37
41 | 121
119
120
120
120 | 11
50
53
35 | 1949
1957
1922
1957
1963 | US Bur. Reclamation
Miller & Lux Inc.
Miss Lily Berg
Malcolm Strohn
Employee Enter Inc | | C0
B0
B4
D3
D3 | 6678
6679-05
6688
6703
6706 | Panoche Junction
Panoche Water
Dist
Paradise Meadow
Parkfield
Parkfield 7 NNW | WB
S
WB
WB | Fresno
Fresno
Tuolumne
Monterey
Monterey | 420
183
7700
1482
3590 | 36
36
38
35
36 | 32
53
03
53
00 | 120
120
119
120
120 | 27
44
40
26
28 | 1938
1949
1948
1938
1948 | Closed Oct, 1962
Panoche Water Dist
Hetch Hetchy Wtr Sup
Herbert H. Durham
Raulston P. Morrison | | B0
C6
C2
B8
C1 | 6746-01
6754
6767
6847
6857 | Patterson
Pattiway
Pear Lake
Pfeiffer Ranch
Piedra | WB
S | Stanislaus
Kern
Tulare
Merced
Fresno | 100
3868
9700
1650
580 | 37
34
36
36
36 | 28
56
36
53
48 | 121
119
118
121
119 | 07
23
40
08
23 | 1912
1915
1956
1954
1917 | Yancey Lumber Co.
Hudson Ranch
Corps of Engineers
Frances S. Pfeiffer
Mrs. Ida H. Akers | | B3
C1
C1
B7
C0 | 6893
6895
6902 | Pinecrest Strawberry
Pine Flat Dam
Pinehurst
Placer GS
Pond 1 N | | Tuolumne
Fresno
Fresno
Madera
Kern | 5620
615
4050
3670
268 | 38
36
36
37
35 | 11
50
42
22
44 | 119
119
119
119
119 | 59
19
01
22
19 | 1922
1949
1954
1962
1962 | PG&E Company
Corps of Engineers
US Forest Service
US Forest Service
Dept Water Resources | | C0
C0
C5
C4
C0 | 7077
7079
7093
7096
7098-11 | Porterville
Porterville 3 W
Portuguese Meadow
Posey 3 E
Poso Ranch | s | Tulare
Tulare
Tulare
Tulare
Kern | 393
413
7000
4920
370 | 36
36
35
35
35 | 04
05
48
48
37 | 119
119
118
118
119 | 01
04
34
38
16 | 1893
1958
1953
1954
1913 | John H. Daybell
Porterville Irr Dist
Corps of Engineers
Panorama Height Lodge
Kern County Land Co. | | B0
B4
D2
C5
C1 | 7099-11
7145
7150
7179
7259 | Poso Canal Co Hdq
Priest
Priest Valley
Quaking Aspen
Rattlesnake Creek | S | Fresno
Tuolumne
Monterey
Tulare
Fresno | 125
2245
2300
7200
9900 | 36
37
36
36
36 | 59
49
11
07
59 | 120
120
120
118
118 | 30
16
42
32
43 | 1928
1898
1955
1961 | Central Cal Irr Dist
Hetch Hetchy Wtr Sup
Nelson H. Palmer
Corps of Engineers
Corps of Engineers | | C7
B6
B6
B6
B6 | 7254-01
7270-01
7272-01
7273
7276 | Rattlesnake Springs
Raymond 3 SSW
Raymond 10 N
Raymond 9 N
Raymond 12 NNE | WB | Fresno
Madera
Mariposa
Mariposa
Mariposa | 1400
635
1640
1210
1600 | 36
37
37
37
37 | 22
11
22
21
23 | 120
119
119
119
119 | 28
56
54
53
50 | 1951
1940
1957
1962
1954 | Closed June 30, 1962
Sam Wood
Fred Bunning
Richard W. Schall
L. E. Schatz | | C0
C0
B0
C0
V2 | 7288
7460
7510 | Rector
Reedley MVFD
Ripon
Riverdale
Rock Creek | s | Tulare
Fresno
San Joaquin
Fresno
Inyo | 344
345
65
220
9670 | 36
36
37
36
37 | 18
37
45
26
27 | 119
119
121
119
118 | 15
27
07
52
44 | 1888
1962
1963
1917
1947 | So Calif Edison Co.
Mid-Valley Fire Dist
Mr. Arthur N. Clemens
Mid-Valley Fire Dist
Dept Water Resources | | B6
C0
B7
C5
B4 | 7528
7555
7560
7579
7623 | Rocky Village
Rosedale
Rose Marie Meadow
Round Meadow
Saches Springs | S
S | | 570
380
10000
9000
7900 | 37
35
37
35
38 | 22
26
19
58
06 | 120
119
118
118
119 | 10
08
52
21
51 | 1957
1914
1953
1947
1948 | W. R. Down
Kern County Land Co.
So Calif Edison Co.
Corps of Engineers
Hetch Hetchy Wtr Sup | | C7
D1
Z2
C0
D1 | 7687-02
7719
7735
7753
7755 | Salt Creek
San Benito
Sandberg WB
San Emigdio Ranch
San Felipe Highway Sta | | Fresno
San Benito
Los Angeles
Kern
Santa Clara | 575
1355
4517
1450
365 | 36
36
34
35
37 | 25
31
45
00
01 | 120
121
118
119
121 | 24
05
44
12
20 | 1951
1936
1933
1901
1943 | Closed July 1, 1962
John M. Shields
US Weather Bureau
Kern County Land Co.
Div of Highways | | o de | Alpho | | | | | L | ot. | Lo | ng. | Record | | |----------------------------|---|---|----------------------|--|--------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drainage
Basin | Order
Number | Station Name | | County | Elev | Deg | Min. | Deg. | Min. | Begon | Observer | | C0
C0
C0
C0
B7 | 7800-02
7800-03
7816 | Sanger 1 NE
Sanger RS
San Joaquin
San Joaquin MVFD
San Joaquin Exp Range | WB | Fresno
Fresno
Fresno
Madera | 375
375
174
174
1100 | 36
36
36
36
37 | 44
44
36
36
06 | 119
119
120
120
119 | 33
33
11
11
44 | 1959
1958
1919
1962
1934 | G. I. Minter
Calif Div of Forestry
James Irrig Dist
Mid-Valley Fire Dist
US Forest Service | | B0
B8
B0
D7
D7 | 7836-01
7846
7855
8259-02
8259-04 | San Juan Hdqrs M&L
San Luis Dam
San Luis Canal Co Hdq
Simmler R. W. Cooper
Simmler Maint Sta | WB | Merced
Merced
Merced
San Luis Obpo
San Luis Obpo | 105
260
106
2040
2030 | 37
37
37
35
35 | 05
03
03
24
21 | 120
121
120
120
119 | 39
04
40
06
59 | 1947
1963
1944
1936
1946 | Miller & Lux Inc.
US Bur. Reclamation
San Luis Canal Co.
R.W. Cooper
Div of Highways | | D2
C6
B5
C1 | 8276
8304
8318
8323-01
8326 | Slack Canyon
Smith Flat
Snow Flat
Soaproot Saddle
Soda Lake | WB
Ss
S | Monterey
Kern
Mariposa
Fresno
San Luis Obpo | 1730
3800
8700
3830
1960 | 36
34
37
37
35 | 05
54
50
02
15 | 120
119
119
119
119 | 40
21
30
15
55 | 1955
1960
1947
1960
1925 | Calif Div of Forestry
Mr. B. J. Snedden
Dept Water Resources
US Forest Service
Dewey Werling | | B4
G9
C0
B0
B5 | 8353
8355
8375-50
8378
8380 | Sonora
Sonora Junction
South Belridge
South Dos Palos
So Entrance Yosemite NP | WB
WB | Tuolumne
Mono
Kern
Merced
Mariposa | 1830
6886
575
116
5120 | 37
38
35
36
37 | 59
21
27
58
30 | 120
119
119
120
119 | 23
27
43
39
38 | 1887
1959
1938
1938
1941 | PG&E Company Div of Highways Belridge Oil Co. Southern Pacific Co. US Natl Park Service | | V2
C0
B3
C3 | 8406
8407-11
8450
8455
8460 | South Lake
South Lake Farms Hdq.
Spring Gap Forebay
Springville 7 ENE
Springville RS | S
WB
WB | Inyo
Kings
Tuolumne
Tulare
Tulare | 9580
190
3000
2470
1050 | 37
35
38
36
36 | 11
56
11
10
08 | 118
119
120
118
118 | 34
39
06
42
48 | 1948
1959
1921
1953
1924 | Calif Elec Power Co
South Lake Farms
PG&E Company
Elmer A. Sutton
USForest Service | | C3
C2
B3
C1
C0 | 8463
8499
8510
8520 | Springville Tule Headwrks
Squaw Valley
Stanislaus Pover House
State Lakes
Stevenson Dist Sec 33 | WB
WB
S | Tulare
Fresno
Tuolumne
Fresno
Tulare | 4070
1750
1130
10300
212 | 36
36
38
36
36 | 12
45
08
56
03 | 118
119
120
118
119 | 39
13
22
35
30 | 1907
1961
-
1955
1951 | PG&E Company
Edgar Young
PG&E Company
Corps of Engineers
J. G. Boswell Co. | | C3
C1
C7
C7
C6 | 8620
8643
8752
8755
8826 | Success Dam
Summit Meadow
Taft
Taft KTKR Radio
Tehachapi | S
WB
WB | Tulare
Fresno
Kern
Kern
Kern | 590
6240
1025
1030
3975 | 36
37
35
35
35 | 03
05
09
09
08 | 118
119
119
119
118 | 55
13
28
28
27 | 1959
1960
1940
1954
1876 | Corps of Engineers
Dept Water Resources
Kern Co Fstry & FD
Jerry Mann
Mrs. Anita Cowan | | C6
C6
C2
C7
C2 | 8832
8839
8868
8912 | Tehachapi RS
Tejon Rancho
Terminus Dam
Thirty-Two Corral
Three Rivers 6 SE | WB
WB | Kern
Kern
Tulare
Fresno
Tulare | 3975
1425
965
1700
2200 | 35
35
36
36
36 | 08
02
25
19
22 | 118
118
119
120
118 | 27
45
00
22
51 | 1940
1895
1959
1959
1940 | Kern Co Fire Dept.
Tejon Ranch Co.
Corps of Engineers
V. Ciesielski
Glenn Baker | | C2
C2
B0
B8
C0 | 8914
8917
8997
8999
9006 | Three Rivers Edison PH 2
Three Rivers Edison PH 1
Tracy 2 SSE
Tracy Carbona
Tranquillity Glotz | WB
WB
WB
WB | Tulare
Tulare
San Joaquin
San Joaquin
Fresno | 950
1140
105
140
165 | 36
36
37
37
36 | 28
28
43
42
37 | 118
118
121
121
120 | 53
52
25
25
14 | 1909
1940
1951
1934
1953 | So Calif Edison Co
So Calif Edison Co
Aage R. Tugel
Banta Carbona Irr Co
Ted Gromala | | C0
C1
C0
C0 | 9025
9051
9051-04
9052 | Traver 4 ESE
Trimmer RS
Tulare
Tulare Dist Sec
27
Tulefield | WB | Tulare
Fresno
Tulare
Kings
Kern | 285
736
293
179
295 | 36
36
36
36
35 | 26
54
13
04
09 | 119
119
119
119
119 | 24
17
20
48
01 | 1962
1948
1919
1953
1948 | Dept Water Resources
US Forest Service
So Calif Edison Co
J. G. Boswell Co.
Kern County Land Co | | C3
C3
C5
B3
B4 | 9059
9060
9061
9062
9063 | Tule River Intake
Tule River PH
Tunnel RS
Tulloch Dam
Tuolumne Meadows | s | Tulare
Tulare
Tulare
Calaveras
Tuolumne | 2450
1240
8950
515
8600 | 36
36
36
37
37 | 10
08
22
53
53 | 118
118
118
120
119 | 42
47
17
36
20 | 1910
1910
1945
1958
1947 | So Calif Edison Co
So Calif Edison Co
Dept Water Resources
Oakdale Irrig Dist
Dept Water Resources | | B0
B0
B0
C0
B7 | 9073
9073-01
9073-02
9145 | Turlock Turlock 5 SW Turlock 8 WSW US Cotton Field Sta Upper Chiquito | WB | Stanislaus
Stanislaus
Stanislaus
Kern
Madera | 104
76
60
367
6800 | 37
37
37
35
35 | 29
28
27
32
30 | 120
120
120
119
119 | 51
55
58
17
24 | 1893
1958
1958
1922
1962 | Carl A. Pearson
Chatom Co. Ltd.
Herbert Ellis
US Dept. Agriculture
US Forest Service | | D1
B8
B7
B0
C0 | 9189
9238-01
9301
9302-01
9304 | Upper Tres Pinos
Valley View Mine
Vermilion Valley
Vernalis 3 SE
Vestal | WB
S | San Benito
San Benito
Fresno
Stanislaus
Tulare | 2050
1575
7520
69
500 | 36
36
37
37
35 | 38
38
22
37
50 | 121
120
118
121
119 | 02
56
59
13
05 | 1940
1960
1947
1958
1920 | Eldon Fancher
Closed June, 1962
So Calif Edison Co
See Maze Bridge 2 S
So Calif Edison Co | TABLE A-1 PRECIPITATION STATION INDEX (Continued) | Oromoge
Bosin | Alpha
Order | Station Name | | Elev | Lo | ıt. | Lo | ng. | Record | Observer | | | |------------------|----------------|-----------------------|------------|------|------|------|------|------|--------|------------------------|--|--| | Droug
Bo | Number | Station Name | County | FIRK | Dag. | Min. | Deg. | Min. | Began | Cusarver | | | | co | 9367 | Visalia WE | Tulare | 354 | 36 | 20 | 119 | 18 | 1903 | Tulare Co. C of C | | | | CO | 9369 | Visalia 4 E | Tulare | 357 | 36 | 20 | 119 | 13 | 1959 | J. V. Pimentel | | | | CO | 9452 | Wasco WE | Kern | 333 | 35 | 36 | 119 | 20 | 1899 | Kern Co Fstry & FD | | | | B5 | 9482 | Wawona RS WE | Mariposa | 3965 | 37 | 32 | 119 | 40 | 1934 | US Natl Park Service | | | | C5 | 9512 | Weldon 1 WSW WE | Kern | 2680 | 35 | 40 | 118 | 18 | 1940 | Vernon J. Blount | | | | CO | 9535 | West Camp SLF | Kings | 290 | 35 | 51 | 119 | 53 | 1959 | South Lake Farms | | | | В6 | | Westfall RS | Madera | 4795 | 37 | 27 | 119 | 39 | 1958 | US Forest Service | | | | CO. | 9560 | Westhaven WE | Fresno | 285 | 36 | 13 | 119 | 59 | 1925 | Boston Ranch Co | | | | BO | 9565 | Westley | Stanislaus | 85 | 37 | 33 | 121 | 12 | 1928 | W. Stanislaus Irr Dist | | | | C5 | 9602 | Wet Meadow | Tulare | 9200 | 36 | 22 | 118 | 32 | 1959 | Corps of Engineers | | | | CO | | Wilbur Ditch | Kings | 210 | 35 | 56 | 119 | 45 | 1961 | South Lake Farms | | | | Cl | 9749 | Wishon Res | Fresno | 6600 | 37 | 01 | 118 | 58 | 1957 | PG&E Co | | | | C5 | 9754 | Wofford Heights WE | Kern | 2700 | 35 | 43 | 118 | 27 | 1894 | James H. Jorgensen | | | | Cl | 9773 | Woodchuck Meadow S | Fresno | 9200 | 37 | 02 | 118 | 54 | 1955 | Corps of Engineers | | | | C4 | 9805 | Woody | Kern | 1630 | 35 | 42 | 118 | 51 | 1953 | Kern Co Fstry & FD | | | | B5 | 9855 | Yosemite Natl Park WE | Mariposa | 3985 | 37 | 45 | 119 | 35 | 1904 | US Natl Park Service | | | | 1 | | | | | | | | | | | | | (In anches) | | 4114 | 1 | | | | In inche | - | | | | | , = | | | | |----------------------------|---|--|--|---------------------------|---------------------------|---------------------------|--------------------------------------|--|--|--|---|--|---------------------------------------|-------------------------------------|----------------------------------| | Drainoge
Bosin | Alpha
Order
Number | Station Name | Seasonal
Total | July | Aug. | Sept. | Oct | Nov | Dec. | Jon. | Feb. | Mor | Apr. | Моу | June | | CO
86
CO
C7 | 0009
0049
0204 | Academy
Ahwahnee 2 NNW
Angiola CD | 14.39
29.77
6.27
8.04 | .00 | .00
.00 | .04
.07
.08 | .93
1.82
.09 | .00
.40
.00 | .34
1.35
.03 | 3.85
6.46
.60
1.62 | 2.42
7.70
1.45
2.38 | 2.69
4.66
1.40
2.00 | 3.51
5.94
1.75 | .58
1.18
.17 | .00
.11
.70 | | D6 | 0215
0239
0332
0332-02 | Annette Apache Camp HPO Arvin Arvin Frick | 5.65 | .00 | .00 | .00 | .44
.13 | .00
.00 | .00
.00 | .07 | 1.36 | 2.00
1.65
1.27
1.32
4.89
1.87 | 1.23
1.97
1.13 | .15
.29
1.13 | .00
.02
.30
.04 | | CO
C2
80
C2 | 0343
0374
0379 | Arvin Frick Ash Mountain Atwater Craig Atwell S Auberry CD | 4.52
29.61
14.19
42.02 | .06
T | .00
.00 | .06
.21
T | .28
.91
.41 | .15
.28
July 24, | .01
2.06
1962 to | .25
6.37
1.31
July 2
7.27 | 1.11
7.33
4.53
6. 1963 | 4.60 | .93
8.54
3.34 | 1.07 | .07 | | B7
B7
C0
C7 | 0381
0396-02
0399
0399-01 | Auberry CO
Auberry Valley
Avenal-Walden
Avenal Orchard Ranch
Avenal 8 SW | 24.15
22.82
6.33
5.88
11.91 | .15
.00
.00
.00 | .00 | .03
T
.00 | 1.27
1.50
.12
.10 | .05
.00
.00 | .80
.23
.12
.45 | 4.85
1.13
1.22
3.11 | 4.70
2.76
1.70
3.55 | 4.50
.64
.68
1.91 | 5.42
.58
1.32
1.46 | .90
.86
.68 | .10
.01
.06 | | C7
C2
85
B5
C0 | 0399-02
0422
0425
0430 | Avenal 6 SSW Badger HPO Badger Pass S Bagby Bakersfield 1 W | 9.25
23.46
43.75
25.76
4.61 | .00 | .00 | .00
.13 | 1.19
2.50 | .00
.13
pril 22,
.57 | .35
.00
1962 to
3.08 | 1.97
8.68
April
4.55 | 3.48
2.98
8, 1963
3.25
1.19 | 1.18
3.65
5.39
1.39 | 1.15
5.99
6.17
1.17 | .74 | .03
.08
T | | C0
C1
C1 | 0442
0449
0534
0570 | Bakersfield W8 Airport R CD
Balch Power House HPD CD | 4.55 | .00 | .00 | .02
.11 | .12 | T | T
.05 | .12 | 1.54
5.82
1.963 | 1.25 | .85
7.20 | .26
.26
.65 | .28 | | B5
B3 | 0573 | Bear Valley Trubucco
Beardsley Dam | 26,23
25.81
40.54 | .00 | .00 | .15
.35 | 2.65
2.98 | July 23,
.75
1.05 | 3.64
2.66 | July 2
4.56
5.91 | 3.04
8.37 | 2.88
6.08 | 6.99
8.24 | 1.15
3.70 | .00 | | C2
B4
C0
V2
B0 | 0617
0631
0684
0688-02 | Beehive Meadow S
Bellevue
Benton Insp Sta
Berenda 2 N | 52.31
53.94
4.70
8.56
11.87 | .00
.38 | .00 | .04
.52
.02 | Septe
.25
.01
.60 | mber 12
.00
.01
.13 | 1962 to
1962 to
.00
.00
2.07 | Septem
.02
4.06
1.37 | 1.38
.52
2.54 | 963
-1.01
1.01
1.82 | .89
.32
2.80 | .56
.87
0.52 | .55
.86
T | | 87
87
87
87
V2 | 0755
0755-01
0755-02
0755-05
0767 | 819 Creek PM No. 1 SCE b
819 Creek PH No. 2 SCE b
819 Creek PH Mo. 3 SCE b
819 Creek PH Mo. 8 SCE b
819 Pine Creek S | 38.29
31.63
27.40
31.51
24.62 | .03
.10
.07
.10 | .00
.00
.00 | .42
.52
.40
.16 | 1.54
1.30
1.38
1.20
Oct | .32
.22
.19
.20
ober 29, | .25
.31
.31
.34
1962 to | 12.03
9.82
6.79
10.33
Octobe | 5.29
4.71
4.21
5.26
23, 19 | 5.97
5.73
5.28
5.27 | 8.08
6.87
7.33
6.89 | 3.63
1.76
1.30
1.57 | .73
.29
.14
.19 | | V2
V2
C1
V2
C6 | 0776
0819
0821
0824
0825-01 | Big Pine PH Mo. 3 Bishop Creek Intake 2 R CD Bishop Pass Snow Course S Bishop Union Carbide CD Bitter Creek Ss | 11.54
21.90
28.30
19.71
5.05 | .00
.28 | .00 | .54
.90 | .00
.05
Sept
.58 | .00
.08
ember 24
.16
ptember | .00
.00
. 1962
.03
15, 196 | | 4.12
2.30
r 1, 194
V11.00
30, 194 | 1.51
2.85
3
2.60 | .77
2.35
2.01 | .33
1.19
.65 | .82
3.25
1.27 | | C0
C1
C1
D1
C0 | 0875
1069-01
1170
1174 | Blackwells Corner CD
Blasingame
8retz Mill
Buena Vista HPO
Buena Vista Ranch | 3.42
20.07
37.988
M
3.82 | .00
.05
.00
.00 | .00
.00
.00 | .00
.17
.00
.00 | .00
1.17
2.06
.89
.14 | .00 | .03
.37
.00 | .27
4.14
15.67
2.34
T | 1.38
4.43
8.13
1.69
1.18 | .27
4.11
5.02
2.60
1.04 | .77
4.75
6.50E
2.64
.60 | .11
.80
.60E
.54 | .59
T
.00
.18 | | CD
CD
C6
C0
82 | 1175
1199-01
1244
1277 | Buena Vista Ranch M & L
Buena Vista Ranch M & L 2
Burgess Corrals Ss
Buttonwillow CD
Calaveras Big Trees CD | 3.80
4.02
5.85
3.86
61.96 | .00
.00 | .00 | .00 | .08
.14
Se
T
7.36 | .00
.00
ptember
.00
1.34 | .00
.00
15, 196:
T
3.82 | .00
.00
to Jun
.01
11.39 | 1.14
1.11
30, 196
1.33
11.27 | .64
1.14
3
.71
8.61 | 1.77
1.35
.74
13.04 | .00
.00 | .17
.28
.51
1.05 | |
83
C4
C3
C0
V7 | 1280
1300
1425
1479
1488 | Calaveras Ranger Sta HPD Calif Hot Springs RS HPD Camp Nelson Canfield Ranch Cantil CD | M
M
28.70
3.88
1.79 | .00 | .00
.00
.00 | .10
-
.00
T | 5.68
-
.00
.18
.05 | 1.09
.13
.00
.00 | 3.04
.04
.00
.00 | 14.64
4.38
8.00
T | 4.84
5.38
9.26
1.00 | 8.44
4.01
4.64
1.02 | 9.59
5.14
5.17
.80 | 2.78
-
.88
.45 | 1.26
.64
.75
.43
.13 | | C0
C0
B0
B8
B5 | 1490
1557
1580
1583
1588 | Cantua Ranch
Caruthers 4 E
Castle AFB
Castle Rock Rad Lab (R)
Cathay Bull Run Ranch HPD CD | 8.51E
8.48E
14.14
10.04
24.50 | .00E
.00
T | .00£
.00
.00 | .00E
.13
.00
T | .01
.28
.40
.91
2.00 | .008
.04E
.27
.25 | 2.35
.32
2.89
1.54
2.94 | .60
.86
2.37
1.09
3.06 | 3.35
2.52
3.03
2.58
4.51 | .35
1.37
1.87
1.44
4.35 | 1.68
2.57
2.82
1.89
6.33 | .17
.25
.44
.34 | .008
.14
.05
.00 | | B5
B5
B6
B6
B4 | 1588-01
1588-03
1590
1591
1697 | Cathay Meyer Ranch
Cathay 3 NNW
Cathay Sawyer Ranch
Cathay Stonehouse
Cherry Valley Dam CO | 31.68£
24.87
25.32
23.24
52.34 | .00£
.00
.03
.00 | .008
.00
.01
.00 | .00E
.00
.03
.00 | 2.50
2.22
2.00
2.12
2.73 | .47
.45
.39
.33 | 3.15
3.25
2.72
2.92
3.34 | 4.70
4.33
3.54
3.90
10.26 | 6.00
3.78
4.45
4.18
12.73 | 5.35
4.52
4.27
3.70
6.90 | 7.62
5.22
5.36
5.14
9.83 | 1.70
1.10
2.50
.93
3.56 | .19
.00
.02
.02 | | 87
03
C7
Z2
C0 | 1737
1743
1743-02
1754 | Chiquito Creek S
Cholame Hatch Ranch HPO
Cholame Twisselman
Chuchupate Ranger Sta HPD
Citrus | 46.02
8.05
8.56
M
M | .00 | .00 | .00 | .28
.27
.10 | July 25,
.00
.00
.00 | 1962 to
.20
.09 | July 10
1.16
.46
.64 | 2.50
2.90
2.35 | 1.59
2.04
2.19 | 1.44
1.85
1.68
RB | .65
.75
.04 | .23
.20
.11 | | 87
C0
C0
C7
C0 | 1844
1864
1864-02
1867 | Clover Meadows GS S Coalinga CDF Coalinga CDF Coalinga Roberts Ranch Coalinga 1 SE HPO | 45.84
8.27
6.24
15.17
7.04 | .00 | .00 | .00 | .04
.05
.47 | July 25,
T
.00
.00 | 1962 to
1.36
.00
2.85
1.23 | July 1
1.85
1.80
2.73
1.54 | . 1963
2.35
2.49
3.76
1.90 | .70
.68
2.67 | 1.25
.67
2.02 | .64
.49
.63 | .08
.06
.04 | | C7
B6
C0
B4
83 | 1869
1878
1885
1904
2003 | Coalinga 14 WNW CD
Coarsegold
Coit Ranch Hdqtrs
Cold Springs
Copperopolis R | 15.29
28.16
8.04
47.018
28.55 | .00
.12
.00
.30E | .00
.03
.00
.158 | .00
.22
T
.25£ | .41
1.77
.00
3.82
3.30 | .00
.24
.00
.95 | 2.78
1.19
2.16
3.79
2.76 | 3.80
5.38
.06
7.72
5.80 | 3.46
6.45
3.31
7.12
3.16 | 2.35
4.88
.84
5.82
4.45 | 2.00
7.03
1.39
11.07
6.71 | .36
.80
.10
4.22 | .13
.05
.18
1.80 | | CO
CO
CO
V2
V2 | 2012
2013
2013-05
2069
2071 | Corcoran Irrig Dist HPO CD Corcoran El Rico 1 Corcoran El Rico 33 Cottonwood Creek S Cottonwood Gates | 6.54
6.53
7.36
20.49
10.34 | .00 | .00 | .00
.00
.17 | .05
.06
.08
Oct | .00
.00
.00
pber 25, | .04
.09
.06
1962 to | .48
.36
.24
Octobe:
4.80 | 2.22
2.24
2.41
17. 196
3.40 | 1.20
1.04
.99 | 1.80
2.22
1.89 | .48
.21
.83 | .27
.31
.69 | | 85
85
C5
87
V2 | 2072
2072-05
2114
2122
2181 | Coulterville FFS Coulterville 5 E Crabtree Meadow S Crane Valley PH R Crowley Lake | 29.128
39.07
28.30
43.26
17.08 | .23
.23
.24 | .00
.00 | .04
.12 | 2.12
2.82
Septe
2.10
.29 | .61
.73
mber 17,
.29 | 2.52
3.56
1962 to
.74 | 3.65
11.34
Septem
14.32
7.26 | 6.59
5.26
er 21, 1
8.82
4.28 | 5.248
5.28
963
6.77
2.21 | 6.05
7.58
7.83
1.11 | 1.99
1.99
1.61 | .08
.16 | | C6
06
06
86
C0 | 2222
2236
2248
2288
2346 | Cummings Valle; Duyama CD Cuyama Ranch HPO Daulton Delano CD | 8.34
M
3.86
14.18
6.41 | .00 | .00 | .00
.00
.00
T | .33
.12
.00
.85 | .01
.00
.00 | .00
.00
.00
1.50 | .00
M
.22
2.70 | 2.71
2.12
1.39
1.50
1.48 | 1.87
.97
.93
2.57
1.36 | 2.30
.91
.65
4.24
1.37 | .40
.09
.57
.67 | .72
.18
.10
.00 | | B8
B0
B0
C0 | 2369
2375
2389
2408
2436 | Oel Puerto Rd Camp (R)CD(P) Oelta Ranch Denair CD Devils Oen SLF DiGlorgio | 15.21
9.47M
13.31
5.56
4.31 | .00 | .00 | T
.00
.00
.00 | 1.21
.22
.22
.09 | .16
.17
.30
.00 | 1.85
1.81
1.36
.05 | 3.06
1.08
1.58
.30 | 2.98
2.65M
3.46
2.50 | 2.29
1.37
2.62
.48
1.09 | 3.09
1.70
2.92
1.25
1.06 | .45
.29
.65
.35 | .12
.18
.20
.54 | | co
co | 2436 | Devils Den SLF
DiGiorgio | 5.56 | .00 | .00 | .00 | .09 | T T | .05 | .17 | .97 | 1.09 | 1.25 | | .73 | ## TABLE A-2 HONTHLY PRECIPITATION (Continued) (In inches) | ramoge | Alpha
Order | Station Name | Sectional | | | | | | | | | 10. | | | | |----------------------------|---|--|---|---------------------------|---------------------------|---------------------------|------------------------------------|--|--|--|--|---------------------------------------|---------------------------------------|-----------------------------------|------------------------------------| | Dramoge | Order
Number | Station Name | Total | July | Aug. | Sept. | Oct | Nov | Dec. | Jan | Feb | Mor. | Apr. | May | June | | C0
C7
C7
B4
C5 | 2440-01
2464
2464-01
2473
2492 | Dinuba Alta Irrig Dist Domengine Ranch Oomengine Spring Don Pedro Reservoir Doublebunk Meadow S | 12.05
9.00
13.25E
21.52
36.90 | .00
.00
.00E | .00
.00
.00E | .26
.00
.00E
.05 | .46
.12
.00E
1.68 | .04
.00
.00E
.49
July 25, | .17
2.53
3.25
3.37
1962 to | 2.84
1.75
3.97
July 1 | 2.09
1.94
5.83
3.17
, 1963 | 2.29
1.09
1.77
3.34 | 3.29
1.22
2.00
4.22 | . 27
. 28
. 40
. 94 | .34
.07
.00E
.13 | | 85
84
C1
C0
V0 | 2539
2609
2653
2756 | Oudley's CD Early Intake PH East Vidette Meadow S Eighth Standard Ranch Ellery Lake CD | 39.95
37.12
23.82
M
30.27 | .37 | .02 | .06
.14 | 3.18
2.84
, | .70
.64
ugust 10 | 3.28
2.50
, 1962 t
RB
.80 | 9.30
6.09
o August
.05
9.60 | 6.36
6.68
24, 196
1.49
2.61 | 6.93
6.22
3
1.18
4.15 | 7.58
7.63
1.33
4.43 | 1.95
2.68
.51
2.52 | .24
1.41
.02
1.95 | | C7
B0
B0
B0
85 | 2785
2820
2860
2909
2920 | El Rancho Cantua El Solyo Ranch Escalon Swanson Eugene (R) Exchequer Reservoir CD | 7.34E
10.97
13.55E
16.71
20.13 | .00
.00
.00E
.02 | .00
.00
.00E
.00 | .00
.00
.02
.02 | .00
.47
1.24
1.52
1.39 | .00
.35
.60
.55 | 2.60
1.86
2.20
2.14
2.86 | 1.70
1.44
.68
.95
2.36 | 1.32
2.82
3.12
3.53
3.58 | 1.47
1.75
1.99
3.70
4.14 | .25E
1.82
3.37
3.84
4.06 | .00E
.30
.32
.44 | .00E
.16
.01
.00 | | C0
B0
C7
B0
C0 | 2922
2968
3005
3063
3083 | Exeter Fauver Ranch HPD Fancher Ranch Camp 3 Fellows Firebaugh 9 W Five Points 5 SSW CD | 10.03
12.74
4.90
11.39E
5.85E | .00
.00
.00
T | .00
.00
.00 | .18
.00
.00
.00 | .37
.86
.07
T | .00
.14
.00
1.27 | .00
2.02
.00
.93
1.20 | 2.34
1.45
.01
1.28 | 1.87
3.16
.98
4.26
1.64 | 2.07
1.91
1.16
2.00E | 2.91
2.80
.88
1.50E
1.20E | .16
.40
1.30
.00 | .13
.00
.50
.15 | | C0
B7
C0
B7
V0 | 3084
3093
3257
3261
3369 | Five Points Diener Florence Lake HPD SCE b Fresno WB Airport RCD Friant Government Camp CD Gem Lake CD | 4.97
36.89
11.59
16.24
21.81 | .00
1.13
T
.00 | .00
.00
.00 | .00
.80
T
.18 | .20
1.39
.73
1.22 | .00
.30
.03
.08 | .75
.14
.48
.72 | .47
12.09
2.16
2.41
5.55 | 1.69
3.76
2.01
3.26
1.20 | .37
6.21
2.10
3.28
3.46 | 1.12
6.06
3.66
4.47
3.85 | .37
4.01
.39
.58
2.00 | T
1.00
.03
.04
1.80 | | E5
C2
D1
C0
C4 | 3387
3397
3422
3428-01
3463 | Gerber Ranch CD Glant Forest HPO CD Gliroy 14 ENE CD Gin Yard Glennville CD | 24.09E
46.58
24.99
3.32
11.48 | .00
.05
.00 | .00
.00
T
.00 | .48
T
.00 | 3.87
1.73
2.55
.20 | .22
.33
.26
.00 | 1.78
.08
1.85
.00 | 4.64
11.33
4.80
.00 | 5.47
12.73
5.93
1.24
3.22 | 3.17
6.62
3.69
.47
2.97 | 4.10
10.36
5.36
1.34
2.95 | .71
2.07
.41
.00 | .13E
.80
.14
.07 | | C4
C0
B4
C1
C1 | 3465
3512
3529
3548
3551 | Glennville Fulton RS HPD
Gosford Feed Mill
Grace Headow S
Granite Basin S
Grant Grove HPD CD |
M
3.74
42.64
47.84
41.07 | .00
.00 | .00 | .00 | .69
.13
Septe | .00
.00
mber 18,
ugust 6, | .00
.00
1962 to
1962 to | *
T | V6.49
1.01
er 16, 1
21, 1963
10.11 | -
.81
963 | .81 | .56 | .42 | | B5
B4
B4
B0
B0 | 3612-03
3669
3672
3690-02
3690-04 | Green Valley Ranch Groveland 2 HPD Groveland RS CD Gustine 5 SW Gustine Snyder | 39.48
H
42.77
15.43
16.07 | .28
.30
.20
.00 | .00
.00
.00 | .07
.07
.00 | 3.46
3.81
2.38
.22
.20 | .85
.80
.80
.20 | 3.22
3.53
3.61
1.40
1.47 | 6.08
-
8.23
2.65
3.98 | 8.98
-
10.96
4.71
4.15 | 5.68
-
5.92
1.73
1.82 | 8.23
-
8.05
4.17
3.99 | 2.13
2.25
1.98
.27 | .57
.35
.57
.08 | | 80
80
V7
C0
C1 | 3694
3710
3747
3811-11 | Gustine 7 SSW Gustine Avoaet Haiwee CD Hanford CD Haslett Basin | 14.15
14.22
6.81
8.15
33.64E | .00
.00
.00 | .00 | .00
.00
.54
.01 | .19
.10
T
.10
2.04E | .12
.10
.00 | 1.48
1.46
.09
.19 | 4.14
3.72
.97
1.19
11.80E | 2.64
3.08
2.78
1.68
8.23 | 1.78
2.08
1.44
1.37
4.77 | 3.58
3.44
.04
2.88
6.25E | .18
.17
T
.56 | .04
.07
.95
.17 | | D1
84
86
B2 | 3925
3928
3939
3948
3952 | Hernandez 2NW CD Hernandez 7 SE HPD Hetch Hetchy Hıdden Valley Hıghland Lakes S | 17.23
19.09
40.08
35.17
35.79 | .00
.00
.20 | .00
.00
.24 | .02
.00
.74
.09 | 1.10
.97
2.20
2.75 | .00
.00
1.04
.58
July 10, | 2.17
2.70
1.66
3.22
1962 to | 3.12
4.46
6.51
7.31
July 23 | 3.10
3.98
7.36
6.93
, 1963 | 3.73
2.87
6.07
5.41 | 2.95
3.30
8.13
7.79 | .73
.52
3.16 | .31
.29
2.77
.12 | | B0
C2
C0
C0 | 3981
4012
4061-01
4061-02
4061-03 | Hilmar Hockett Headows Homeland Dist Sec 9 Homeland Dist Sec 17 Homeland Dist Sec 34 | H
42.23
6.59
5.41
4.56 | .00 | .00 | -
.02
.00 | .16
.06
.05 | .27 | 1.67
1962 to
.04
.03 | 1.46
August 2
.53
.33 | 7, 1963
1.98
2.81
1.64 | -
1.09
.00
.73 | 1.84
1.40
1.12 | -
.23
.30
.23 | -
.80
.49 | | B5
85
B5
C3
B4 | 4102-01
4103
4120
4148 | Hornitos Erickson Ranch
Hornitos Giles Ranch
Hosack S
Huckleberry Lake S | 18.136
24.17E
20.14
45.93
62.80 | .00
.15
.05 | .00
.00E | .00
.10
.05 | 1.50
2.00
1.64
0 | .23
.51
.35
ctober 1 | 2.34
2.97
2.68
0, 1962
1962 to | 2.97
2.42
3.59
to July
Septemb | 2.81
5.76
2.83
10, 1963
er 20, 1 | 3.40
4.55
3.57 | 4.00
5.07
4.54 | .83
.64
.78 | .05E
.00E
.06 | | B3
87
C7
V2
B5 | 4170
4176
4204
4235
4246 | Hunters Dam CD P Huntington Lake HPD SCE b Idria CD (R) Independence Onion Vly HPD Indian Gulch | 52.45
42.51
14.61
M
20.77E | .14
.10
.00
.28 | .00
.00
.05 | .13
1.02
.00
.84 | 5.59
2.10
.60
.68
1.50 | 1.10
.75
.03
.10 | 3.17
.27
2.31
.14
2.96 | 10.12
10.83
2.91
- | 9.96
5.63
2.65
-
4.78 | 8.06
8.23
2.61
3.67
3.67 | 10.00
9.73
2.73
3.83
4.65 | 2.88
3.05
.40
2.91 | 1.30
.80
.37
2.77 | | V7
C5
85
C5
B7 | 4278
4303
4369
4389
4442 | Inyokern CD
Isabella Dam (R)
Jerseydale GS
Johnsondale CD
Kaiser Meadowa S | 1.84
8.62
52.04
27.00£
48.87 | .00
.00
.28 | .00
.00
.02 | .00
.00
.38 | T
.03
3.30
.41 | .00
.00
.93
T | .02
.03
2.14
.00E | .15
1.52
11.39
7.31
June 25 | .73
3.06
11.76
10.63 | .84
2.06
6.76
3.95 | .06
1.07
11.46
3.43 | .13
3.04
.76 | .04
.72
.58
.46 | | C2
C6
B8
C0
C5 | 4452
4463
4508
4510-02
4513 | Kaweah PH No. 3 b
Keene
Kerlinger CD
Kerman 2 ESE
Kern Canyon | 27.31
9.56
7.52
8.71
6.54 | .04
.00
.00
.00 | .00 | .22
T
T | .82
.71
.58
.21 | .07
.00
.31
.02 | .05
.00
1.33
.89 | 7.94
.12
.44
1.23 | 4.33
2.44
2.02
3.15
V2.44 | 4.56
2.36
1.14
2.20
1.48 | 8.16
2.83
1.59
.69
1.57 | 1.D3
.45
.11
.32
.49 | .09
.65
.00
.00 | | C5
C5
C5
C5 | 4518
4519
4520
4523
4527-01 | Kern River Intake Ho. 3 CD
Kern R. Intake 3 SCE b
Kern River PH No. 1 CD
Kern River PH Ho. 3 CD
Kernville RS | 19.85
20.14
9.96E
12.68
9.26 | .00
.00
.00 | .00
.00
.00 | .03
.01
T | .11
.12
.41
.04 | .00 | .00
.00
.00 | 4.59
9.31
.52
4.83
3.30 | 8.65
4.09
2.79
2.39
1.99 | 3.00
2.95
2.00E
3.02
2.12 | 2.47
2.57
2.08
1.88
1.52 | .48
.44
1.73
.17 | .52
.65
.43
.33 | | C0
C0
B0
B3 | 4534
4535
4536
4590
4664 | Kettleman City 1 SSW CD
Kettleman Hills
Kettleman Station CD
Knights Ferry 2 SE CD
Lake Alpine S | 6.61
5.41
5.69
20.31
69.34 | .01
.00
.00 | .00 | .00
.00
.00 | .05
.08
.05 | .00
.00
.00
.78
July 10, | .04
.19
.16
2.33
1962 to | .51
1.01
1.02
1.19
July 23 | 2.83
1.76
1.93
5.46
. 1963 | .58
.58
.66
3.00 | 1.54
1.00
1.27
5.26 | .76
.75
.58 | .29
.04
.02
.23 | | B4
V2
D3
C6
85 | 4679
4705
4767
4863
4883 | Lake Eleanor S Lake Sabrina S La Panza Ranch HPD Lebec CD Le Grand Preston Ranch R | 41.48
21.61
7.23
8.92E
18.92E | .22
.42
.00
.00 | .45
.00
.00
.00 | .18
1.40
.00
.00 | 2.02
.40
.25
.20 | .97
.18
.00
.00 | 2.44
.05
.14
.00E | 12.80
7.45
1.14
.04
3.50 | 3.60
1.80
2.15
2.68
3.05 | 5.70
3.33
1.53
3.00
3.39 | 8.60
2.50
1.53
2.67
4.36 | 3.00
1.20
.34
.04 | 1.50
2.88
.15
.29
.00E | | 80
C2
B0
C0 | 4884
4884-05
4890
4953-02
4957 | Le Grand CD Le Grand 5 N Lemon Cove CD Linden Fire Sta Lindsay CD | 15.25
13.45
11.88
18.03
9.79 | .00
.00
T
.08 | .00
.00
.01 | .00
.03
.11
.08 | 1.00
1.01
.48
2.03
.43 | .07
.13
.00
.43 | 2.92
2.30
.05
1.96 | 1.94
1.82
2.74
1.43
1.55 | 2.63
2.27
2.15
4.05
2.24 | 2.55
2.37
2.47
3.44
2.30 | 3.49
3.03
3.64
4.14
2.60 | .65
.49
.18
.38 | .00
.00
.06
.00 | | B0
B7
V2
88
B3 | 4999-03
5040
5067
5074
5078 | Livingston 5 W Logan Meadow S Lone Pine Cottonwood PH HPD Lone Tree Canyon CD Long Barn Exp Sta HPD | 15.47
39.83
7.84
8.87E
48.79 | .00 | .00 | .00
.15
.00 | .11
Se
.00
.62
3.61 | .35
ptember :
.00
.24
1.06 | 1.68
25, 1962
.03
1.50E
3.17 | 1.92
to July
4.46
.94
9.26 | 5.05
1, 1963
1.09
2.03
4.57 | 2.15
.82
1.20
9.11 | 3.39
.25
1.99
9.72 | .18
.00
.30
4.85 | .64
1.04
.05
2.61 | | L | | | | | | | | | | | | | | | | | Dronoge | Alpho | Station Name | | Seasonal | | | | | | | | | | -1 | | | |----------------------------|---|---|----------------------|--|---------------------------|-------------------------------|------------------------------|-------------------------------------|---------------------------------------|--|---|---|--------------------------------------|---------------------------------------|-----------------------------|----------------------------------| | Draw | Number | | | Tatal | July | Aug. | 5ep1. | Oct. | Nov. | Dec | Jan. | Feb. | Mar | Apr. | May | June | | C6
V2
B0
B0
B0 | 5098
511-09
5116
5117
5118 | Loraine LA Aqueduct Intake Los Banos 5 5 Los Banos Field Sta Los Banos | RPD
CD | 10.25
9.34
9.55
9.70
10.34 | .00 | .00 | .00
.37
.00
.00 | .71
.00
.12
.14 | .00
.00
.11
.12 | .00
.00
1.59
1.67
1.55 | .56
1.01
1.22
2.13
1.55 | 3.55
6.23
3.22
2.42
3.48 | 2.36
.42
1.44
1.28
1.33 | 2.19
.25
1.60
1.69
1.83 | .40
.42
.10
.22 | 6.4 | | B8
C0
C1
B4
B6 | 5119
5151
5155-51
5160
5202 | Los Banos Arburua Ranch
Lost Hills
Lower Big Creek
Lower Kibbey Ridge
Lushmeadows Ranch | CD
HP0
AS
S | 8.15
M
27.71E
61.30
37,39E | .00 | .00 | .00
.00 | 2.05
Sep
3.20 | .10
.00
.00
tember 2 | .02
.00
6 1962 | 1.38
.31
8.00
to Septe
8.10 | | .86
4.20
1963
3.12 | 1 | .16
.85
.51 | .00 | | 80
C0
V2
B0
B0 | 5233
5257
5284
5297-01
5297-02 | Madera
Magunden
Mammoth Pass
Manteca Ro. 2
Manteca SP | CD
b | 9.62
4.33
65.95
12.32
12.32 | .00 | .00 | .00
.00 | .47
.16
No
1.07 | .10
.00
ovember
.27
.32 | 1.18
.00
5. 1962
1.73
1.70 | 1.10
.14
to Octob
1.15
1.05 | 2.34
1.17
e: 10.1
3.15
3.18 | 1.40
1.42
963
2.28
2.29 | .90 | .32
.29 | | | C7
C7
B5
B5
B6 | 5338
5338-01
5346
5346-01
5346-04 | Maricopa
Maricopa FS
Mariposa
Mariposa Reynolds
Mariposa 8 ESE | CD | 3.60
2.81E
37.80
38.91
37.03 | .00
.008
.09
.10 | .00
.008
T | .00
.00
.06
.00 |
.43
.34
2.79
2.23
3.25 | .00
.00
.67
.71 | E .00 | T .01
7.48
8.65
5.19 | .70
1.14
9.05
10.12
8.18 | .48
.89
4.58
4.03
5.51 | | .96
.00
1.57
1.60 | .06
.00E
.18
.32 | | B5
85
C7
84
B0 | 5348
5352
5372-01
5400 | Mariposa Circle 9 Ranch
Mariposa RS
Martinez Spring
Mather
Mattos Ranch | (R) | 50.47
35.98
11.06E
31.80
10.23 | .22
.00
.008
.33 | .02
.02
.008
.25 | .19
.00
.00
.00 | 3.30
2.82
.00
2.33 | .93
.44
.00
.73 | E 2.25 | 11.39
7.89
*
6.63
1.26 | 5 75 | 6.17
5.44
1.50
4.48
1.66 | 11.14
8.09
1.28
6.08
1.87 | 3.04
1.27
.28
2.24 | .17
.35
.002
1.65 | | B0
B5
C7
B7
83 | 5460
5480-01
5496
5511 | Maze Bridge
McDiermid Sta
McKittrick &S
Meadow Lake
Melones Oam | CD | 10.74
40.22
4.30
31.34
33.00 | .00
.20
.00
.05 | .00
.00
.00 | T
.11
.00
.09 | .45
2.82
.15
1.75
2.32 | .32
.68
.00
.12 | 1.91
3.55
.00
.73
2.98 | 1.31
8.78
.05
6.49
2.86 | B. 25 | 1.81
6.39
.94
5.69
6.27 | 1.73
7.18
.44
7.91
6.99 | 2.13
2.13
.95
1.33 | .53 | | B0
B0
C0
C0
B0 | 5526
5528
5529
5530
5532 | Mendota 1 NNW
Mendota Dam
Mendota Halfway Pump
Mendota VDL Farms
Merced Fire Station 2 | CD | 9.86
8.23
6.67
9.96
12.318 | .00
.00
.00
.00 | .00
.00
.00 | T
T
.00 | .29
.26
T
.25 | .02
.04
.00
.00 | 1.88 | | 3.58
2.50
2.03
3.79
2.95 | 1.23
1.18
.76
.68 | 1.66
1.47
1.05
1.31
2.38 | .27
.26
.15
.15 | | | B0
B0
B0
B0
B8 | 5532-01
5532-03
5534
5535
5550 | Merced SP
Merced 5 SE
Merced Fancher Ranch
Merced 2
Mercey Hot Springs | HPD
CD | 12.77
12.41
12.27
12.37
M | .00
.00
.00
.02 | .00 | .00
.00
.00 | .54
.79
.82
.49 | .22
.13
.14
.19 | 2.01
2.21
1.90
1.92
1.54 | 1.33
1.87
1.21
1.79
1.40 | 3.52
2.64
2.93
2.96
1.85 | 1.82
1.73
1.97
1.76 | 2.90
2.66
2.78
2.76 | .36
.45 | .06
.02
.07 | | C3
87
C2
C2
C1 | 5669
5680
5708
5723 | Milo 5 NE
Minarets RS
Mineral King
Miramonte Honor Camp
Mitchell Meadow | HPD
S
S | 31.50
M
40.21
25.81
35.94 | .01
.13£ | .00 | .34
1.00 | .76
1.60
1.30 | .28
.26
July 2
.13
August | .13
4. 1962
.13
12. 1962 | 11.45
o July
8.20
to July | 5.05
-
26, 1963
3.95
23, 1963 | 4.60 | 7.27
-
6.93 | 1.04 | .63 | | B4
B0
B0
B0
V8 | 5735
5738
5740
5741
5756 | Modesto
Modesto KTRB
Modesto 2
Mojave HPI | CD
HPD | 31.57
12.59
12.47
12.36
2.11 | .03
.00
T | .00
.00
.00 | .14
T
.00
.02 | 2.65
.59
.66
.40 | .68
.64
.56
.64 | 3.31
2.00
2.28
2.18
T | 2.90
.99
.64
.99 | 7.18
2.68
3.02
2.38
.83 | 6.20
2.39
2.28
2.51
.80 | 5.72
2.97
2.67
2.97
.27 | 2.08
.32
.33
.24 | .68
.01
.03
.03 | | V8
C5
C0
C1
V8 | 5758
5777
5893
6122 | Mojave 2 ESE
Monache Meadows
Moody Ranch
Mountain Rest FS
Neenach | CD
S | M
20.05
M
35.65
5.65 | .03
.00 | .00 | .17 | Sept
2.03
.02 | ember 2: | .42 | Septer
11.40 | 7.23
1.92 | 1963
5.08
2.32 | RB
RB
8.04
.88 | .00
.55
1.17 | .25
.02
.49 | | B0
B0
C0
B7
80 | 6168
6168-01
6230-50
6252
6303 | Newman 2 NW
Newman 1 5E
North Belridge
North Fork Ranger Sta
Oakdale | CD | 13.89
14.81
4.19
34.88
16.62 | .00
.00
.00
.34 | .00
.00
.00 | .00
.00
.00
.02 | .13
.79
.09
1.94
1.10 | .13
.00
.33 | 1.54
2.21
.02
.69
2.34 | 3.18
3.22
.18
8.81 | 3.63
3.46
1.70
8.39
4.12 | 1.95
1.96
.20
5.61
2.89 | 3.13
2.90
.75
7.02
4.26 | .05
.14
.91
1.47 | .15
.08
.34
.07 | | B0
B6
C0
C7
C5 | 6305
6393
6395 | Oakdale Woodward Oam
Oakhurst
Oilfields FFS
Oilfields Joaquin Ridge
Onyx | CD
S | 14.11
30.65
7.13
12.698
6.67 | T
.06
.00
.00 | .00
.02
.00
Lober 3, | .04
.22
.00
1962 to | 1.35
1.60
.10
Februar | .64
.24
.00
28, 1 | 1.44
1.20
1.25 | .70
7.79
1.95 | 2.82
7.10
1.88
R
1.91 | 2.87
4.88
.72
1.65
1.73 | 3.78
6.35
.90
1.02E | .35
1.09
.33
.28 | .12
.10
.00
.08E | | C2
B0
B5
B8
C0 | 6476
6490
6552
6583
6651 | Orange Cove
Orestimba
Ostrander Lake
Pacheco Pass
Paloma Ranch | S
HPD | 12.16E
13.18
54.05
16.10
4.00 | .00 | .00 | .17
.00 | .63
.14
.83 | .04
.13
July 19
.10 | .03
1.44
1962 to
1.27 | 2.99
2.00
Septemb
6.18
.00 | 2.20E
4.21
er 3, 19
2.32
1.06 | 2.29
1.83
63
2.24
1.32 | 3.39
3.04
2.66
1.41 | .29
.10 | .13
.29
.18 | | B8
B0
B0
B0
B4 | 6675
6676
6677
6679-05
6688 | Panoche
Panoche 2 W
Panoche Creek
Panoche Water Oistrict
Paradise Meadow | CD
CD | 8.20
8.20
M
7.59
56.74 | .00 | .00 | T
.30 | .14
.00
.15
Septe | .01
.04
.10
mber 16 | 1.62
1.55
1.32
1962 to | 1.70
1.85
RB
.91
Septemb | 1.80
2.02
2.84
2.86
er 14, 1 | 1.59
1.04
.86
.96 | 1.40
1.11
1.06 | .33
.00
.18 | .34
.00
.23
.09 | | D3
D3
B0
C6
C2 | 6703
6706
6746-01
6754
6767 | Parkfield
Parkfield 7 NNW
Patterson
Pattiway
Pear Lake | CD
HPD
CD | 16.44
16.61
12.548
6.69
44.91 | .00
.00
.00s | .00
.00
.008 | .00
.00
.000 | .67
.82
.41
.39 | .00
.00
.22
.04
gust 13, | 1.60
2.77
1.79
T
1962 to | 2.19
4.25
2.18
T
August | 5.91
3.48
3.49
2.29
26, 1963 | 3.09
2.14
1.75
1.11 | 2.51
2.50
2.44
1.85 | .47
.63
.17 | T
.02
.09
.36 | | B8
C1
83
C1
C1 | 6847
6857
6893
6895
6902 | Pfeiffer Ranch
Piedra
Pinecrest Strawberry
Pine Flat Dam
Pinehurst | CD
(R) | 19.57E
16.14
52.02
18.83
26.67 | .008
.05
.10
.01 | .00E
.00
.10
T | T
.04
.10
.06 | 1.31
.85
3.79
1.32
1.45 | .23
.05
.98
.05 | 1.85
.11
3.26
.19 | 3.03
3.54
10.84
4.06
7.85 | 3.66
3.99
6.28
4.57
5.01 | 3.74
2.79
8.11
3.49
4.05 | 4.91
4.28
10.38
4.53
5.69 | .58
.37
5.11
.47 | .26
.07
2.97
.08
.45 | | B7
C0
C0
C0 | 7077
7079
7093 | Placer GS
Pond 1 N
Porterville
Porterville 3 W
Portuguese Meadow | CD | M
6.78
8.99
8.10
42,22 | .07
.00
.00 | .06
.00
.00 | .70
.10
.07 | 1.55
-14
-30
-30 | .30
T
.00
.00
July 26 | .74M
.06
T
T | .33
.66
.45
o July 8 | 1.53
2.42
2.21
, 1963 | 1.42
2.21
2.15 | 4.69
1.55
2.70
2.41 | 2.00
.69
.17
.12 | .58
.96
.46 | | C4
C0
80
B4
D2 | 7096
7098-11
7099-11
7145
7150 | Posey 3 E
Poso Ranch
Poso Canal Co. Hdq.
Priest
Priest Valley | CD | 28.74
7.93
B.63
31.38E
22.09 | .00
.00
.00
.07 | .00
.00
.00 | .22
.06
.00
.00 | .93
.10
.38
2.59
1.43 | .00
.00
.08
.75 | .03
.00
1.22
3.38
2.99 | 3.97
.21
.72
3.72
4.42 | 8.77
2.11
2.85
7.02E
4.54 | 4.34
1.56
1.66
5.56
4.36 | 7.69
1.75
1.46
5.92
3.59 | 1.30
1.19
.26
2.12 | 1.49
.95
T
.24 | | C5
C1
B6
B6
B6 | 7179
7259
7270-01
7272-01
7273 | Quaking Aspen Rattlesnake Creek Raymond 3 SSW Raymond 10 N Raymond 9 N CD | S
S
(P) | 46.36
45.51
16.44
27.76
26.67 | .10
.10
.20 | .00 | .00 | .90
2.01
1.95 | July 25,
aly 10,
.00
.40 | 1962 to
1962 to
1.80
2.20
2.02 | July 10
August 7
1.20
5.30
6.26 | . 1963
. 1963
4.00
6.13
3.89 | 2.65
4.71
5.15 | 5.19
5.98
6.06 | .60
.93
.81 | .00 | | | | | | | | | | | | | | | | | | | # TABLE A-2 MONTHLY PRECIPITATION (Continued) (In inches) | | | | | | | (| In inche | S / | | | | | | | | | | |----------------------------|---|---|------------------------------|---|----------------------------|----------------------------|---------------------------|------------------------------------|--|--|---|---|--------------------------------------|--------------------------------------|------------------------------------|----------------------------------|--| | inoge
osin | Alpho
Order | Station Name | | Seasonal
Tatal | Total | | | | | | Jon. Feb. Mor Apr. May June | | | | | | | | 8 6 | Number | | | | July | Aug | Sept | Oct | Nov. | Dec. | | | | | | | | | 86
C0
B0
C0 | 7276
7288
7460 | Raymond 12 NNE
Rector
Reedley MVFD
Ripon
Riverdale | ъ | 26.58
9.33
10.89
H
6.98 | .22
T | .00 | .02
.05
.08 | 1.80
.34
.42 | .42
.00
.02 | 1.26
.22
.18 | 8.15
1.73
1.78 | 2.81
1.53
2.68 | 4.52
1.99
2.05 | 6.23
3.07
3.34
RB
1.88 | 1.10
.18
.17
.00 |
.05
.22
.17
.04 | | | V2
86
C0
87
C5 | 7510
7528
7555
7560
7579 | Rock Creek
Rocky Village
Rosedale
Rose Marie Meadow
Round Meadow | 8 88 | 25.81
22.70
4.89
43.81
37.42 | .01 | .00 | .03 | 0ct
1.60
.22 | ober 15,
.30
.00
July 3,
July 26 | 1962 to
3.04
.00
1962 to | November
4.00
.12
July 1
o July 9 | 2.85
1.06
, 1963 | 3
3.74
1.03 | 6.20
1.51 | .91 | .02 | | | B4
D1
Z2
C0
D1 | 7623
7719
7735
7753
7755 | Sandberg WB
San Emigdio Ranch | S
HPD
RCD
CD
HPD | 58.03
14.48
5.56
7.82
21.20 | .00
.00
.00 | .00 | .00
.00
T | Septe
.56
.10
.55 | mber 25,
.00
.00
.00 | 1962 to
2.25
T
.00
1.68 | 3.28
.07
.02
6.16 | er 20,
1.89
2.25
2.29
2.89 | 963
3.42
1.58
1.72
3.29 | 2.39
1.00
2.20
4.75 | .35
.02
1.04
.37 | .34
.54
T | | | C0
C0
C0
E7 | 7800-02
7800-03
7816 | Sanger 1 NE
Sanger RS
San Joaquin
San Joaquin MVFD
San Joaquin Exp Range | HPD | 13.15
10.78
6.31E
5.86
19.74 | .04
.00
.00E
.00 | .00
.00
.00E
.00 | .06
.12
.00E
.00 | .72
.00
.00E
.15 | .01
.00
.00E
.00 | .38
.35
1.37
.53
1.25 | 2.60
2.51
.79
.50
4.67 | 2.89
2.10
1.77
2.28
2.85 | 2.46
2.03
.76
.90
4.04 | 3.66
3.34
1.53
1.38
4.56 | .20
.23
.09
.12 | .13
.10
.00E
.00 | | | 80
88
80
D7
D7 | 7836-01
7846
7855
8259-02
8259-04 | San Juan Hdqrs M & L
San Luis Dam
San Luis Canal Co Hdq
Simmler R. W. Cooper
Simmler Haint. Sta | CD | 9.56
M
10.35
8.26
6.81 | .00 | .00
.00
.00 | .00
.00 | .40
.41
.32
.28 | .12
.14
.00 | 1.32
1.13
.13
.15 | .75
RB
.96
.65 | 3.27
3.28
3.80
2.85
2.53 | 1.28
1.80
1.38
1.81
1.51 | 1.65
2.58
1.51
1.74
1.48 | .52
.32
.76
.48 | .25
.12
.26
.28 | | | D2
C6
85
C1
D7 | 8276
8304
8318
8323-01
8326 | Slack Canyon Smith Flat Snow Flat Soaproot Saddle Soda Lake | HPD
Ss
S | 18.29
3.85
55.42
37.27E
6.76 | .00 | .00 | .00 | .87
Se
2.20
.27 | .03
ptember
June 25,
.00 | 2.86
15, 1962
1962 to
.00
T | 3.75
to June
July 16
16.50
1.20 | 4.33
30, 19
, 1963
6.98E
1.91 | 2.86
4.49
1.35 | 2.81
6.50s
1.24 | .66
.60£ | .00 | | | B4
G9
C0
B0
B5 | 8353
8355
8375-50
8378
8380 | Sonora Sonora Junction South Belridge South Dos Palos So Entrance Yosemite NP | CD
HPD
CD | 33.31
M
3.39
9.26
55.13 | .06
.19
.00
.00 | .00
.48
.00
.00 | .01
.60
.00 | 2.94
1.53
.11
.27
2.69 | .93
.18
.00
.08 | 2.97
.61
T
1.56
2.18 | 3.99
-
.07
1.08
17.72 | 7.75
-
1.33
3.06
9.93 | 5.97
2.47
.30
1.23
6.91 | 6.79
1.00
.70
1.45
10.72 | 1.43
2.76
.38
.22
2.99 | .47
1.34
.50
.31
.88 | | | V2
C0
B3
C3 | 8406
8407-11
8450
8455
8460 | South Lake
South Lake Farms Hdq
Spring Gap Forebay
Springville 7 ENE
Springville RS | R
CD | 25.74
6.59
49.41
30.23
16.05 | .00
.50
.00 | .00
.18
.00 | .00
.17
.12
.28 | .06
4.33
1.06
.53 | June 30,
.00
*
.20
T | 1962 to
.09
V4.38
.05
.04 | June 30
.46
11.20
4.13
3.41 | , 1963
2.06
4.28
10.16
3.43 | .98
8.40
4.67
3.18 | 1.95
10.61
8.24
4.57 | .39
4.15
1.26
.31 | .60
1.21
.34
.30 | | | C3
C2
B3
C1
C0 | 8463
8499
8510
8520 | Squaw Valley | HPD
(P)
S | M
21.40
36.70
37.88
6.81 | .00
.00
.10 | .00 | .32
.18
.30 | 1.09
1.45
4.07 | .16
.05
.95
ugust 7, | .06
.16
2.53
1962 to | -
6.73
5.74
August | 3.37
5.90
22, 196
1.97 | 5.88
3.87
7.23 | 8.93
5.29
7.41
1.93 | 1.49
.30
2.19 | .65
.00
.28 | | | C3
C1
C7
C7
C6 | 8620
8643
8752
8755
8826 | Summit Meadow | (R)
S
HPD
CD | 9.98
51.31
M
4.58
5.45 | .11
.00
T | .00 | .07
.00
T | .29
.27
.10 | .00
June 27,
.00
.00 | .00
1962 to
.00
T | .81
July 1:
.04
.01 | 2.83
. 1963
-
.86
1.29 | 2.33
1.06
.99
1.49 | 2.92
.64
.83
1.46 | 1.36
1.14 | .39
.57
.65 | | | C6
C6
C2
C7
C2 | 8832
8839
8868
8912 | Tejon Rancho
Terminus Dam
Thirty-Two Corral | HPD
CD
R
HPD | 5.97
9.11
13.36
11.57£
19.82 | .00
.00
T
.00E | .00
.00
.00
.00s | .03
T
.14
.00E | .24
.88
.53
.00E | .00
T
T
.008 | .00
T
.04
2.50 | .27
.05
2.05 | 1.78
2.41
3.21
V5.40
2.33 | 1.43
1.92
2.95
1.75
3.52 | 1.46
2.62
4.09
1.45
6.42 | .06
.81
.27
.47 | .70
.42
.08
.00£ | | | C2
C2
B0
B8
C0 | 8914
8917
8997
8999
9006 | | CD
HPD
HPD
CD | 23.92
22.86
7.96
8.80
7.32 | .01
.00
.00 | .00
.00
.00 | .17
.22
.00
.00 | .78
.77
.55
.65 | .03
.08
.33
.34 | .03
.04
1.15
1.29
2.16 | 7.93
8.12
.99
1.07 | 3.44
2.47
1.42
1.82
1.91 | 3.80
3.89
1.36
1.41
1.12 | 6.91
6.41
2.01
2.11
1.21 | .77
.76
.15
.11 | .05
.09
.00
T | | | C0
C1
C0
C0 | 9025
9051
9051-04
9052 | Traver 4 ESE
Trimmer RS
Tulare
Tulare Dist Sec 27
Tulefield | b
CD | 9.53
24.48
8.83
5.92
4.53 | .00
.02
.00
.00 | .00
.00
.00 | .30
.11
.23
.00 | .43
2.03
.33
.08 | .01
T
.00 | .21
.08
.10
.06 | .95
7.28
1.32
.38 | 2.27
6.76
1.54
2.07
1.33 | 2.08
1.78
2.09
.79
1.31 | 3.00
5.92
2.90
1.71
1.05 | .10
.50
.14
.71 | .18
.00
.18
.12 | | | C3
C3
C5
83
84 | 9059
9060
9061
9062
9063 | Tule River Intake
Tule River PH
Tunnel RS
Tulloch Dam
Tuolumne Meadows | b
b
s | 30.23
18.07
22.95
22.26
35.33 | .00 | .00 | .13
.14 | 1.03
.63
Septe
1.58 | .22
.06
.06
.91
June 25, | .06
.04
1962 to
2.48
1962 to | 8.93
3.60
Septem
1.47
July 1 | 5.31
3.93
er 25,
5.74
7, 1963 | 4.64
3.42
1963
3.63 | 8.25
5.42
5.20 | 1.27
.46 | .39
.37 | | | 80
80
80
C0 | 9073
9073-01
9073-02
9145 | Turlock Turlock 5 SW Turlock 8 WSW U.S. Cotton Field Sta Upper Chiquito | CD
S | 12.86
16.35E
11.31E
6.50 | .00
.00E
.00E
.00 | .00
.00E
.00E
.00 | T
.00E
.05 | .20
.25
.21
.04
1.67 | .27
.30
.20 | 1.49
1.30
1.43
.02 | 1.35
4.42
1.29
.17 | 3.69
3.68
3.00
2.14 | 2.25
2.80
1.90
1.49 | 3.27
3.15
2.88
1.40 | .32
.25
.20
.56 | .02
.20
.20
.63 | | | 01
87
C0
C0 | 9189
9301
9304
9367
9369 | Upper Tres Pinos
Vermilion Valley
Vestal
Visalia
Visalia 4 E | HPD
S
b
CD | 13.38
29.13
7.18
9.08
9.83 | .00 | .00 | .00
.22
.02
.05 | .71
.21
.40
.36 | .16
June 20,
.00
T | 2.19
1962 to
.00
.05
.45 | 2.29
June 2
.60
.82
1.69 | 2.13
1963
1.79
2.13
1.71 | 3.30
1.51°
2.10
1.90 | 2.30
1.79
3.15
3.17 | .30
.24
.22
.18 | .00
.82
.19 | | | C0
B5
C5
C0
B6 | 9452
9482
9512
9535 | Wasco
Wawona RS
Weldon 1 WSW
West Camp SLF
Westfall RS | CD
HPD
HPD | 7.15
M
5.77
6.02
58.21 | .00 | .00
.14
.00
.00 | .00
.21
.00
.00 | .09
2.05
.00
.07
2.45 | .00
.53
.00
.00 | .00
1.67
.00
.03
2.23 | 16.10
2.09
.25
15.53 | 1.94
5.12
.58
2.72
16.91 | 1.72
7.99
1.61
.94
7.95 | 1.40
7.91
.51
1.50
9.62 | 1.04
2.67
.69
.29
2.29 | .74
.44
.29
.22 | | | C0
B0
C5
C0 | 9560
9565
9602
9749 | Westhaven
Westley
Wet Meadow
Wilbur Ditch
Wishon Res | CD
S
b | 6.01
11.75
40.27
7.20
48.98 | .00 | .00 | .00
.00 | .07
.50 | .00
.33
July 14,
.00 | .23
1.81
1962 to
.04
.20 | .52
2.09
August
.40
16.73 | 2.56
2.90
28, 1963
2.33
8.89 | .50
1.87
1.13
7.72 | 1.37
1.96
1.81
9.95 | .55
.09 | .21
.20
1.02
.56 | | | C5
C1
C4
B5 | 9754
9773
9805
9855 | Wofford Heights
Woodchuck Meadow
Woody
Yosemite National Pk HPD | CD
S | 8.66
48.29
10.38
39.76 | .00 | .00 | .04
.02
.71 | .02
.58
1.58 | .00
July 12
.00 | .00
1962 to
.00
1.23 | 2.91
August
.46
10.06 | 1.99
9, 1963
2.81
6.50 | 2.12
2.38
7.76 | 1.05
3.33
7.09 | .23
.54
2.73 | .30
.71
.82 | | | 8 = | Alpha | | | | | | | | | | | | | | | | |-------------------|------------------|----------------------|---------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--| | Drainoge
Bosin | Order
*Number | Station Name | | July | Aug | Sept. | Oct | Nov. | Dec. | Jan. | Feb. | Mar | Apr | Moy | June | | | в6 |
0049 | Ahwahnee 2 NNW | Max
Min
Av Max
Av Min
Avg | 95
59
89.6
66.0
77.8 | 97
60
89.2
65.7
77.4 | 94
56
86.7
62.5
74.6 | 88
44
76.9
53.4
65.2 | 86
33
69.7
46.3
58.0 | 79
30
68.1
43.2
55.6 | 72
23
59.9
36.4
48.2 | 82
40
66.8
46.1
56.4 | 70
29
59.8
39.2
49.5 | 74
32
57.9
41.0
49.4 | 86
40
71.4
54.6
63.0 | 92
48
77.4
56.9
67.1 | | | C0 | ∪396 | Avenal Walden | Max
Min
Av Max
Av Min
Avg | 107
60
102.1
66.3
84.2 | M
M
M
M | M
M
M
M | 93
44
77.0M
52.0
64.5M | 82
37
68.5M
45.5M
57.0M | M
M
M | 66
21
55.6M
32.6M
44.1M | 75
40
66.2
50.0
58.1 | 77
33
66.4
44.9
55.6 | 80
40
69.6
48.9
59.2 | 95
48
81.0
58.8
69.9 | 105
55
90.5
63.0
76.7 | | | B5 | 0430 | Bagby | Max
Mln
Av Max
Av Min
Avg | 106
58
99.7
62.9
81.3 | 106
54
98.9
61.5
80.2 | 102
52
95.7
57.9
76.8 | 96
42
80.0
48.8
64.4 | 86
31
70.2
41.5
55.9 | 78
28
61.2
37.6
49.4 | 65
22
57.2
31.5
44.4 | 78
38
69.5
45.8
57.6 | 70
32
62.3
38.6
50.4 | 76
34
60.9
40.3
50.6 | RE
RE
RE
RE | | | | co | 155" | Caruthers 4 E | Max
Min
Av Max
Av Min
Avg | | RB
RB
RB
RB | 99M
46M
90.4M
51.6M
71.0M | 91
40
77.8
47.1
62.5 | M
M
M
M | 77
20
59.3
34.5
46.9 | 63
17
54.4
28.3
41.4 | 77
37
69.0
44.6
56.8 | 85
31
69.4
39.0
54.2 | 82
33
66.0
39.3
52.6 | 99
41
87.0
52.1
69.6 | 108
46
92.8M
55.3M
74.0M | | | BO | 1580 | Castle AFB | Max
Min
Av Max
Av Min
Avg | 106
56
96.2
63.5
79.8 | 103
53
91.4
61.0
76.2 | 97
50
86.2
56.8
71.5 | 90
41
74.0
50.1
62.0 | 78
30
66.6
41.2
53.9 | 69
25
54.2
37.8
46.0 | 63
22
50.8
31.2
41.0 | 69
40
64.1
47.6
55.8 | 74
33
62.4
41.1
51.8 | 74
34
62.5
44.1
53.3 | 94
42
75.8
52.4
64.1 | 101
50
84.3
56.1
70,2 | | | B8 | 1563 | Castle Rock Rad Lab | Max
Min
Av Max
Av Min
Avg | 104
54
97.0
61.4
79.2 | 104
53
93.3
61.2
77.2 | 99
46
88.6
56.5
72.6 | 91
40
76.1
50.3
63.2 | 80
33
69.9
43.6
56.8 | 70
21
57.7
34.7
46.2 | 65
18
54.2
27.9
41.0 | 76
36
67.2
47.2
57.2 | 76
32
64.8
40.9
52.8 | 77
33
65.3
44.1
54.7 | 96
38
77.8
52.6
65.2 | 104
50
86.7
57.7
72.2 | | | В6 | 1590 | Cathay Sawyer Ranch | Max
Min
Av Max
Av Min
Avg | 101
54
95.3
61.9
78.6 | 103
52
93.5
60.6
77.0 | 98
50
88.5
57.1
72.8 | 90
43
73.4
50.0
61.7 | 80
26
64.5
40.9
50.7 | 72
22
58.2
37.8
48.0 | 65
21
52.2
30.3
41.2 | 74
37
62.9
44.7
53.8 | 72
30
59.0
36.0
48.5 | 71
30
59.9
40.2
50.0 | 86
37
72.4
51.0
61.7 | 99
43
82.2
53.3
67.7 | | | В6 | 1591 | Cathay Stonehouse | Max
Min
Av Max
Av Min
Avg | 101
50
94.6
55.8
75.2 | 102
45
93.5
55.1
74.3 | 97
45
89.0
51.6
70.3 | 90
38
71.8
46.1
59.0 | 80
24
65.4
37.0
51.2 | 74
20
58.6
33.7
46.2 | 64
16
53.2
26.4
39.8 | 75
31
63.9
41.2
52.6 | 73
25
60.4
34.3
47.4 | 73
25
61.6
38.7
50.2 | 87
34
74.5
48.5
61.5 | 97
38
83.6
49.0
66.3 | | | B4 | 1904 | Cold Springs | Max
Min
Av Max
Av Min
Avg | M
M
M
M | M
M
M
M | M
M
M
M | 80
29
66.7
40.2
53.5 | 76
21
60.3
34.9
47.6 | 67
16
52.7
31.9
42.3 | 62
12
45.2
26.3
35.8 | M
M
M
M | 63
16
46.5
26.0
36.2 | 60
13
44.0M
27.7M
35.8M | 82
28
60,6
39.2
49.9 | 80
32
67.4
42.9
55.6 | | | CO | 2013 | Corcoran El Rico l | Max
Min
Av Max
Av Min
Avg | 102
51
96.4
56.2
76.3 | 102
46
93.6
55.6
74.6 | 102
46
88.8
52.0
70.4 | 91
37
76.0
45.3
60.6 | 84
70.2
38.9
54.6 | 74
19
60.6M
35.1M
47.8M | 66
17
55.1
28.7
41.9 | 72
38
67.6
46.6
57.1 | 80
30
66.6
39.5
53.0 | 80
31
68.5
43.2
55.8 | 96
38
81.7
51.3
66.5 | 106
46
88.7
54.6
71.6 | | | B5 | 2012 | Coulterville FFS | Max
Min
Av Max
Av Min
Avg | 109
56
94.4
64.2
79.3 | 100
55
91.8
62.7
77.2 | 95
52
86.8
58.9
72.8 | 89
41
72.2
49.5
60.8 | 81
30
65.1M
43.3M
54.2M | 72
26
M
M | 63
25
M
M | 72
34
M
M | 70
32
M
M | 7 2
M
M
M | 86
M
M
M | 98
44
82.6M
52.9
67.7M | | | В7 | 2122 | Crane Valley PH | Max
Min
Av Max
Av Min
Avg | 97
58
90.0
63.4
76.7 | 99
56
89.3
63.0
76.2 | 92
52
85.7
58.4
72.0 | 88
40
73.5
49.3
61.4 | 82
30
64.1
41.7
52.9 | 72
16
60.5
37.8
49.2 | 66
20
55.1
31.4
43.2 | 78
36
62.3
41.9
52.1 | 66
30
56.3
36.8
46.6 | 70
30
54.9
38.8
46.8 | 84
40
70.0M
50.6M
60.3M | 93
30
78.2
52.6
65.4 | | | C6 | 2222 | Cummings Valley | Max
Min
Av Max
Av Min
Avg | 94
42
87.2
45.9
66.6 | 99
37
88.0
44.8
66.4 | 96
31
85.4
40.3
62.9 | 92
26
74.3
33.3
53.8 | 80
14
66.0
27.3
46.7 | 74
10
61.5
29.3
45.4 | 66
8
57.4
23.6
40.5 | 76
26
63.6
37.9
50.8 | 70
20
56.4
30.2
43.3 | 76
20
56.0
31.0
43.5 | 86
28
70.0
40.0
55.0 | 90
34
72.9
43.9
58.4 | | | B8 | 2369 | Del Puerto Road Camp | Max
Min
Av Max
Av Min
Avg | 106
52
97.3
59.7
78.5 | 100
50
92.2
57.8
75.0 | 94
48
86.0
53.5
69.8 | 88
38
72.8
47.2
60.0 | 82
30
66.5
40.7
53.6 | 70
24
58.7
36.7
47.7 | 64
18
54.1
29.1
41.6 | 72
36
60.8
40.4
50.6 | 70
30
63.6
39.3
51.4 | 76
30
62.5
40.5
51.5 | 90
38
78.1
48.6
63.4 | 106
44
88.2
53.7
70.9 | | | C0 | 2436 | Di Giorgio | Max
Min
Av Max
Av Min
Avg | 106
56
99.8
60.8
80.3 | 107
54
97.3
59.5
78.4 | 104
48
92.9
55.0
74.0 | 98
42
80.6
47.9
64.2 | 87
30
70.6
41.1
55.8 | 78
23
63.3
35.8
49.6 | 71
21
59.0
33.5
46.2 | 80
40
70.1
49.6
59.8 | 81
40
70.6
45.8
58.2 | 83
40
70.4
48.4
59.4 | 100
44
83.9
57.6
70.7 | 105
52
88.0
60.6
74.3 | | | C7 | 2464 | Domengine Ranch | Max
Min
Av Max
Av Min
Avg | 101
57
96.5
69.1
82.8 | 102
54
94.2
66.0 | 101
52
87.5
64.0
75.8 | 92
40
74.8
53.0
63.7 | 82
39
66.9
50.3
58.6 | 72
34
57.6
44.4
51.0 | 65
25
53.0
37.0
45.0 | 80
43
65.1
50.6
57.8 | 75
36
63.2
43.8
53.5 | 78
36
65.4
45.3
55.4 | 97
45
79.4
53.7
66.6 | 101
39
86.6
59.2
72.9 | | | в4 | 2473 | Don Pedro Reservoir | Max
Min
Av Max
Av Min
Avg | 105
53
97.5
63.7
80.6 | 104
56
95.3
61.7
78.5 | 99
50
90.6
57.3
73.9 | 97
42
77.7
50.2
63.9 | B6
30
69.3
42.5
55.9 | 70
27
59.2
38.1
48.6 | 65
23
54.5
30.2
42.3 | 75
37
66.5
42.9
54.7 | 75
31
62.6
37.7
50.1 | 76
31
63.6
41.8
52.7 | 93
39
77.1
49.7
63.4 | 104
43
86.9
53.1
70.0 | | | co | 3084 | Five Points Diener | Max
Min
Av Max
Av Min
Avg | 103
58
98.5
62.5
80.5 | 102
52
94.7
61.7
78.2 | 101
52
89.9
57.7
73.8 | 91
43
76.3
50.7
68.5 | 84
26
68.0
43.0
55.5 | 71
22
57.0
37.5
47.2 | 65
21
54.1
31.4
42.8 | 73
41
65.7
47.6
56.6 | 80
33
66.2
41.0
53.6 | 80
34
68.5
44.5
56.5 | 96
42
81.5
52.9
67.2 | 104
50
88.1
57.6
72.8 | | | В6 | 3948 | Midden Valley | Max
Min
Av Max
Av Min
Avg | 101
58
94.9
64.7
79.8 | 103
56
94.8
63.7
79.2 | 101
55
91.5
60.1
75.8 | 92
43
75.3
51.3
63.3 | 83
30
66.5
43.6
55.1 | 75
26
61.7
39.2
50.4 | 67
23
55.4
31.9
43.7 | 78
38
64.7
44.4
54.6 | 70
29
60.2
38.0
49.1 | 74
30
60.5
40.6
50.6 | 96
39
75.1
52.3
63.7 | 103
40
84.8
54.1
69.4 | | | B5 | 4103 | Mornitos Giles Ranch | Max
Min
Av Max
Av Min | 101
54
94.3
65.3
79.8 | 100
54
92.2
63.3
77.8 | 96
52
87.8
59.8
73.8 | 90
44
73.2
52.4
62.8 | 82
28
65.9
44.6
55.3 | 74
28
57.6
40.3
49.0 | 62
22
52.0
32.8
42.4 | 72
40
63.1
47.1
55.0 | 74
32
60.2
40.4
50.3 | 72
32
61.4
42.7
52.0 | 88
40
73.9
51.1
62.5 | 98
46
83.0
54.7
68.8 | | TABLE A-3 MONTHLY TEMPERATURES (Continued) | 8 5 | Alpha
Order | Station Name | | | | | | | | | | | | | | |------------|------------------|-----------------------|---------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------
-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------| | Bosin | Order
"Number | Station Name | | July | Aug | Sept | Oct | Nov. | Dec. | Jan. | Feb. | Mor | Apr. | May | June | | 83 | 4170 | Hunters Dam | Max
Min
Av Max
Av Min
Avg | 95
44
88.4
49.8
69.1 | 96
42
87.3
48.4
67.8 | 95
40
85.5
44.7
65.1 | 88
31
72.8
39.2
56.0 | 84
23
60.9
31.5
46.2 | 74
15
59.6
30.4
45.0 | 64
12
54.0
23.7
38.8 | 74
28
61.0
36.9
48.9 | 66
20
53.6
28.9
41.2 | 69
22
52.4
32.9
42.6 | 84
30
67.5
41.7
54.6 | 89
33
74.9
43.6
59.2 | | cs | 4303 | Isabella Dam | Max
Min
Av Max
Av Min
Avg | 103
58
96.3
63.6
80.0 | 107
55
96.9
63.1
80.0 | 102
50
92.8
56.3
74.6 | 96
38
80.0
46.9
63.5 | 87
28
6B.8
40.2
54.5 | 75
12
63.6
31.9
47.8 | 68
16
58.8
28.6
43.7 | 77
34
64.5
41.0
52.8 | 73
26
60.6
37.0
48.8 | 78
27
60.4
38.8
49.6 | 93
34
75.7
51.2
63.4 | 96
44
80.7
55.3
68.0 | | 26 | 4463 | Keene | Max
Min
Av Max
Av Min
Avg | 94
46
90.8M
55.0M
72.9M | 96
42
89.3
54.5
71.9 | 94
42
83.8
53.4
68.6 | 91
38
70.8
45.5
58.2 | 85
22
63.0
37.9
55.5 | 77
23
64.3
37.2
50.8 | 66
19
57.0
31.1
44.1 | 87
30
65.5
42.1
53.8 | 76
27
61.0
34.2
47.6 | 69
27
59.3
37.0
48.1 | 87
32
73.1
46.5
59.8 | 93
40
79.8
49.7
64.7 | | 25 | 4513 | Kern Canyon | Max
Min
Av Max
Av Min
Avg | 99
60
95.4
67.6
81.5 | 98
60
-
- | 98
51
89.7
64.8
77.2 | 91
46
74.4M
53.8M
64.1M | 76
M
M
M | 73
24
60.6M
39.1M
49.9M | 71
22
M
M | 78
41
65.1M
47.5M
56.3M | 73
34
63.4M
42.5M
53.0M | 76
34
64.2M
45.2M
54.7M | 92
43
76.6M
55.3M
65.9M | 98
53
83.8
61.5
72.6 | | 00 | 4535 | Kettleman Hills | Max
Min
Av Max
Av Min
Avg | 101
60
95.5
70.4
83.0 | 101
56
93.3
68.6
81.0 | 98
54
88.1
65.7
76.9 | 89
49
73.4
56.5
65.0 | 81
39
65.2
50.7
58.0 | 72
33
58.0
45.3
51.6 | 64
24
51.7
37.9
44.8 | 78
44
63.2
50.6
56.9 | 74
37
62.7
45.5
54.1 | 76
38
63.8
46.0
54.9 | 93
48
78.1
56.6
67.3 | 102
52
85.1
62.4
73.7 | | 90 | 4999-03 | Livingston 5 W | Max
Min
Av Max
Av Min
Avg | 106
49
100.0
55.7
77.8 | 110
47
98.7
54.3
76.5 | 104
45
93.3
48.4
70.9 | 97
39
79.6
46.4
63.0 | 83
29
70.9M
37.5M
54.2M | 70
25
56.2M
36.1M
46.2M | 66
19
54.3M
27.9M
41.1M | 77
38
66.7M
45.6M
56.2M | 77
30
68.5M
38.3M
53.4M | 80
34
66.4
42.4
54.4 | 95
37
81.8M
49.6M
65.7M | 107
45
91.0
52.1
71.6 | | 30 | 5117 | Los Banos Field Sta | Max
Min
Av Max
Av Min
Avg | 103
53
96.1
58.1
77.1 | 102
51
94.0
57.0
75.5 | 98
48
89.0
52.0
70.5 | 91
41
77.0
47.0
62.0 | 80
28
68.0
41.0
54.5 | 68
21
57.0
32.0
44.5 | 67
20
54.0
28.0
41.0 | 71
38
66.0
46.0
56.0 | 72
30
63.0
39.0
51.0 | 76
32
65.0
43.0
54.0 | 94
42
78.0
51.0
64.5 | 103
51
86.0
56.0
71.0 | | 36 | 5202 | Lushmeadows Rch | Max
Min
Av Max
Av Min
Avg | 92
56
85.5
64.7
75.1 | M
M
M | 88
54
M
M | M
M
M | M
M
M | M
M
M
M | 66
23
54.2
33.5
43.8 | 76
37
62.6M
41.3M
52.0M | 72
27
58.9M
35.5M
47.2M | 74
29
56.8M
36.8M
46.8M | M
M
M
M | M
M
M | | 00 | 5257 | Magunden | Max
Min
Av Max
Av Min
Avg | 107
46
101.9
63.9
82.9 | 106
60
98.6
65.3
82.0 | 102
46
92.8
59.9
76.4 | 93
44
78.8
51.8
65.3 | 85
31
66.1
41.2
53.7 | 78
19
62.1
35.5
48.8 | 68
18
58.0
29.8
43.9 | 78
41
69.4
48.6
59.0 | 83
37
68.1
43.8
56.0 | 81
38
69.6
46.8
58.2 | 97
44
83.7
57.2
70.4 | 106
52
89.6
61.6
75. | | 95 | 5348 | Mariposa Circle 9 Rch | Max
Min
Av Max
Av Min
Avg | 104
48
98.4
55.0
76.7 | 104
44
94.0
54.0
74.0 | 93
42
86.8
50.2
68.5 | 84
33
71.3
42.4
56.8 | 80
23
58.3M
33.5M
45.9M | 70
19
58.5
32.3
45.4 | 64
16
53.7
27.5
40.6 | 73
30
60.0M
37.2M
48.6M | 65
18
54.5
28.9
41.7 | 74
21
53.4
33.1
43.2 | 93
30
70.8M
45.1M
58.0M | 100
34
81.3
45.9 | | B5 | 5,352 | Mariposa RS | Max
Min
Av Max
Av Min
Avg | 99
53
93.9
58.4
76.2 | 101
49
93.0
56.6
74.8 | 97
47
89.1
53.3
71.2 | 91
31
76.5
45.5
61.0 | 85
27
68.1
38.7
53.4 | 76
22
63.4
34.4
48.9 | 70
19
56.6
27.1
41.8 | 80
33
66.4M
40.1M
53.2M | 72
26
61.6M
33.9M
47.8M | 71
26
59.4
36.5
48.0 | 89
35
74.0M
49.0M
65.1M | 96
41
81.4
51.8
66.6 | | 87 | 5496 | Meadow Lakes | Max
Min
Av Max
Av Min
Avg | | | | | RB
RB
RB
RB | 73
25
58.8
41.6
50.2 | 64
19
51.7
34.8
43.2 | 75
34
58.6
42.4
50.0 | 62
24
52.0
34.2
43.1 | 66
25
47.7
33.6
40.6 | 84
34
64.4
50.4
57.4 | 86
44
73.6
52.6 | | B7 | | Minarets | Max
Min
Av Max
Av Min
Avg | 90
45
84.3
51.9
68.1 | 94
40
B5.7
47.7
66.7 | 90
35
81.2
44.8
63.0 | 86
30
71.4
40.7
56.1 | | | | f winte: | season | | | 84M
34M
71.6
43.1 | | 30 | 5740 | Modesto KTRB | Max
Min
Av Max
Av Min
Avg | 104
50
95.7
56.0
75.8 | 99
51
91.4
57.1
74.2 | 95
50
87.2
53.3
70.2 | 92
43
74.7
49.4
62.0 | 82
31
68.4
41.3
54.9 | 67
25
53.8
39.2
46.5 | 63
20
52.4
30.7
41.6 | 73
37
67.7
46.7
57.2 | 77
31
66.6
40.5
53.6 | 78
34
67.9
44.8
56.4 | 95
38
79.0
51.3
65.2 | 101
49
86.4
54.4 | | 21 | 5893 | Mountain Rest FFS | Max
Min
Av Max
Av Min
Avg | 93
46
86.9
55.7
71.3 | 94
37
87.8
50.9
69.4 | M
M
M
M | 85
21
70.2
39.0
54.6 | M
M
M
M | M
M
M
M | M
53.5M
35.1M
44.3M | 74
33
60.1M
42.3M
51.2M | 63
23
53.0M
33.1M
43.0M | 60
24
50.7M
33.4M
42.0M | 84
38
66.4M
44.6M
55.5M | 89
38
75.
47.
61. | | 20 | 6230-50 | North Belridge | Max
Min
Av Max
Av Min
Avg | 105
63
100.2
69.4
84.8 | 105
62
97.8
67.7
82.8 | 104
57
92.0
62.3
77.2 | 94
46
78.7
53.1
65.9 | 83
31
68.3
44.6
56.4 | 74
20
59.3
38.2
48.8 | 70
18
55.9
31.7
43.8 | 79
43
67.1
47.7
57.4 | 80
35
67.2
42.8
55.0 | 80
38
67.7M
46.2M
57.0M | 95
49
80.8
57.8
69.3 | 103
54
87.
62.
74. | | 36 | | Oakhurst | Max
Min
Av Max
Av Min
Avg | 97
43
91.5
48.2
69.8 | 99
35
90.7
46.1
68.4 | 97
36
86.2
42.6
64.4 | 89
30
74.3
36.8
55.6 | 82
20
66.6
29.4
48.0 | 77
13
62.0
26.1
44.0 | 66
9
55.4
18.8
37.1 | 82
24
64.5
34.2
49.3 | 70
18
58.3
28.2
43.2 | 74
21
58.4
33.0
45.7 | 88
26
71.5
43.1
57.3 | 94
30
77.
41. | | 33 | 6893 | Pinecrest Strawberry | Max
Min
Av Max
Av Min
Avg | 86
42
81.2
48.3
64.8 | 88
38
80.3
48.1
64.2 | 84
38
76.5
44.1
60.3 | 80
26
68.3
37.2
52.8 | 82
20
59.9
31.9
45.9 | 68
12
54.6
27.9
41.2 | 68
8
53.5
23.4
38.4 | 24
56.4
31.8
44.1 | 60
12
49.4
25.0
37.2 | 64
12
46.2
26.5
36.4 | 80
24
63.8
36.6
50.2 | 84
32
67.
39.
53. | | 21 | 6895 | Pine Flat Oam | Max
Min
Av Max
Av Min
Avg | 106
57
100,2
61.8
81.0 | 106
51
98.6
59.8
79.2 | 102
49
93.5
56.9
75.2 | 94
42
78.2
48.9
63.6 | 84
28
69.4
40.6
55.0 | 77
21
62.0
34.6
48.3 | 69
18
56.7
27.6
42.2 | 81
41
67.0
45.8
56.4 | 77
32
64.6
40.7
52.6 | 75
33
64.9
43.8
54.3 | 94
40
79.6
52.5
66.0 | 104
45
88.
56.
72. | | 71 | 6902 | Pinehurst | Max
Min
Av Max
Av Min
Avg | 90
52
85.1
60.7
72.9 | 93
54
85.6
60.6
73.1 | 90
47
81.7
56.6
69.2 | 84
37
70.0M
48.8M
59.4M | 79
28
M
M | 70
23
M
M | 62
15
53.6M
31.8M
42.7M | 75
32
M
M | 62
22
M
N | 67
23
52.4M
32.8M
42.6M | 80
33
64.5M
47.9M
56.2M | 85
39
72.
50.
61. | TABLE A-3 MONTHLY TEMPERATURES (Continued) | 2 6 | Alpha
Order | | | | | | 100 | | | | | 1961 | | | | |-------------------|------------------|------------------------|---------------------------------------|------------------------------------|------------------------------------|-----------------------------------
-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---| | Drainage
Bosin | Order
*Number | Station Nome | | July | Aug | Sept | Oct. | Nov. | Dec. | Jon. | Feb. | Mar | Apr. | May | June | | 87 | | Placer GS | Max
Min
Av Max
Av Min
Avg | 94
44
89.9
48.6
69.2 | 100
38
90.7
46.9
68.8 | 96
36
88.5
43.9
66.2 | 88
30
76.1
36.7
56.4 | | | losed fo | r winter | season | | | 90 M
34 M
76.1M
43.3M
59.7M | | 86 | Section | Raymond 9 N | Max
Min
Av Max
Av Min
Avg | 104
54
97.3
59.5
78.4 | 104
49
96.1
57.5
76.8 | 99
48
91.1
54.4
72.8 | 88
38
76.2
46.8
61.5 | 84
25
68.7
37.6
53.2 | 76
21
61.6
33.0
47.3 | 66
19
56.4
27.3
41.8 | 79
36
67.4
42.0
54.7 | 73
40
62.4
34.1
48.2 | 75
27
63.1
39.5
51.3 | 90
36
76.4
49.9
63.1 | 100
40
86.4M
48.0M
67.2M | | co | 7268 | Rector | Max
Min
Av Max
Av Min
Avg | 103
50
97.7
60.5
79.1 | 102
50
95.9
59.3
77.6 | 100
49
91.7
54.5
73.1 | 92
41
78.5
47.4
63.0 | 82
28
69.4
39.4
54.4 | 75
20
59.9
33.6
46.8 | 66
18
56.4
28.0
42.2 | 78
38
67.0
46.4
56.7 | 78
31
66.0
40.3
53.1 | 80
36
67.2
45.5
56.4 | 96
44
82.4
54.7
69.4 | 104
47
87.8
57.1
72.4 | | C0 | 7360 | Riverdale | Max
Min
Av Max
Av Min
Avg | 104
55
98.9
60.0
79.4 | 105
53
96.2
59.5
77.8 | 100
45
92.2
53.6
72.9 | 90
42
78.4
47.5
63.0 | 86
27
70.6
38.7
54.7 | 75
19
59.1
33.7
46.4 | 68
15
56.7
28.1
42.4 | 75
33
67.0
43.9
55.4 | 79
33
67.6
39.9
53.7 | 80
34
68.1
43.2
55.6 | 96
41
81.2
52.3
66.7 | 105
46
89.1
55.9
72.5 | | C0 | 7800-02 | Sanger 1 NE | Max
Min
Av Max
Av Min
Avg | 103
57
98.6
59.6
79.1 | 105
52
96.6
58.4
77.5 | 101
49
92.4
54.9
73.6 | 91
43
76.0
49.5
62.8 | 81
29
66.8
41.7
54.3 | 73
24
59.2
37.0
48.1 | 65
20
56.2
30.4
43.3 | 77
41
66.6
48.1
57.4 | 78
35
66.6
42.2
54.4 | 80
36
65.2
46.5
55.8 | 97
44
81.3
54.6
67.9 | 102
48
88.2
57.0
72.6 | | C0 | 8375-50 | South Belridge | Max
Min
Av Max
Av Min
Avg | 105
61
99.7
66.1
82.9 | 105
58
97.5
64.0
80.8 | 103
52
92.1
58.5
75.3 | 92
43
77.7
49.9
63.8 | 84
28
68.7
40.7
54.7 | 74
16
59.4
34.5
47.0 | 71
13
56.5
27.6
42.1 | 80
37
67.2
43.6
55.4 | 78
31
67.4
39.6
53.5 | 81
31
70.8
43.5
57.2 | 96
44
81.7
54.2
67.9 | 104
50
85.9
55.8
70.8 | | | 8407-11 | South Lake Farms Ndq | Max
Min
Av Max
Av Min
Avg | 104
55
99.1
60.5 | 105
49
96.6
59.3
78.0 | 101
48
91.1
55.1
73.1 | 92
40
77.7
47.7
62.7 | 83
24
69.1
38.1
53.6 | 72
13
59.1
32.6
45.8 | 67
10
55.9
25.5
40.7 | 73
38
65.7
46.2
56.0 | 79
31
65.8
38.2
52.0 | 78
29
68.2
42.0
55.1 | 95
37
81.6
52.1
66.8 | 104
47
87.8
56.3
72.0 | | В3 | 8450 | Spring Gap Forebay | Max
Min
Av Max
Av Min
Avg | 88
42
M
M | 90
40
83.1
48.9
66.0 | 86
40
M
M | 82
28
65.4M
38.7M
52.0M | 72
24
M
M | 68
20
M
M | 58
9
M
M | 68
42
M
M | 60
12
47.6M
24.0M
35.8M | 64
16
46.7M
27.4M
37.0M | 78
24
62.3M
38.1M
50.2M | 82
32
M
M | | 183 | 8499 | Stanislaus Power Nouse | Max
Min
Av Max
Av Min
Avg | 102
52
97.7
58.5
78.1 | 105
47
96.3
56.1
76.2 | 100
42
92.9
52.6
72.8 | 95
35
77.8
45.1
61.4 | 86
25
67.7
38.3
53.0 | 74
20
60.7
33.8
47.2 | M
M
M | 79
30
66.4M
39.7M
53.0M | 72
24
61.9
32.4
47.1 | 74
26
60.2
37.0
48.6 | 92
33
75.0M
46.7M
60.8M | 96
42
82.2
50.3
66.2 | | C 3 | 8620 | Success Dam | Max
Min
Av Max
Av Min
Avg | 103
59
97.8
64.2
81.0 | 103
56
95.7
63.6
79.6 | 100
52
91.4
60.6
76.0 | 94
45
78.3
53.1
65.7 | 84
33
69.3
45.6
57.5 | 75
23
62.3
37.9
50.1 | 67
23
57.5
31.9
44.7 | 79
43
67.2
48.2
57.7 | 78
36
65.8
43.4
54.6 | 77
36
65.7
45.8
55.7 | 97
42
81.3
54.6
67.9 | 103
47
86.8
58.6
72.7 | | C7 | 8755 | Taft KTKR Radio | Max
Min
Av Max
Av Min
Avg | 102
54
97.6
64.9
81.2 | 103
55
95.8
61.9
78.8 | 100
51
89.6
58.4
74.0 | 92
40
76.2
48.6
62.4 | 83
28
67.6M
42.1M
54.9M | 72
22
60.0
34.2
47.1 | 70
17
55.3
30.2
42.8 | 81
41
66.5
46.6
56.6 | 79
32
65.2
42.4
53.8 | 78
29
63.2
43.1
53.2 | 94
47
79.6
55.0
67.3 | 102
52
85.9M
59.9M
72.9M | | C2 | 8868 | Terminus Dam | Max
Mi
Av Max
Av Min
Avg | 104
58
97.8
68.7
83.2 | 102
58
95.9
66.6
81.2 | 99
54
90.8
63.3
77.0 | 92
47
76.5
53.5
65.0 | 82
35
68.1
46.7
57.4 | 75
27
60.5
39.9
50.2 | 66
24
55.4
32.5
44.0 | 77
44
65.9
49.1
57.5 | 77
32
64.3
43.4
53.8 | 76
36
63.9
45.6
54.7 | 94
44
79.5
55.9
67.7 | 102
48
86.0
59.3
72.6 | | c0 | 9006 | Tranquillity Glotz | Max
Min
Av Max
Av Min
Avg | | | | | | RB
RB
RB
RB | 62
14
52.4
24.8
38.6 | 74
35
65.1
43.6
54.4 | 77
28
63.8
36.8
50.3 | 78
28
68.1
40.9
54.5 | 94
42
78.4
51.1
64.7 | 100
49
85.5
56.1
70.8 | | c1 | 9025 | Trimmer RS | Max
Min
Av Max
Av Min
Avg | 102
58
93.6
61.7
77.6 | 104
57
95.7
62.7
79.2 | 100
51
91.0
57.9
74.4 | 89
39
75.5
47.5
61.5 | M
M
M | M
M
M | M
M
M
M | M
M
M
M | M
M
M | M
M
M
M | M
M
M
M | 102
47
85.4
56.0
70.7 | | CO. | 9051 | Tulare | Max
Min
Av Max
Av Min
Avg | 107
60
102.6
63.5
83.1 | 107
56
100.3
61.5
80.9 | 103
51
95.7
58.1
76.9 | 95
43
82.1
51.0
66.6 | 89
30
72.5
42.4
57.5 | 74
22
61.1
36.5
48.8 | 70
18
59.3
30.1
44.7 | 81
34
68.8
47.1
58.0 | 80
34
69.0
42.8
55.9 | 84
35
71.0
46.3
58.6 | 100
46
85.4
56.4
70.9 | 108
51
91.4
59.6
75.5 | | c - | 9145 | US Cotton Field Sta | Max
Min
Av Max
Av Min
Avg | 103
60
98.5
65.3
81.9 | 102
58
95.2
62.8
79.0 | 99
52
90.4
58.4
74.4 | 92
41
78.4
49.6
64.0 | 83
29
68.3
41.6
55.0 | 74
22
59.0
35.4
47.2 | 69
17
55.9
29.4
42.7 | 79
39
66.6
46.1
56.4 | 80
33
67.8
42.2
55.0 | 81
37
68.3
46.1
57.2 | 95
43
81.6
54.7
68.1 | 104
51
87.7
59.3
73.5 | | c. | 9304 | Vestal | Max
Min
Av Max
Av Min
Avg | 104
60
99.2
67.2
83.2 | 105
58
96.7
65.4
81.0 | 100
54
91.2
61.1
76.2 | 92
41
78.8
52.8
65.8 | 83
27
69.8M
43.0M
56.4M | 75
18
62.8M
38.3M
50.6M | 69
15
58.4M
30.8M
44.6M | 79
43 M
68.6M
49.6M
59.1M | 79
38
63.6M
40.6M
52.1M | 80
36
68.5M
47.3M
57.9M | 98
43
84.1M
58.2M
71.2M | 104
52
89.1M
63.1M
76.1M | | BO | 95 65 | Westley | Max
Min
Av Max
Av Min
Avg | 101
50
96.6
55.0
75.8 | 100
49
93.2
54.8
74.0 | 97
47
M
M | 92
41
77.7
48.7
63.2 | 81
30
M
M | 68
24
M
M | 62
20
52.9M
29.2M
41.1M | 75
36
68.1M
46.9M
57.5M | 72
32
65.6M
40.0M | 77
32
65.0M
43.3M
54.2M | 94
37
77.9M
48.8M
63.4M | 100
47
85.6M
53.5M
69.5M | | C1 | 9749 | Wishon Res | Max
Min
Av Max
Av Min
Avg | 83
33
M
M | 87
31
M
M | 82
36
M
M | 75
27
63.8M
36.1M
50.0M | 71
16
55.2M
30.4M
42.8M | 64
13
M
M | 57
12
M
M | 42
22
52.8M
30.8M
41.8M | 55
7
42.9M
21.4M
32.2M | 58
7
42.5M
22.0M
32.2M | 76
30
60.6M
36.6M
48.6M | 78
31
63.0M
40.3M
51.6M | | C4 | 9805 | Woody | Max
Min
Av Max
Av Min
Avg | 100
53
95.8
59.7
77.8 | 101
51
93.9
59.3
76.6 | 97
43
88.6
54.7
71.6 | 92
38
74.5
45.5
60.0 | 82
23
66.0
38.3
52.2 | 74
22
62.5
36.9
49.7 | 65
17
56.7
31.4
44.1 | 79
37
64.4
44.4
54.4 | 74
30
61.9
37.4
49.6 | 72
29
60.6
40.0
50.3 | 93
34
76.8
48.5
62.6 | 101
35
84.4M
49.7M
67.0M | TABLE A-4 MONTHLY SUMMARY OF EVAPORATION STATION DATA | ş | Alpha | | | | | | | | | | | | | | | | | |-----|-----------------|-------------------------|--|---------------------------------------|--------------------------------------
---------------------------------------|--------------------------------------|--|-------------------------------------|--------------------------------------|--|--|--|---------------------------------------|---------------------------------|--|--| | Bos | Order
Number | Station Name | | July | Aug. | Sept | Oct | Nov. | Dec. | Jan. | Feb. | Mor. | Apr | May | June | | | | 0 | 2013 | Corcoran El Rico 1 | Evap
Procip
Wind
Av Max
Av Min | 14."-
.00
1905
96.4
56.2 | 12.27
.00
1865
93.6
55.6 | 8.96
.00
1520
88.8
52.0 | 98
.06
1640E
76.0
45.3 | 3.6.
.00
1265
70.2
38.9 | 31
.09
1210
60.6M
35.1M | .36
1308E
55.1
28.7 | 1.52E
2.24
1462E
67.6
46.6 | 4.37E
1.04
2045E
66.6
39.5 | 3.97E
2.22
1780E
68.5
43.2 | 8.36
.21
1840
81.7
51.3 | 10.69
1955
88.3
54.6 | | | | :6 | 2222 | Cummings Valley | Evap
Precip
Wind
Av Max
Av Min | 12.74
.00
2091
87.2
45.9 | 11.25
.00
1986
8B.0
44.8 | 8.66
.00
1732
85.4
40.3 | 5.60
.33
1580
74.3
33.3 | 3.40
.01
1819
66.0
27.3 | 2.92
.00
3256
61.5
29.3 | 4.62E
.00
3747
57.4
23.5 | 4.15
2.71
2198
63.6
9 | 4.64
1.87
2900
56.4
30.2 | 5.50
2.30
2600
56.0
31.0 | 6.69
.40
1950
70.0
40.0 | 8.9
.7
188
72.
43. | | | | 14 | 24~3 | Oon Pedro Reservoir | Evap
Precip
Wind
Av Max
Av Min | 15.10
.16
-
97.5
63.7 | 13.13
.00
.95.3
61.7 | 9.82
.05
-
90.6
57.3 | 6.20
1.68
-
77.7
50.2 | 2.B1
.49
_
69.3
42.5 | 2.46
3.37
-
59.2
38.1 | 1.72E
3.97
-
54.5
30.2 | 2.16E
3.17
66.5
42.9 | 4.44
3.34
62.6
37.7 | 4.09
4.22
-
63.6
41.8 | 6.91
.94
_
77.1
49.7 | 10.7
.1
.86.
53. | | | | 25 | 4303 | Isabella Oam | Evap
Prclip
Wind
Av Max
Av Min | 13.29
.00
1860
96.3
63.6 | 12.63
.00
1881
96.9
63.1 | 9.41
.00
1658
92.8
56.3 | 5.66
.03
1592
80.0
46.9 | 3.09
.00
1405
68.8
40.2 | 2.68
.03
1439
63.6
31.9 | 2.82
1.52
1885
58.8
28.6 | 2.58
3.06
2075
64.5
41.0 | 4.55
2.06
2753
60.6
37.0 | 4.25
1.07
2713
60.4
38.8 | 8.23
.13
2751
75.7
51.2 | 10.5
.7
241
80.
55. | | | | 10 | 5117 | Los Banos Field Sta | Evap
Precip
Wind
Av Max
Av Min | 16.94
.00
3840
96.1
58.1 | 13.11
.00
3398
94.0
57.0 | 9.17
.00
2819
B9.0
52.0 | 6.07
.14
2252
77.0
41.0 | 2.79
.12
1236
6B.0
41.0 | .85
1.67
526
57.0
32.0 | 1.25
2.13
1235
54.0
28.0 | 2.14
2.42
1478
66.0
46.0 | 4.33
1.28
2784
63.0
39.0 | 5.58
1.69
2168
65.0
43.0 | 10.25
0.22
3447
78.0
51.0 | 13.6
.0
514
86.
56. | | | | 21 | 6895 | Pine Flat Dam | Evap
Precip
Wind
Av Max
Av Min | 12.24
.01
.852
100.2
61.8 | 11.22
T
974
98.6
59.8 | 8.59
.06
903
93.5
56.9 | 4.35
1.32
873
78.2
48.9 | 2.32
.05
703
69.4
40.6 | 1.57
.19
768
62.0
34.6 | 1.41
4.06
913
56.7
27.6 | 1.82
4.57
760
67.0
45.8 | 3.52
3.49
1020
64.6
40.7 | 3.38
4.53
809
64.9
43.8 | 5.91
.47
511
79.6
52.5 | 9.4
.0
83
88.
56. | | | | 36 | 7273 | Raymond 9N | Evap
Precip
Wind
Av Max
Av Min | 12.00
.20
811
97.3
59.5 | 10.92
.00
781
96.1
57.5 | 8.85
.05
660
91.1
54.4 | 5.67
1.95
809
76.2
46.8 | 3.60
.17
347
68.7
37.6 | 2.19
2.02
321
61.6
33.0 | 1.20
6.26
445
56.4
27.3 | 2.78
3.89
433
67.4
42.0 | 3.67
5.15
378
62.4
34.1 | 2.96
6.06
175
63.1
39.5 | 4.77
.81
254
76.4
49.9 | 8.5
50
86.
48. | | | | :3 | 8620 | Success Dam | Evap
Precip
Wind
Av Max
Av Min | 14.75
.11
1511
97.8
64.2 | 13.35
.00
1644
95.7
63.6 | 10.32
.07
1409
91.4
60.6 | 6.23
.29
1544
78.3
53.1 | 3.59
.00
1450
69.3
45.6 | 2.32
.00
1487
62.3
37.9 | 2.31
.81
1682
57.5
31.9 | 2.22
2.83
1210
67.2
48.2 | 4.54
2.33
1577
65.B
43.4 | 4.84
2.92
1026E
65.7
45.8 | 8.71
.23
1600E
81.3
54.6 | 11.4
17.
86.
58. | | | | :7 | 8755 | Taft KTKR | Evap
Precip
Wind
Ay Max
Av Mln | 16.02
T
1110
97.6
64.9 | 14.04
.00
800
95.8
61.9 | 10.17
T
630
B9.6
58.4 | 5.83
.10
630
76.2
48.6 | 3.5B
.00
540
67.6M
42.1M | 2.40
T
440
60.0
34.2 | 2.52
.01
670
55.3
30.2 | 3.23
.86
700
66.5
46.6 | 5.79
.99
1420
65.2
42.4 | 6.25
.83
1720
63.2M
43.1M | 10.14
1.14
1380
79.6
55.0 | 13.:
160
85.
59. | | | | 2 | 8868 | Terminus Oam | Evap
Precip
Wind
Av Max
Av Min | T
97.8
68.7 | RB
.00
RB
95.9
66.6 | 9.08M
.14
1726M
90.8
63.3 | 6.39
.53
2103
76.5
53.5 | 3.92
T
1950
68.1
46.7 | 2.81
.04
2168
60.5
39.9 | 2.82
2.05
2398
55.4
32.5 | 2.53
3.21
1654
65.9
49.1 | 4.72
2.95
2100
64.3
43.4 | 4.52
4.09
1696
63.9
45.6 | 7.66
.27
1032
79.5
55.9 | 11.5
146
86
59 | | | | 00 | 9145 | U. S. Cotton Field Sta. | Evap
Precip
Wind
Av Max
Av Min | 13.87E
.00
1263
98.5
65.3 | 11.47
.00
1066
95.2
62.8 | 8.74E
.05
934
90.4
58.4 | 5.23E
.04
1074
78.4
49.6 | 2.4 ⁻
.00
886
68.3
41.6 | 1.18E
.02
904
59.0
35.4 | 2.03E
.17
1181
55.9
29.4 | 2.21E
2.14
1211
66.6
46.1 | 5.57
1.49
2322E
67.8
42.2 | 6.07E
1.40
2~09
68.3
46.1 | 10.62E
.56
3083
81.6
54.7 | 208
87
59 | | | | 30 | 9565 | Westley | Evap
Precip
Wind | 9.50 | 6.93 | 5.28E | 3.35E | 1.86 | .86E | .92E
2.09 | 1.86 | 3.62E
1.87 | 3.49E
1.96 | 6.57 | 8. | | | | | | | Av Max
Av Min | 96.6 | 93.2
54.8 | M
M | 77.7 | M | M
M | 52.9M
29.2M | 68.1M
46.9M | 65.6M
40.0M | 65.0M | | | | | APPENDIX B SURFACE WATER FLOW ALS OR 20 B* ## TABLE OF CONTENTS | | PAGE | |---|---| | ALPHABETICAL IND | EX TO TABLES | | DRAINAGE BASIN I | NDEX TO DAILY MEAN DISCHARGE TABLES | | Definition | of Terms | | Lakes and R
Daily Mean
Daily Mean | ABULAR DATA B- 6 eservoirs B- 6 Discharge B- 6 Gage Height B- 6 B- 6 | | | LIST OF TABLES | | TABLE | | | B-1 | Gaging Station Additions and Discontinuations and Revisions to Previously Published Reports | | B-2 | Daily Mean DischargeInflow to Millerton Lake | | B-3 | Daily Content Millerton Lake | | B-4 to B-58 | Daily Mean Discharge | | B-59 to B-85 | Daily Mean Gage Height | | B-86 to B-93 | Diversions | | B-94 | Diversions and Acreage IrrigatedEast Side Canals and Irrigation Districts B-10 | | B-95 | Deliveries from Central Valley Project Canals | ## LIST OF PLATES (Bound at end of volume) ## PLATE B-1 Location of Surface Water Measurement Stations ## ALPHABETICAL INDEX TO TABLES PAGE DAILY MEAN DISCHARGE, DAILY MEAN GAGE HEIGHT AND CREST STAGES | | | PAGE | |---|--|---| | | Daily
Mean
Discharge | Daily Mean
Gage Height
and | | Bear Creek below Bear Reservoir near Cathay | B-30
B-29
B-17
B-41
B-32
B-31
B-59
B-23
B-23
B-23
B-11
B-14
B-15
B-45
B-15
B-56
B-56
B-66 | Crest Stages B-71 B-86 | | Kein River Rear Bakersiteid Kings River, South Fork below Empire Weir #2 Mariposa Bypass near Crane Ranch Mariposa Creek near Cathay Mariposa Creek near Cathay Mariposa Creek near Cathay, Revised below Mariposa Reservoir Maxwell Creek at Coulterville Maxwell Creek at Coulterville, Revised Merced River at Cressey below Snelling near Livingston North Fork near Coulterville Miami Creek North Fork near Coulterville | B-68
B-52
B-27
B-27
B-11
B-26
B-36
B-11
B-38
B-37
B-37
B-19
B-12
B-13 | B-76
B-75
B-77 | | Millerton Lake Infilow to
Daily Content Orestimba Creek near Crows Landing Owens Creek below Owens Reservoir Panoche Drain merr Dos Palos Poplar Ditch near Porterville Porter Slough at Porterville Near Porterville Porter Slough at Porterville Porter Slough at Porterville Rhodes-Fine Ditch near Porterville San Joaquin River at Crows Landing Bridge Near Dos Palos Near Dos Palos Near Near Near Dos Palos Near Near Near Dos Palos Near Near Near Near Near Near Near Near | B-13
B-39
B-28
B-34
B-64
B-60
B-62
B-61
B-66
B-20
B-47
B-16
B-33
B-51
B-11
B-50
B-48
B-59
B-24
B-59
B-44
B-42
B-42
B-42
B-43
B-42
B-43
B-46
B-67 | B-79 B-74 B-70 B-81 B-89 B-78 B-80 B-72 B-73 B-95 B-92 B-91 B-96 B-92 B-91 B-69 B-87 B-88 | | | | PAGE | | DIVERSIONS Deliveries from Central Valley Project Canals Dry Creek East Side Canals and Irrigation Districts Merced River San Joaquin River | | B-106
B-102
B-105
B-100 | | Vernalis to Fremont Ford Bridge Fremont Ford Bridge to Gravelly Ford Gravelly Ford to Friant Dam Stanislaus River Tule River Tuloumne River | | | ## ALPHABETICAL INDEX TO TABLES | | | PAGE | |--------------|--|--| | | Millerton Lake, Daily Content | B-12
B-13
B-69 | | GAGIN | NG STATION ADDITIONS AND DISCONTINUATIONS AND REVISIONS TO PREVIOUSLY PUBLISHED REPORTS | B-11 | | | DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES | | | | SAN JOAQUIN RIVER BASIN | | | Can 1 | | | | | Daily Content Millerton Lake San Joaquin River at Whitehouse Delta-Mendota Canal near Tracy. Delta-Mendota Canal to Mendota Pool San Joaquin River near Mendota | B-12
B-13
B-11
B-14
B-15
B-16 | | | Fresno River Big Creek Diversion near Fish Camp | B-17
B-18
B-19
B-20 | | | San Joaquin River near Dos Palos Chowchilla River East Fork Chowchilla River near Ahwahnee West Fork Chowchilla River near Mariposa Middle Fork Chowchilla River near Mipinnawassee Striped Rock Creek near Raymond Mariposa Creek | B-21
B-22
B-23
B-24 | | | Mariposa Creek near Cathay Mariposa Creek near Cathay, Revised Mariposa Creek below Mariposa Reservoir Mariposa Bypas near Crane Ranch Owens Creek below Owens Reservoir Bear Creek | B-25
B-11
B-26
B-27
B-28 | | | Burns Creek at Hornitos | B-29
B-30
B-31 | | | Burns Creek below Burns Reservoir San Joaquin River near Stevinson Panoche Drain near Dos Palos Merced River | B-32
B-33
B-34 | | | North Fork Merced River near Coulterville Maxwell Creek at Coulterville. Merced River below Snelling Merced River at Cressey Orestimba Creek near Crows Landing San Joaquin River at Grayson Burkhardt Drain near Grayson | B-35
B-36
B-11
B-37
B-38
B-39
B-40
B-41 | | | Tuolumme River Tuolumme River at La Grange Bridge Tuolumme River at Roberts Ferry Bridge Tuolumme River at Hickman Bridge Tuolumne River at Hickman Bridge Dry Creek near Modesto Tuolumme River at Tuolumme City San Joaquin River at Hetch Hetchy Aqueduct Crossing | B-42
B-43
B-44
B-45
B-46
B-47 | | | Stanislaus River Stanislaus River at Orange Blossom Bridge Stanislaus River at Riverbank Stanislaus River at Koetitz Ranch San Joaquin River near Vernalis | 8-48
B-49
B-50
B-51 | | | TULARE LAKE BASIN | | | Kings | s River | | | Kawea | South Fork Kings River below Empire Weir #2 | B-52 | | Friar | Cross Creek below Lakeland Canal #2
Elk Bayou near Tulare | B-53
B-54 | | | Delivery to Tule River | B-55
B-56 | | | River North Fork Tule River at Springville | B-57
B-58 | | | River Diversions Campbell Moreland Ditch above Porterville Porter Slough at Porterville Porter Slough Ditch at Porterville Porter Slough near Porterville Vandalia Ditch near Porterville Poplar Ditch near Porterville Hubbs-Miner Ditch at Porterville Hubbs-Miner Ditch near Porterville Rhodes-Fine Ditch pear Porterville | B-59
B-60
B-61
B-62
B-63
B-64
B-65
B-66 | | Deer
Kern | Woods-Central Ditch near Porterville | B-67
B-11
B-68 | #### INTRODUCTION This appendix presents surface water data for the Water Year 1963 which is from October 1, 1962, to September 30, 1963. The data presented in this appendix consists of daily mean discharge, station locations, daily mean gage heights, and diversion quantities. Stream gaging station descriptions presented show the historic maximum discharge of record and the maximum discharge for the report year. Locations of the gaging stations and other important data on the length of record and datum of gage are also presented. Quantities of daily mean discharge for most stations shown are computed by an electronic computer. The gage height data are fed into the computer simultaneously with rating and shift correction data. Daily mean discharge, total monthly acre-feet, and instantaneous maximum and minimum discharge are computed. The gage height data are extracted from the standard recorder chart by a semiautomatic chart-reading machine and put into machine language. The record for those stations affected by backwater conditions is not adaptable to computation by machine methods and is computed manually by standard methods. Daily mean stage tables are presented for key stations on the major streams in the San Joaquin Valley. These daily mean stages are computed by the electronic computer, as mentioned above. The gage heights are computed to the nearest one-hundredth of a foot, and the major crests for the year are shown. Quantities of water diverted for use are shown as monthly total acre-feet and total acre-feet diverted for a certain reach of a stream. #### Definition of Terms A list of definition of terms as used herein follows: <u>Second-foot or cubic foot per second</u> is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second. Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons. <u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide. <u>Unimpaired runoff</u> is the flow that would occur naturally at a point in a stream if there were: (1) no upstream controls such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) no changes in ground water storage resulting from development. Unimpaired flow is computed from measured runoff by allowing for man-made changes in natural conditions. <u>Water Year</u> is the 12-month period from October 1 of any year through September 30 of the subsequent year and is designated by the calendar year in which it ends. #### Surface Water Gaging Station Designation The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main river basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the river basin are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, indicates that the station is a surface gravity diversion station. Each station is listed by name as well as by machine index number. #### EXPLANATION OF TABULAR DATA The tabular data presented in this appendix are divided into the general categories of daily mean discharge, daily mean stage, and monthly diversions. The area to which these data pertain is shown as Area 4 on page iii and on Plate B-1. Table B-1 presents gaging station additions and discontinuations; it also presents revisions to previously published reports. #### Lakes and Reservoirs Three types of data are presented for lakes and reservoirs. Table B-2 presents inflow to Millerton Lake. Table B-3 presents the daily content of Millerton Lake in thousands of acre-feet. Table B-59 presents daily mean gage height of Tulare Lake. #### Daily Mean Discharge Presented in Tables B-4 through B-58 are records of daily mean discharge, gaging station location, period of record, maximum flow of record, maximum and minimum flow for the season, as well as the total flow in acre-feet for the 1962-63 water year. The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named from the stream and the nearest post office (Merced River at Cressy) or well-known landmark (San Joaquin River at Fremont Ford Bridge). Each stream gaging station has a stage-discharge relationship or rating developed. The rating gives the flow in second-feet for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest measurement on the rating, the computed daily mean discharges from the electronic computer are shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed at the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge. All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are
affected by inherent inaccuracies in the procedures and equipment used, it becomes necessary to establish limits of accuracy for which the data are reported. The following is a listing of significant figures used in reporting streamflow data: 1. Daily flows - second-feet 0.0 - 9.9 Tenths 10 - 99 2 significant figures 100 - up 3 significant figures 2. Means - second-feet 0.0 - 99.9 Tenths 100 - 999 3 significant figures 1000 - above 4 significant figures The water year totals are reported to a maximum of four significant figures. #### Daily Mean Gage Heights Presented in Table B-59 through B-85 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1962-63 water year. At the bottom of the stage tables are shown the major river crests occurring for the 1962-63 water year. The table also shows the location of the station, maximum gage height of record, period of record, and datum of gage. The elevation of water surface at the gaging station is obtained by adding the gage height reading to the elevation of the gage datum presented in each table. Gage height for stage tables are computed from recorder charts and are reported to one-hundredth of a foot. Of the 26 stations for which daily mean gage heights are presented in this report, 13 have computed daily mean discharge. These data are included in the streamflow tables. #### Diversions Presented in Tables B-86 through B-95 are the amounts of water diverted for irrigation during the period October 1, 1962 through September 30, 1963. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "Number and Size of Pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations. Because of the intermittent operation of most diversion facilities, the monthly diversion values are reported in acre-feet to three significant figures. The totals for individual water users and stream reaches are reported to four significant figures. # GAGING STATION ADDITIONS AND DISCONTINUATIONS AND ## REVISIONS TO PREVIOUSLY PUBLISHED REPORTS ## *ADDITIONAL STATIONS Delta Mendota Canal to Mendota Pool San Joaquin River below Friant Hubbs-Miner Ditch at Porterville Rhodes-Fine Ditch near Porterville Woods-Central Ditch near Porterville Poplar Ditch near Porterville Vandalia Ditch near Porterville Campbell-Moreland Ditch above Porterville Porter Slough Ditch at Porterville ## DISCONTINUED STATIONS None ## PUBLICATION DISCONTINUED Deer Creek near Terra Bella Irrigation District San Joaquin River at Whitehouse ## REVISED DATA | אואע עשט | | Maximum
Discharge
During Year | Maximum
Discharge
Of Record | |-------------------------------|--------------------------------------|-------------------------------------|--------------------------------------| | Mariposa Creek near Cathay | 1958
1959
1960
1961
1962 | 2114
1044
4620 | 7180
7180
7180
7180
7180 | | Maxwell Creek at Coulterville | 1959
1960
1961
1962 | 1720
1550 | 740
1720
1720
1720 | ^{*}Installed prior to 1963. Records not published in previous reports. # DAILY MEAN DISCHARGE IN SECOND FEET INFLOW TO MILLERTON LAKE WATER STATION NO 871121 1963 | DAY | ост | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------| | - 1 | 1760 | 1270 | 648 | 557 | 13416 | 2054 | 3628 | 3963 | 6332 | 4099 | 2570 | 2651 | 1 | | 2 | 1285 | 1527 | 731 | 874 | 4193 | 1492 | 3004 | 3966 | 6875 | 4263 | 2586 | 2554 | 2 | | 3 | 1358 | 947 | 639 | 606 | 3688 | 1626 | 2752 | 3901 | 7399 | 4460 | 2623 | 3077 | 5 | | 4 | 1365 | 785 | 593 | 578 | 3555 | 1437 | 2955 | 3864 | 5883 | 4213 | 2605 | 2830 | 4 | | 5 | 1301 | 1061 | 578 | 577 | 3575 | 1627 | 3446 | 3893 | 5631 | 4052 | 2587 | 2875 | 5 | | 6 | 1024 | 1566 | 519 | 340 | 3521 | 1632 | 3376 | 3809 | 5278 | 4427 | 2614 | 2827 | 6 | | 7 | 1148 | 1611 | 477 | 330 | 3430 | 1631 | 3909 | 3948 | 4891 | 4607 | 2637 | 2445 | 7 | | 8 | 1191 | 1453 | 566 | 388 | 3303 | 1395 | 3733 | 3914 | 4839 | 5017 | 2637 | 2367 | 8 | | 9 | 1534 | 1453 | 538 | 435 | 3643 | 1430 | 3582 | 4630 | 5142 | 5332 | 2634 | 2674 | 9 | | 10 | 1204 | 649 | 651 | 604 | 4419 | 1520 | 3522 | 3986 | 5145 | 5057 | 2683 | 2898 | 10 | | - 11 | 1178 | 298 | 644 | 577 | 3777 | 1364 | 3481 | 4046 | 4667 | 5008 | 2406 | 2797 | - 10 | | 12 | 1671 | 298 | 504 | 742 | 3507 | 1550 | 3513 | 3851 | 4420 | 5341 | 2667 | 2772 | 12 | | 1.3 | 1246 | 688 | 587 | 637 | 3765 | 1624 | 3493 | 3827 | 4288 | 5447 | 2761 | 2844 | 13 | | 14 | 1407 | 756 | 363 | 1166 | 3678 | 1669 | 4043 | 3885 | 4406 | 5294 | 2637 | 2469 | 14 | | 15 | 913 | 787 | 593 | 507 | 3543 | 1582 | 4306 | 3737 | 5326 | 4969 | 2680 | 2515 | 15 | | 16 | 1519 | 754 | 467 | 586 | 3524 | 1942 | 3841 | 3754 | 7352 | 4762 | 2812 | 2847 | 16 | | 17 | 1227 | 502 | 686 | 994 | 3540 | 1871 | 4032 | 3793 | 7596 | 4693 | 2646 | 2848 | 17 | | 18 | 1528 | 521 | 625 | 764 | 3528 | 1670 | 3818 | 3725 | 8209 | 4188 | 2523 | 3013 | 18 | | 19 | 1534 | 1143 | 640 | 398 | 3496 | 1618 | 3772 | 3760 | 7543 | 3984 | 2635 | 3065 | 19 | | 20 | 820 | 1341 | 542 | 82 | 3366 | 1769 | 4080 | 3713 | 7812 | 3564 | 2565 | 3019 | 2.0 | | 2 1 | 760 | 1284 | 486 | 416 | 3469 | 1683 | 4435 | 3709 | 7265 | 3539 | 2793 | 2575 | 2 1 | | 22 | 1421 | 887 | 599 | 473 | 3385 | 1769 | 4106 | 3641 | 6093 | 3617 | 2659 | 2540 | 2.2 | | 2.3 | 1136 | 1008 | 532 | 317 | 3372 | 1828 | 4056 | 3785 | 5140 | 3482 | 2750 | 2946 | 2.3 | | 24 | 1163 | 898 | 750 | 698 | 3399 | 1987 | 3882 | 3803 | 4680 | 3438 | 2728 | 2824 | 2.4 | | 25 | 1628 | 730 | 76 | 442 | 3365 | 1824 | 3912 | 3790 | 4096 | 3455 | 2569 | 2455 | 2.5 | | 26 | 1549 | 1006 | 488 | 317 | 3321 | 1787 | 4312 | 3745 | 4465 | 3397 | 2813 | 2421 | 26 | | 27 | 961 | 703 | 711 | 201 | 3385 | 1983 | 4049 | 4215 | 5123 | 2488 | 2752 | 2549 | 27 | | 28 | 387 a | 671 | 683 | 360 | 3318 | 3489 | 3958b | 6739 | 5160 | 2688 | 2689 | 1865 | 2.8 | | 29 | 1030 | 678 | 699 | 649 | | 3798 | 3880 | 6862 | 4386 | 2583 | 2766 | 1253 | 29 | | 30 | 1082 | 697 | 419 | 2211 | | 2717 | 3863 | 6426 | 3620 | 2506 | 2479 | 1609 | 3.0 | | 31 | 1131 | | 569 | 11121 | | 2618 | | 6783 | | 2640 | 2510 | | 3 1 | | MEAN | 1241 | 932 | 568 | 934 | 3910 | 1871 | 3758 | 4241 | 5635 | 4084 | 2646 | 2614 | MEAN | | MAX | 1760 | 1611 | 750 | 11121 | 13416 | 3798 | 4435 | 6862 | 8209 | 5447 | 2813 | 3077 | MAX | | MIN | 387 | 298 | 76 | 82 | 3318 | 1364 | 2752 | 3641 | 3620 | 2506 | 2406 | 1253 | MIN. | | AC.FT | 76318 | 55482 | 34915 | 57416 | 217152 | 115014 | 223287 | 260753 | 335330 | 251127 | 162676 | 155552 | AC.FT. | | | | | 1 | 1 | | 1 | 1 | 1 | 1 | | 1-020.0 | 1 | | E - Estimoted NR - No Record - Oischorge measurement or observation of no flow mode on this day t - E and # a - 25 hr. day b - 23 hr. day | MEAN MAXIMUM | | | | | | MINIMUM | | | | | | | | |--------------|-----------|---------|----|-----|------|---------|----------|---------|----|-----|------|--|--| | DISCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | 0 | ISCHARGE | GAGE HT | MO | DAY | TIME | | | | | | | | | | | | | | | | | | WATER YEAR SUMMARY TOTAL ACRE - FEET 1945022 8 | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM OF GAGE | | | | |---------|----------|---|--------------|-------------------|-----------|--------------------|-------------|-------------|------|---------------|------|-------|--| | Ì | LATITUDE | E LONGITUDE 1/4 SEC. T. B.R. OF RECORD DISCHARGE GAGE H | | DISCHARGE GAGE HE | | GAGE HEIGHT PERIOD | | 2ERO
ON | REF | | | | | | CATHODE | | LUNGITUUE | M 0.8.8M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | | 37 00 00 | 119 42 10 | SW 5 11S 21E | | | | OCT 41-DATE | OCT 41-DATE | 1941 | | 0.00 | USCGS | | Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dam site if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Feriod of record for computed inflow is shown under period of record for discharge. Records fornished by U.S.B.R. Orannage area is 1,633 sq. ml. TABLE B-3 OAILY CONTENT MILLERTON LAKE (In thousands of acre-feet) | | WATER | |------------|-------| | STATION NO | YEAR | | 871100 | 1963 | | | | | OAY | OCT | NOV | O E C. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------| | 2 3 | 147.1
147.0
146.9 | 161.9
163.3
163.6 | 189.3
190.5
191.6 | 219.6
221.2
222.3 | 295.5
301.4
306.4 | 424.5
425.4
426.4 | 456.9
461.4
465.4 | 493.9
494.1
495.8 | 500.0
504.0
508.7 | 502.0
499.1
496.6 | 433.7
428.6
424.2 | 257.7
251.8
247.0 | 2 3 | | 4 5 | 146.9
147.0 | 163.5
164.0 | 192.7
193.6 | 223.3 | 311.2
317.6 | 426.8
427.4 | 469.7
475.1 | 497.8
499.9 | 509.8
510.0 | 493.9
492.0 | 419.6 | 241.7 | 5 | | 6 | 146.8 | 165.4
167.1 | 194.5
195.3 |
224.9
225.4 | 323.5
329.2 | 427.7
427.9 | 480.3
486.6 | 502.7
505.5 | 509.7
509.1 | 491.6
491.6 | 410 • 0
405 • 8 | 234.2 | 6 7 | | 9 | 146.5 | 168.4
169.7
169.4 | 196.3
197.2
198.4 | 226.1
226.8
227.8 | 334.8
341.1
348.6 | 427.5
427.2
426.7 | 492.6
498.0
502.0 | 508.4
512.1
512.9 | 509.1
509.8
511.0 | 492.6
494.1
495.1 | 400.5
395.1
390.3 | 229.6
227.7
226.5 | 9 | | 10 | 146.8 | 168.4 | 199.5 | 228.9 | 354.6 | 424.9 | 505.9 | 513.9 | 511.3 | 496.2 | 384.8 | 225.1 | | | 12 | 147.6
147.9 | 167.4
167.3 | 200.3
201.3 | 230.2
231.3 | 359.7
365.2 | 423.9
422.9 | 507.7
507.7 | 514.3
514.0 | 511.4
511.7 | 498.3
500.3 | 378.8
372.8 | 223.7 | 12 | | 14 | 148.5
148.3 | 167.3
168.0 | 201.9
202.9 | 233.5
234.4 | 370.6
375.8 | 421.9
422.2 | 508.8
511.3 | 513.3
512.0 | 512.5
515.0 | 501.3
501.2 | 366.5
360.4 | 218.9
216.0 | 15 | | 16 | 149.4
150.0 | 168.7
169.2 | 203.7
204.9 | 235.4
237.2 | 380.8
385.7 | 423.3
424.1 | 512.8
512.1 | 510.3
507.8 | 520.5
524.1 | 499.4
497.4 | 354.5
348.2 | 213.8
211.7 | 16 | | 19 | 151.4
153.0
153.3 | 169.7
171.4
173.6 | 206.0
207.2
208.1 | 238.6
239.3
239.3 | 389.9
393.5
396.9 | 424.4
424.8
425.6 | 510.4
508.4
507.1 | 505.0
502.1
499.0 | 527.0
527.5
528.1 | 494.5
491.5
487.9 | 341.7
335.5
329.1 | 210.3
209.5
209.6 | 18 | | 21 | 153.3 | 175.8 | 208.9 | 240.0 | 400.3 | 426.2 | 506.5 | 495.8 | 527.6 | 484.2 | 323.2 | 209.5 | 21 | | 22 | 154.6
155.2 | 177.2
178.9 | 210.0
210.9 | 240.8
241.2 | 403.4 | 427.1
428.3 | 505.3
503.9 | 492.2
488.9
485.7 | 525.7
523.2
520.9 | 480.0
475.5
471.0 | 317.0
311.0
304.9 | 209.3
209.9
210.5 | 2 2 | | 24 | 156.0
157.7 | 180.4
181.7 | 212.3
212.3 | 242.5
243.2 | 409.3
411.9 | 429.7
430.7 | 502.2
500.7 | 482.7 | 517.6 | 466.9 | 298.6 | 210.7 | 24 | | 26
27
28 | 159.3
159.8
159.1 | 183.4
184.6
185.8 | 213.2
214.5
215.7 | 243.7
243.9
244.5 | 414.5
418.0
422.4 | 431.7
433.2
438.0 | 500.0
498.7
497.3 | 479.7
477.6
480.6 | 515.0
513.6
512.3 | 463.5
459.1
454.7 | 292.9
287.1
281.2 | 210.6
210.7
209.4 | 2 6
2 7
2 8 | | 29
30
31 | 159.6
160.2
160.9 | 186.9
188.2 | 216.9
217.7
218.7 | 245.6
249.4
270.8 | | 443.9
447.7
451.3 | 496.0
494.8 | 485.0
489.3
495.5 | 509.6
505.3 | 449.7
444.4
439.1 | 275.4
269.0
263.4 | 206.9
205.0 | 30 | | Mont | hly
ge+14.9 | +27.3 | +30.5 | +52.1 | +151.6 | +28.9 | +43.5 | +0.7 | +9.8 | -66.2 | -175.7 | -58.4 | | | | | | | | | | | | | | | | | E - Estimated NR - Na Record | | LOCATION | N | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|--------------------------------|------|-------------|-------------|--------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD C.F.S. GAGE HT DATE | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | LATITUDE | LONGITUDE | M.O.B.&M. | C.F.S. | | | DIS STATISE | ONLY | FROM | TO | GAGE | DATUM | | 37 00 00 | 119 42 10 | SW 5 11S 21E | | | | OCT 41-DATE | OCT 41-DATE | 1941 | | 0.00 | USCGS | Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi. TABLE B-4 DELTA-MENDOTA CANAL NEAR TRACY IN SECONO FEET STATION NO YF AR B95925 1963 | DAY | ОСТ | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |---------------------------------|---|--|---------------------------------|--------------------------------------|-----------------------------------|--|--|--|---|--|--|--|---------------------------------| | 2 3 4 5 | 1976
1982
1863
1729
1726 | 716
717
717
717
717
786 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
146
0.0 | 506
505
507
508
878 | 1158
1064
1064
1057
1660 | 1264
1079
1077
1148
1149 | 1261
1476
1796
1962
1961 | 31 78
28 21
25 35
25 33
26 05 | 3953
3925
3926
3770
3770 | 4165
4169
4163
4160
4161 | 2740
2735
2735
2735
2567
2433 | 1
2
3
4
5 | | 6
7
8
9 | 1789
1826
1824
1919
1926 | 788
716
716
755
755 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 877
942
1177
1040
615 | 1870
1804
1910
1981
2268 | 971
972
974
905
942 | 1960
2131
2133
2427
2458 | 2713
3463
3597
3594
3600 | 3511
3510
3509
3507
3506 | 4030
3902
3900
3892
3793 | 2389
2228
2229
2228
1928 | 6
7
8
9 | | 11
12
13
14 | 1888
1676
1575
1579
1171 | 754
681
681
681
680 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
70 | 615
613
649
503
466 | 2041
2128
2161
2329
2333 | 1157
1159
1158
1160
1012 | 2463
2365
2464
2466
2461 | 3593
3593
3420
3278
3442 | 3800
4172
4233
4341
4186 | 3796
3795
3700
3699
3826 | 1827
1827
1832
1831
1829 | 11
12
13
14 | | 16
17
18
19
20 | 970
868
937
936
934 | 753
752
752
713
785 | 0.0 | 282
0.0
69
320
862 | 469
467
866
932
1132 | 2267
1901
1896
1891
1974 | 1011
1268
1230
1232
1339 | 2524
2592
2812
2815
2821 | 3510
3518
3528
3655
3844 | 4063
4059
4163
4227
4293 | 3904
3910
3898
3769
3743 | 2068
1928
1928
1826
1827 | 16
17
18
19
20 | | 2 1
2 2
2 3
2 4
2 5 | 929
928
929
1029
1030 | 787
787
717
717
717 | 0.0
0.0
0.0
0.0 | 927
1160
1159
1160
1160 | 898
868
867
867
866 | 2002
2038
2022
1884
1846 | 1341
1411
1195
1197
1269 | 3462
3657
3726
3794
3730 | 3850
3980
3018
2362
3443 | 4351
4288
4159
4214
4368 | 3630
3630
3630
3560
3463 | 1830
1830
1828
1826
1827 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30 | 1027
1092
1114a
1025
861
716 | 928
865
864
865
538 | 0.0
176
0.0
0.0
0.0 | 1159
1663
1159
1158
1097 | 866
930
930 | 1950
1951
1294
897
938
1262 | 1381
1379
1244 b
1264
1260 | 3634
3564
3296
3247
3244
3249 | 3602
4160
4150
4143
4145 | 4203
4378
4382
4381
4355
4197 | 3201
3151
3158
2986
2987
2882 | 1670
1670
1668
1671
1669 | 26
27
28
29
30 | | MEAN
MAX
MIN.
AC.FT. | 1348
1982
716
82950 | 747
928
538
44426 | 6
176
0.0
349 | 455
1663
0.0
27951 | 763
1177
466
42365 | 1769
2333
897
108776 | 11 72
1411
905
69612 | 2708
3794
1261
166514 | 3429
4160
2362
204046 | 4055
4382
3506
249322 | 3698
4169
2882
227411 | 2014
2740
1668
119849 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - No Record ** - Discharge measurement or observation of no flow mode on this day a - 25 hr. day b - 23 hr. day | | WATER | YEAR | SUM | MARY | | | | |---------|---------|--------|-------|---------|----|-----|------| | XIMUM | | | | MINIM | | | | | GE HT M | DAY TIM | E 0150 | HARGE | GAGE HT | MO | OAY | TIME | TOTAL 1343571 | | M O.8 6M C.F.S. GAGE HT. OA | | | | | PERIOD O | FRECORD | | DATUM | OF GAGE | | |----------|-----------------------------|----------------|--------|--|--|-------------|-------------|------|-------|---------|-------| | | | 1/4 SEC T.8 R. | | | | DISCHARGE | GAGE HEIGHT | PER | 001 | ZERD | REF | | LATITUDE | LONGITUDE | M 0.8 8 M | C.F.S. | | | | DNLY | FROM | TO | GAGE | DATUM | | 37 47 45 | 121 35 05 | SW31 1S 4E | | | | JUN 51-DATE | | 1951 | | 0.00 | USGS | MA DISCHARGE GAGE HT MO DAY TIME Station located at Tracy Pumping Plant at intake to canal, 6 mi. SE of Byron, 10 mi. NW of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 ft. into canal. Records furn. by U.S.B.R. MEAN SCHARGE ## DAILY MEAN DISCHARGE DELTA-MENDOTA CANAL TO MENDOTA POOL IN SECOND FEET WATER YEAR STATION NO B00770 1963 | DAY | OC T. | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEP7 | DAY | |----------------------------------|---|---------------------------------|--|--|---------------------------------|--|---------------------------------------|--|--------------------------------------|--|--|--------------------------------------|-------------------------------| | 2 3 4 5 | 1615
1504
1482
1390
1424 | 510
520
524
525
534 |
238
218
200
200
200 | 0.0
0.0
0.0
0.0 | 200
200
200
217
323 | 895
885
828
861
1358 | 1040
849
859
856
868 | 1149
1289
1340
1497
1491 | 2195
1971
1802
1757
1790 | 3000
2846
2816
2805
2767 | 2820
2809
2829
2939
2966 | 2161
2136
2109
1932
1804 | 2 3 4 5 | | 6
7
8
9 | 1488
1429
1436
1430
1408 | 530
519
511
509
503 | 175
200
200
200
200
370 | 0.0
0.0
0.0
0.0 | 500
523
894
515
370 | 1500
1463
1497
1498
1627 | 647
667
681
702
800 | 1499
1714
1734
1959
1944 | 1980
2428
2647
2616
2657 | 2642
2586
2590
2583
2544 | 2937
2854
2700
2705
2788 | 1577
1568
1592
1613
1370 | 6
7
8
9 | | 11
12
13
14
15 | 1365
1199
1133
1147
794 | 523
497
514
506
499 | 325
17
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 246
245
311
206
195 | 1637
1642
1635
1783
1737 | 937
906
928
929
771 | 1897
1814
1874
1875
1897 | 2668
2668
2581
2297
2352 | 2704
2805
2933
3037
3058 | 2701
2753
2752
2713
2747 | 1419
1248
1260
1290
1281 | 11
12
3
14 | | 16
17
18
19 | 700
700
701
715
763 | 490
490
490
490
496 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 196
196
347
627
798 | 1765
1450
1465
1496
1713 | 803
1047
1066
1100
1152 | 1918
1907
2092
2074
2137 | 2553
2547
2502
2508
2716 | 2904
2832
2812
2824
2917 | 2733
2782
2834
2800
2718 | 1313
1185
1180
1062
1082 | 16 7 18 19 20 | | 21
22
23
24
25 | 745
763
786
909
894 | 504
504
515
515
516 | 0.0
0.0
0.0
0.0
0.0 | 573
657
724
742
819 | 677
571
580
585
573 | 1667
1580
1515
1370
1373 | 1158
1129
885
971
1132 | 2386
2628
2664
2733
2730 | 2717
2707
1537
1567
2316 | 2996
2983
2856
2821
2942 | 2554
2587
2592
2567
2506 | 1057
1051
1052
1064
1071 | 21 22 23 24 25 | | 26
27
28
29
30
31 | 881
912a
877
867
561
528 | 594
694
702
691
664 | 0.0
0.0
0.0
0.0
0.0 | 723
680
673
588
465
280 | 572
567
620 | 1435
1440
782
478
635
929 | 1208
1179b
1020
1055
1062 | 2612
2627
2370
2267
2213
2223 | 2516
2759
2893
3031
2857 | 2878
2942
2879
3016
2966
2917 | 2468
2252
2258
2237
2200
2082 | 1105
1157
1312
1320
1306 | 26
27
28
29
30 | | MEAN
MAX.
MIN
AC.FT. | 1050
1615
528
64629 | 536
702
490
31892 | 82
370
0.0
5044 | 223
819
0.0
13734 | 430
894
195
23909 | 1353
1783
478
83185 | 947
1208
647
56247 | 2018
2733
1149
124074 | 2405
3031
1537
143078 | 2845
3058
2544
174944 | 2651
2966
2082
163008 | 1389
2161
1051
82665 | MEAN
MAX
MIN,
AC.FT. | E = Estimated NR = No Record κ = 0 is charge measurement or observation of no flow made on this day κ = E and κ = 25 hr. day κ = 25 hr. day WATER YEAR SUMMARY MEAN DISCHARGE DISCHARGE GAGENT MO DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME 1327 TOTAL 966409 | | LOCATION | V | MAXI | MUM DISCH | ARGE | PERIOD C | FRECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------------|------|-----------|-------------|--------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | CATTIONE | LONGITUDE | M.O.B.B.M | C.F.S. | C.F.S. GAGE HT. | | ONLY | | FROM | то | GAGE | DATUM | | 36 47 11 | 120 23 05 | NW19 13S 15E | | | | | | | | | | Station located approximately 2 mi. N of Mendota, where DMC crosses the Outside Cinal, which is 0.8 mi. NW of Bass Avenue crossing (check No. 21). Flow measured by 3 Sparling meters located at siphon outlet. Record furnished by U.S.B.R. SAN JOAQUIN RIVER NEAR MENDOTA WATER STATION NO B07710 IN SECONO FEET DAY ост NOV DEC. JAN FFA MAR APR MAY JUNE JULY AUG SEPT DAY 166 177 51 50 140 129 31 30 76 291 294 351 164 152 162 148 134 129 396 58 125 70 9 0 76 177 177 184 59 -456 459 71 72 72 27 316 314 65 286 18 193 291 14 354 . 9 72 142 138 148 396 231 193 5.8 144 126 3 1 231 50 10550 MEAN MEAN 301 106 236 MAX MAX MIN ACFT AC.FT - Estimated NR - No Record # - Dischargs measurement or observation of no flow mode on this day. # - E and # | | | | WATE | ER Y | EAR | |-----------|-----------|---------|--------|------|---------------| | MEAN | | MAXIMU | м | | $\overline{}$ | | DISCHARGE | DISCHARGE | GAGE HT | MD DAY | TIME | DISC | | 7 | ì | | MINIM | UM | | | |---|---|-----------|---------|----|-----|------| | | | DISCHARGE | GAGE HT | мо | OAY | TIME | SUMMARY TOTAL ACRE-FEE IESN. WAX WN ALFT | | LOCATION | ٧ | MAXII | MUM DISCH | HARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-----------------|--------|-----------------|--------|-------------|-------------|------|-------|---------|-------| | | LONGITUDE | 1/4 SEC. T.8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF | | LATITUDE | LONGITUDE | M 0.8.8 M | C.F.S. | C.F.S. GAGE HT. | | | ONLY | FROM | то | GAGE | DATUM | | 36 48 37 | 120 22 35 | SW 7 13S 15E | 8840 | | 6-1-52 | OCT 39-DATE | OCT 39-DATE | 1939 | | 142.53 | USBR | Station located 2.5 mm. below Mendota Dam, 4 mm. N. of Mendota. Records furn. by U.S.B.R. Drainage area is 4,310 sq. mm. This station equipped with DWR radio telemeter. TABLE B-7 BIG CREEK DIVERSION NEAR FISH CAMP IN SECOND FEET WATER STATION NO 867920 1963 | OAY | ост | NOV | OEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | OAY | |----------------------------------|--|--|--|---|---------------------------------|------------------------------------|------------------------------|----------------------------------|----------------------------------|---|---|---|------------------------------------| | 1
2
3
4
5 | 1.3
1.7
2.0
2.3
2.5 | 2 • 2
2 • 1
2 • 1
2 • 0
2 • 2 * | 2.6E
2.7
2.1*
2.8
2.6 | 2 • 3 E
2 • 3 E
2 • 3 #
2 • 0 E
2 • 0 E | 1.5
0.0
0.0
0.0
9.4 | 23
22
21
20
20 | 24
23
24
28
31 | 37
37
38 *
38 | 35
34
33
32
32 | 21
20
17 •
16
16 | 4 • 4
5 • 9
6 • 1
6 • 1
6 • 3 | 3.5
3.4
3.1
3.1
3.9 | 1
2
3
4
5 | | 6
7
8
9 | 2 • 2
2 • 1
2 • 0
2 • 0
2 • 0 | 2 • 1
1 • 8
1 • 8
1 • 8 | 2 • 4
2 • 4
2 • 4
2 • 4
2 • 3 | 2.0E
1.9E
1.7E
1.7E
1.6E | 34
32
32
33
35 | 20
22 *
19
20
19 | 34
42
37
34
32 | 38
39
41
43
40 | 32
31 *
31
30
31 | 16
15
15
15
15 | 6 • 5 *
6 • 7
6 • 5
6 • 4
6 • 2 | 3.6
3.3
2.8
2.6
2.5 | 6
7
8
9 | | 11
12
13
10 | 2.2*
2.2
2.1
19
4.7 | 1 • 8
1 • 8
1 • 9
2 • 2
2 • 3 | 2.3
2.2
2.1
2.2
3.9 | 1.5E
1.6E
1.6E
1.4E
1.2E | 32
31
36
33
30 | 20
19
19
18
18 | 32
33
33
40
38 | 39
38
35
36
37 | 30
30
29
28
28 | 13
13
12
12 | 5 • 9
5 • 7
5 • 4
5 • 0
4 • 8 | 2.5
2.5
3.4
3.3
3.0 | 11
12
13
14
15 | | 16
17
18
19
20 | 3.5
3.2
2.7
2.5
2.4 | 2 · 3
2 · 4
2 · 3
2 · 2
2 · 4 | 14
5 • 3
5 • 4
4 • 1
3 • 4 | 1.2E
1.3E
1.4E
1.4E | 29
28
27
26
26 | 15
21
23
22
22 | 35
34
33
33
30 | 38
39
40
40
41 | 27
26
25
24
23 | 11
10
9.9
9.3
9.0 | 4 • 5
4 • 4
4 • 4
4 • 5
4 • 3 | 3 • 2
3 • 4 •
4 • 8
5 • 2
4 • 4 | 16
17
18
19
20 | | 21
22
23
24
25 | 2.4
2.3
2.2
2.2
2.5 | 2 · 3
2 · 2
2 · 2
2 · 2
2 · 2
2 · 3 | 3 • 2E
2 • 7E
2 • 7E
2 • 7E
2 • 7E | 1.2E
1.3E
1.3E
1.2E
1.3E | 26
25
24
24
23 | 22
22
21
22
22 | 32
32
32
34
33 | 41
40
39
38
38 | 23
23
24
24
22 | 9 • 2
8 • 8
8 • 6
8 • 1
7 • 7 | 4 • 3
4 • 3
4 • 3
4 • 5
4 • 4 | 4.3
3.5
3.3
2.9
3.0 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 2 · 3
2 · 2
2 · 2
2 · 2
1 · 9
2 · 2 | 2 • 2
4 • 0
3 • 1
2 • 8
2 • 4 E | 2.6E
2.6E
2.7E
2.6E
2.4E
2.4E | 1.2E
1.2E
1.4E
11 E
83 E
62 E | 23
23
23 | 22
29
30
28
28
28 | 31
29
31
36
39 | 37
37
36
36
35
35 | 21
21
21
22
22
21 | 7.5
7.3
7.0
6.9
6.6
6.4 | 4.0
3.8
3.5
3.3
3.6 | 2.5
2.6
2.6
2.4
2.2 | 26
27
28
29
3 D
3 1 | | MEAN
MAX
MIN.
AC.FT. | 2.9
19.0
1.3
177 | 2 • 2
4 • 0
1 • 8
1 3 3 | 3.2
14.0
2.1
196 | 6.4
83.0E
1.2E
396 | 23.8
36.0
0.0
1321 | 21 • 8
30 • 0
15 • 0
1343 | 32.6
42.0
23.0
1942 | 38.2
43.0
35.0
2348 | 27+1
35+0
21+0
1613 | 11.6
21.0
6.4
713 | 5.0
6.7
3.3
305 | 3.2
5.2
2.2
192 | MEAN
MAX
MIN
AC.FT. | - Estimoted E -
Estimated NR - No Record # - Discharge measurement or observation of no flow made on this day. # - E and # WATER YEAR SUMMARY MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME GAGE HT MO DAY TIME 14.7 150E NR 3.56 1 30 2400 TOTAL ACRE-FEET 10680 | | LOCATION | ١ | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-----------------|--------|----------------------|---------|-------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T.B.R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO | REF. | | LATITODE | LONGITODE | M, D, 6, 8 M | C.F.S. | C.F.S. GAGE HT. DATE | | | ONLY | FROM | TO | GAGE | DATUM | | 37 28 10 | 119 36 52 | NE25 5S 21 | E 150 | 3.58 | 1-30-63 | DEC 58-DATE | | 195B | | 0.00 | LOCAL | Station located 195 ft. above road culvert pipe, 1.4 mi. SE of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by culvert pipe below station. Maximum discharge determined from slope area survey and maximum capacity of culvert pipe below station. TABLE B-8 LEWIS FORK FRESHO RIVER NEAR DAKHURST IN SECONO FEET WATER STATION NO 867325 1963 > 26 11 > > (EX) 1000 > > > 1 TOTAL ACRE-FFFT 1961 DATE NR | OAY | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|-------|-------|--------|--------|--------|--------|--------|-------|-------|------|-------|-------|--------| | 1 | 2 • 3 | 5.9 | 4.9 | 9.8 | 1090 # | 50 | NR | 122 | 112 | 50 | 20 | 7.0 | 1 | | 2 | 2 • 3 | 6 • 3 | 4 + 8 | 10 | 161 | 47 | NR | 119 | 110 | 48 | 18 | 5.9 | 2 | | 3 | 5.0 | 6.0 | 4.5* | 10 * | 58 | 45 | NR | 115 * | 105 | 45 . | 19 | 5.7 | 3 | | 4 | 4.5 | 6.4 | 3 . 8 | 7.4 | 31 | 41 | 71.2** | 109 | 108 | 44 | 19 | 6.0 | 4 | | 5 | 4.7 | 5.90 | 4 • 1 | 6.5 | 35 | 42 | NR | 104 | 104 | 42 | 17 | 6.6 | 5 | | 6 | 3.9 | 6.5 | 3 + 8 | 6.5 | 55 | 42 | NR | 106 | 105 | 41 | 18 • | 5.9 | 6 | | 7 | 4 • 0 | 5 . 8 | 4 . 8 | 6.7 | 51 | 42 * | NR | 104 | 108 • | 39 | 10 | 5.0 | 7 | | 8 | 4.5 | 4.9 | 5.0 | 7 . 2 | 45 | 43 | NR | 125 | 102 | 37 | 17 | 4 . 2 | 8 | | 9 | 3.8 | 4.9 | 3 • 2 | 6.8 | 68 | 45 | NR | 186 | 102 | 3.8 | 16 | 4.0 | 9 | | 10 | 3 • 8 | 4.9 | 4.4 | 6 - 4 | 161 * | 44 | NR | 165 | 101 | 35 | 16 | 4 • 0 | 10 | | 11 | 5.4* | 4.4 | 4 . 4 | 7.1 | 84 | 44 | NR | 167 | 100 | 33 | 16 | 4.4 | -11 | | 12 | 8.7 | 3 • 8 | 4.3 | 5 • 2 | 77 | 44 | 71 | 154 | 99 | 33 | 10 | 4.4 | 12 | | 1.3 | 9 • 2 | 3 • 5 | 4.7 | 4.9 | 111 | 43 | 68 | 140 | 95 | 31 | 8.9 | 5.3 | +3 | | 14 | 53 | 3 • 9 | 5.7 | 6 • 4 | 94 | 44 | 151 | 135 | 93 | 30 | 8 • 9 | 6 • 4 | - 10 | | 15 | 19 | 4.0 | 7 . 8 | 8 • 2 | 76 | 47 | 190 + | 128 | - 96 | 29 | 8 • 1 | 6 • 3 | >5 | | 16 | 13 | 3 . 8 | 35 | 8 • 1 | 70 | 51 | 122 | 121 | 91 | 27 | 7.9 | 5 . 8 | 16 | | 17 | 11 | 4+0 | 16 | 7.7 | 67 | 51 | 96 | 122 | 87 | 25 | 7.9 | 6.10 | > 7 | | 18 | 10 | 3 • 1 | 15 | 7.8 | 62 | 54 | 85 | 121 | 8.3 | 28 | 8.7 | 8 . 8 | 1.6 | | 19 | 8 • 8 | 3 • 1 | 11 | 7.5 | 62 | 5.2 | 102 | 117 | 79 | 25 | 7 • 5 | 14 | 19 | | 20 | 8 • 3 | 8.1 | 11 | 7.2 | 57 | NR | 97 | 116 | 77 E | 25 | 7 • 2 | 14 | 5.0 | | 2 1 | 8.5 | 7.2 | 9.0 | 7.7 | 57 | NR | 119 | 123 | 75 E | 24 | 7.8 | 9.9 | 2 1 | | 2.2 | 8.0 | 6.7 | 7.6 | 8 - 1 | 56 | NR | 107 | 134 | 73 E | 26 | 7 • 3 | 8 • 8 | 2.2 | | 2.3 | 8.0 | 5 . 7 | 8.7 | 7 . 2 | 53 | NR | 109 | 137 | 72 E | 25 | 7 • 4 | 9.4 | 2.3 | | 24 | 7.6 | 5 . 2 | 8.5 | 7.7 | 51 | NR | 107 | 134 | 70 E | 23 | 7.9 | 8 • 8 | 2.4 | | 25 | 7 • 6 | 5 • 4 | 5.9 | 6+5 | 53 | NR | 109 | 131 | 70 E | 23 | 7.0 | 7.9 | 2.5 | | 26 | 7.5 | 6 • 0 | 6 - 1 | 6 • 6 | 52 | NR | 123 | 131 | 66 E | 24 | 7 • 0 | 7.3 | 2 6 | | 27 | 6.3 | 8.8 | 7 • 1 | 5.9 | 52 | NR | 103 | 128 | 61 E | 23 | 6 • 8 | 7.8 | 27 | | 2.8 | 6.9 | 9 . 7 | 7 . 8 | 6.1 | 49 | 171 ** | 104 | 124 | 59 | 22 | 6 • 3 | 7.5 | 2 6 | | 29 | 6.8 | 7.5 | 8.9 | 9.1 | | NR | 112 | 120 | 58 | 21 | 6.1 | 7 . 2 | 2 9 | | 30 | 6.7 | 6 - 1 | 7.8 | 430 | | NR | 123 | 117 | 54 | 21 | 6.4 | 7 - 1 | 30 | | 31 | 6+1 | | 7 • 8 | 1500 E | | NR | | 114 | | 19 | 7+2 | | 3 > | | MEAN | 8 • 6 | 5 • 6 | 7.9 | 69.1 | 105 | NR | NR | 128 | 87.3 | 30.8 | 10.9 | 7 - 1 | MEAN | | MAX | 53.0 | 9.7 | 35 • 0 | 1500 E | 1090 E | NR | NR | 186 | 112 | 50.0 | 20.0 | 14.0 | MAX | | MIN. | 2 • 3 | 3.1 | 3 • 2 | 4.9 | 31.0 | N/R | NR | 104 | 54.0 | 19.0 | 6.1 | 4.0 | MIN | | AC.FT. | 526 | 3 3 2 | 483 | 4249 | 5827 | NR | NR | 7872 | 5193 | 1896 | 671 | 420 | AC.FT. | - Estimated ments. 37 20 44 E - Estimated NR - No Record + Oischarge measurement or observation of no flow made on this day = E and # ** - Result of discharge measure- 119 38 20 SE 2 7S 21E MEAN DISCHARGE GAGE HT MD DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME NR NR SEP 61-DATE WATER YEAR SUMMARY LOCATION MAXIMUM DISCHARGE PERIOD OF RECORD DATUM OF GAGE OF RECORD PERIOO ZERO 1/4 SEC. T. 8 R. GAGE HEIGHT REF LATITUDE LONGITUDE OIS CHARGE M.O.B.8 M. C.F.S. GAGE HT. OATE ONLY FROM TO DATUM GAGE 2- 1-63 Station located 1.6 mi. N. of Oakhurst on Highway 41, 500 ft. downstream from Shady Oaks Motel. Station located on left bank above concrete weir. Altitude of gage is approximately 2,520 ft. (from topographic map.) 493 2930E ## DAILY MEAN DISCHARGE MIAMI CREEK NEAR OAKHURST IN SECOND FEET WATER YEAR STATION ND B67300 1963 | | | | IH SECOND | | | | | | | | | | | |--------|-------|-------|-----------|--------|-------|-------|------|------|-------|-------|------|-------|--------| | DAY | QC T. | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | | - | 6.4 | 0.8 | 1.2 | 1.4 | 391 # | 5 • 6 | 14 | 24 | 10 | 4.9 | 1.7 | 1.6 | 1 | | 2 | 0.4 | 2 • 2 | 1.2 | 1.2 | 45 | 5.4 | 12 | 23 | 9.4 | 4.9 | 1.7 | 1.5 | 2 | | 3 | 0.4 | 1 • 4 | 1.2* | 1.3* | 20 | 5.2 | 12 | 21 • | 8.9 | 4.6* | 1.9 | 1.4 | 3 | | 9 | 0.5 | 1.1 | 1.3 | 1.3 | 13 | 5.2 | 12 * | 19 | 8.9 | 4.4 | 1.8 | 1 • 4 | 4 | | 5 | C • 5 | 1.1* | 1.3 | 1.3 | 10 | 5 • 2 | 14 | 19 | 9 • 1 | 4.5 | 1.8 | 1.5 | 5 | | 6 | C • 6 | 1.1 | 1.2 | 1.3E | 9.1 | 5.1 | 16 | 18 | 9.4 | 4.2 | 1.7* | 1.4 | 6 | | 7 | ٤.6 | 1.0 | 1.2 | 1.3E | 6.1 | 5 • 0 | 35 | 18 | 8.7* | 4+2 | 1.6 | 1.3 | 7 | | 8 | 0.6 | 0.9 | 1.2 | 1.3 | 1.2 | 5 + 0 | 28 | 21 | 8 • 0 | 3.9 | 1.7 | 1.2 | В | | 9 | C - 5 | 0.9 | 1.1 | 1.3 | 8 • 6 | 5 • 0 | 20 | 30 | 7.4 | 3.8 | 1.7 | 1.2 | 9 | | ID | 0.5* | 0.9 | 1.1 | 1.3 | 30 | 5.0 | 17 | 22 | 7.5 | 3 . 8 | 1.6 | 1.2 | 10 | | D. | 0.6 | 0+9 | 1.1 | 1.3 | 17 | 4.8* | 15 | 24 | 7.8 | 3.6 | 1.5 | 1.2 | -11 | | 12 | 0.6 | 0.9 | 1.1 | 1.2E | 12 | 4.6 | 14 | 22 | 8 • 4 | 3 • 4 | 1.6 | 1.3 | 12 | | 13 | 0.7 | 0.9 | 1.1 | 1.0E | 22 | 4.4 | 14 | 19 | 8 • 4 | 3 • 3 | 1.5 | 1 - 4 | 13 | | 14 | 2.6 | 1.0 | 1.1 | 1.4 | 18 | 4.6 | 42 | 16 | 8.1 | 3.2 | 1.6 | 1.5 | 14 | | 15 | 1 • 4 | 1.1 | 1 • 2 | 1.3 | 12 | 5.1 | 50 | 17 | 7.9 | 3 • 1 | 1.5 | 1.4 | 15 | | 16 | 1.2 | 1.1 | 6.1 | 1.3 | 10 | 5.2 | 29 | 15 | 7.3 | 3 - 1 | 1.5 | 1.4 | 16 | | 17 | 2 • 4 | 1.1 | 2 • 6 | 1.3 | 9.5 | 5.8 | 22 | 14 | 7.1 | 3 • 1 | 1.5 | 1.4* | 17 | | 18 | 3 • 4 | 1 • 1 | 2.4 | 1.2 | 8.6 | 6.0 | 18 | 14 | 6.8 | 3 • 0 | 1.4 | 1.7 | 18 | | 19 | 1.2 | 1.2 | 1.9 | 1.1 | 7.9 | 6.1 | 22 | 13 | 3 + 8 | 2.7 | 1.5 | 2.3 | 19 | | 2.0 | 1.0 | 1.2 | 1+6 | 1.1 | 7.5 | 6.4 | 21 | 12 | 5.9 | 2.7 | 1.5 | 3.1 | 20 | | 2 1 | 1.0 | 1.2 | 1.4 | 1.i | 1.6 | 7.3 | 20 | 12 | 5.9 | 2 . 6 | 1.5 | 2 • 0 | 2 1 | | 2.2 | C • 9 | 1 - 1 | 1.3 | 1.2 | 1.2 | 8 + 1 | 21 | 11 | 5 . 8 | 2.6 | 1.6 | 1.7 | 2.2 | | 23 | C • 9 | 1+1 | 1.3 | 1.2 | 6.7 | 14 | 2.3 | 11 | 6.2 | 2.4 | 1.6 | 1.4 | 2.3 | | 24 | 2.9 | 1.1 | 1.3 | 1.2 | 6 • 4 | 1.2 | 24 | 12 | 6+1 | 2 • 4 | 1.7 | 1.4 | 24 | | 2.5 | 1.1 | 1 • 1 | 1.2 | 1 • 2E | 6.1 | 11 | 22 | 12 | 5.7 | 2 • 2 | 1.7 | 1 . 3 | 2.5 | | 26 | 1.0 | 1.1 | 1.3 | 1 • 1E | 5.9 | 11 | 23 | 11 | 5.4 | 2 • 2 | 1.5 | 1 + 2 | 2.6 | | 27 | C+9 | 1 • 4 | 1+1 | 1 • 2E | 5.9 | 16 | 22 | 11 | 5.0 | 2.2 | 1.4 | 1.0 | 27 | | 28 | € • 9 | 1.5 | 1 • 2 | 1.3E | 5.7 | 3.8 | 22 | 11 | 5.0 | 2 • 1 | 1.4 | 1.0 | 2.8 | | 29 | 5 . 8 | 1.3 | 1.2 | 1.6 | | 2.3 | 24 | 11 | 5 • 0 | 1.9 | 1.4 | 1.0 | 29 | | 50 | 0.8 | 1.2 | 1.2 | 95 E | | 1.7 | 25 | 11 | 4.9 | 1.8 | 1.6 | 1.0 | 30 | | 31 | 0.8 | | 1.3 | 443 € | | 16 | | 10 | | 1.8 | 1.6 | | 3 1 | | MEAN | 1.0 | 1.1 | 1.5 | 18.5 | 25.6 | 9+0 | 21.8 | 16.3 | 7 • 1 | 3 • 2 | 1.6 | 1.4 | MEAN | | MAX. | 3.4 | 2 • 2 | 6+1 | 443 E | 391 E | 38.0 | 50.0 | 30.0 | 10.0 | 4.9 | 1.9 | 3.1 | MAX | | MIN. | 0.4 | 0.8 | 1.1 | 1.0 | 5.7 | 4.4 | 12.0 | 10.0 | 3.8 | 1.8 | 1.4 | 1.0 | MIN. | | AC.FT. | 60 | 67 | 91 | 1139 | 1424 | 552 | 1295 | 1004 | 424 | 196 | 98 | 86 | AC.FT. | | | | | | | | ,,, | 12// | -004 | 727 | 170 | 70 | | _ | E - Estimated NR - No Record ♣ - Discharge measurement or observation of no flow made on this day □ - E and ★ | MEAN | | | MAXIMU | | | | |-----------|---------|-----|---------|----|-----|------| | DISCHARGE | DISCHAR | 3 E | OAGE HT | MD | DAY | TIME | | 8.9 | 1140 | Ε | 9.08 | 2 | 1 | 0110 | | | | _ | | _ | _ | | MINIMUM DISCHARGE GAGE HT MO DAY TIME 0.3 2.4 10 1 1650 YEAR SUMMARY WATER | (| TOTAL | |---|-----------| | 1 | ACRE-FEET | | 1 | 6435 | | | | LOCATION | 1 | MAXII | MUM DISCH | IARGE | PERIOD O | RECORD DATUM | | DATUM | OF GAGE | | |---|----------|---------------------------|---------------|-----------|-----------|---------|-------------|--------------|--------|-------|---------|-------| | | LATITUDE | LATITUDE LONGITUDE 1/4 SE | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | Į | LATITODE | LONGITODE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | - | 37 23 3B | 119 39 10 | SE22 6S 21E | 1140E | 9.08 | 2- 1-63 | DEC 59-DATE | | 1959 | Date | 0.00 | | Station located 150 ft. below bridge, 4.5 mi. N. of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 sq. mi. Recorder installed December 15, 1959. Altitude of gage is approximately 3,500 ft. (from topgaphic map.) ## TABLE B→10 ##
DAILY MEAN DISCHARGE SAN JOAQUIN RIVER NEAR DOS PALOS IN SECONO FEET WATER YEAR 1963 STATION NO 807610 | DAY | OCT. | NOV | OEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |----------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|----------------------------|---------------------------------|--------------------------|---------------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------|----------------------------------| | 2
3
4
5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
32
121 | 12
90
29
6
0•0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7
12
12
8
12 | 12
12
5
0.0 | 12
12
3
0•0 | 0.0
0.0
0.0
0.0 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 101
71
120
186
202 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 12
9
8
12
12 | 0.0
7
12
12
4 | 0.0
0.0
0.0
0.0 | 9
4
0•0
0•0 | 6
7
8
9 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 182
88
16
10
7 | 0.0
0.0
0.0
0.0 | 0.0
8
12
12
12 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 12
7
0.0
4 | 0.0
0.0
0.0
0.0 | 0.0
7
12
4
0.0 | 0.0
0.0
3
4
0.0 | 11
12
13
14
15 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 5
1
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
8
12 | 12
12
12
12
12 | 9
12
10
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 16
17
18
19
20 | | 2 !
2 2
2 3
2 4
2 5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 12
18
16
12 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 12
12
0.0
0.0 | 12
4
0•0
9 | 0.0
8
11
0.0
0.0 | 0.0
7
12
3
0.0 | 0.0
0.0
4
0.0
0.0 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 8
6
5
4
2 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 12
12
12
12 | 0.0
9
5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
9
5 | 26
27
28
29
30
31 | | MEAN
MAX
MIN
AC, FT. | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 3.0
18
0.0
186 | 37.0
202
0.0
2270 | 4.9
90
0.0
272 | 1.6
12
0.0
99 | 0.0
0.0
0.0 | 1.8
12
0.0 | 9.9
12
0.0
587 | 4.1
12
0.0
254 | 2.5
12
0.0
151 | 1.3
9
0.0
75 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - No Record # - Oischarge measurement or observation of no flow mode on this day # - E and # | MEAN | | UMIXAN | | | 1 | | MININ | | | | |-----------|----------|---------|-------|------|---|-----------|---------|----|-----|------| | DISCHARGE | 15CHARGE | GAGE HT | MO OA | TIME | 1 | DISCHARGE | 343E HT | MO | DAY | TIME | WATER YEAR SUMMARY TOTAL ACRE-FEET E & 4 | | LOCATION | ٧ | MAXII | MUM DISCH | HARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|--------|---------------------|-------------|--------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | CATITOOE | LONGITODE | M 0.8 8 M | C.F.S. | GAGE HT. | OATE | o i o o i i i i i i | ONLY | FROM | то | GAGE | DATUM | | 36 59 38 | 120 30 02 | | 8200 | | 6-5-52 | OCT 40-DATE | OCT 40-DATE | 1940 | | 116.5 | USED | Station located 800 ft. below the head of Temple Slough, 6.5 ml. E of Dos Palos. Records furn. by U.S.B.R. Drainage area is approx. 5,630 sg. ml. # DAILY MEAN DISCHARGE IN SECONO FEET EAST FORK CHOWCHILLA RIVER NEAR AHWAHNEE WATER VEAR 1963 STATION ND B64400 | DAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |----------------------------------|--|---|--|---|------------------------------------|---------------------------------|-----------------------------------|----------------------------------|------------------------------|--|---|---|----------------------------------| | 2
3
4
5 | 0 • 0
0 • 0
0 • 0
0 • 0 | 1.0
1.0
1.0
1.0
1.0 | 2 • 6
2 • 3
2 • 3
2 • 3
2 • 3 | 2 • 2
2 • 0
1 • 9
2 • 2
2 • 4 | 1370 E
180
115
106
103 | 23
23
24
21
22 | 98
87
75
69
64 | 100
95
90
86
82 | 36
34
32
29
30 | 13
12
12
11
11 | 2 • 6
2 • 5
2 • 3
2 • 3
2 • 3 | 1.0
1.0
1.0
0.9
0.8 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0 | 1 • 1
1 • 2
1 • 1
1 • 2
1 • 2 | 2 • 2
2 • 2
2 • 1
2 • 3
2 • 3 | 2 • 7
2 • 8
2 • 6
2 • 8
2 • 6 | 102
101
101
106
218 * | 20
19
19
21
20 | 68
278
166
115
107 | 78
74
81
122
90 | 31
33
29
26
26 | 11
11
11
9•9
9•2 | 2.4
2.3
2.2
2.2
1.9 | 0 • 8
0 • 7
0 • 6
0 • 5
0 • 4 | 6
7
8
9 | | 11
12
13
14 | C.C
C.O
C.1
23
6.6* | 1.2
1.2
1.3
1.6
2.0 | 2 • 2
2 • 0
1 • 9
2 • 1
2 • 5 | 2.6
2.8
2.8
2.6
2.7 | 116
109
138
125
103 E | 19
17
16
17
26 | 92
83
75
284
304 | 100
91
82
83
75 | 27
28
30
27
24 | 9 • 1
8 • 7
7 • 7
7 • 3
6 • 8 | 1 · 8
1 · 6
1 · 8
1 · 4 | 0.3
0.3
0.4
0.5
0.6 | 11
12
13
14
15 | | 16
17
18
19
20 | 2 • 8
1 • 8
1 • 3
1 • 0
0 • 9 | 2 • 6 •
2 • 3
2 • 1
2 • 2
2 • 2 | 12
7.9*
4.8
4.0
3.5 | 2 • 7 •
3 • 1
3 • 0
3 • 8
3 • 5 | 85 E
69 E
51 E
46 | 36
52
36 *
45
55 | 157
122
108
139
176 | 68
62
56
53
51 | 22
20
18 *
17
16 | 6.5
6.2
6.4*
6.1
5.4 | 1.3
1.2
1.1
1.1
1.1 | 0+6
0+6
0+8
1+3
4+8* | 16
17
18
19
20 | | 21
22
23
24
23 | 0 • 8
6 • 8
6 • 8
0 • 9
0 • 9 | 2 • 2
2 • 1
2 • 1
2 • 0
2 • 0 | 3 • 0
2 • 8
2 • 8
2 • 8
2 • 7 | 3.9
3.9
3.9
4.3
4.3 | 37
35
32
30
28 | 48
47
142
105
82 | 199
159 *
141
128
119 | 48 *
44
44
45
45 | 16
17
17
17
16 | 5 • 3
5 • 2
4 • 7
4 • 6
4 • 3 | 1.0
1.1
1.2*
1.3
1.3 | 3+1
2+2
1+9
1+7
1+5 | 2 r
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 1 • 0
1 • 2
1 • 3
1 • 1
1 • 0
1 • 0 | 2+0
2+5
3+2
3+1
2+7 | 2 • 6
2 • 6
2 • 4
2 • 3
2 • 4
2 • 2 | 4.7
4.7
4.7
5.3
365 • | 27
26
26 | 68
77
438 •
151
115 | 169
132
115
107
103 | 44
42
40
41
39
37 | 15
14
14
14
13 | 4 • 2
4 • 3
4 • 1
3 • 7
3 • 5
3 • 1 | 1.3
1.2
1.0
1.0
1.0 | 1 • 2
0 • 8
0 • 6
0 • 5
0 • 5 | 26
27
28
29
30
31 | | MAX. | 1.6
23.0
0.0
96 | 1 · 8
3 · 2
1 · 0
106 | 3.0
12.0
1.9
187 | 66.7
1610 E
1.9
4103 | 130
1370 E
26.0
7192 | 61.5
438
16.0
3784 | 135
304
64•0
8011 | 67.4
122
37.0
4141 | 22.9
36.0
13.0
1365 | 7.4
13.0
3.1
453 | 1.6
2.6
1.0
98 | 1 • 1
4 • 8
0 • 3
63 | MEAN
MAX
MIN
AC.FT. | WATER YEAR SUMMARY | MEAN | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE DAY | TIME | DISCHARGE | DAY | TIME | DISCHARGE | DAY | TIME DAY | TIME DAY | TIME | DAY | TIME | DAY | TIME | DAY TOTAL ACRE · FEET 29600 | | LOCATION | N | MAXII | NUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|--------------------|---------------|--------|-----------|---------|-------------|-------------|---------------|------|------|-------| | LATITUOS | LATITUDE LONGITUDE | | | OF RECORO | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | LATITODE | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | | | FROM | TO | GAGE | OATUM | | 37 20 09 | 119 48 59 | SE 7 7S 20E | 3710E | 10.34 | 1-31-63 | NOV 57-DATE | | 1957 | Date | 0.00 | LOCAL | Station located 1.1 mi. above mouth, 5.5 mi. W of Ahwahnee. Dranage area 57.8 sq. mi. Altıtude of gage 980 ft. (from topographic map.) # DAILY MEAN DISCHARGE IN SECOND FEET WEST FORK CHOWCHILLA RIVER NEAR MARIPOSA WATER YEAR 1963 STATION NO B64300 | DAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|--------|-------|----------------|--------|----------|-------|----------|----------|----------------|-------|-------|-------|--------| | 1 | 0.0 | 0.0 | 0 • 1 | 0 • 4 | 916 # | 7.6 | 33 | 50 | 14 | 3.1 | 0 • 2 | 0.0 | 1 2 | | 2 | C + C* | 0.0 | 0 • 2 | 0.5 | 74 |
7.3 | 25 | 46 | 13 | 2 • 8 | 0+2 | 0.0 | 3 | | 3 | 0.0 | 0.0 | 0 • 2 | 0.4 | 34
20 | 6.8 | 21 | 42
38 | 11 | 2.8 | 0 • 2 | 0 • 0 | 4 | | 4 | 0.0 | 0 • 0 | 0 • 2
0 • 2 | 0.4 | 13 | 6.1 | 19
18 | 36 | 11 | 2.4 | 0.2 | 0.0 | 5 | | 5 | C+0 | 0.0 | 0.2 | | 1.5 | 0.1 | 10 | | | | | 0.0 | | | 6 | 0.0 | 0.0 | 0 • 2 | 0 • 3 | 10 | 6.1 | 21 | 35 | 11 | 2 • 3 | 0 • 1 | 0.0 | 6 7 | | 7 | U+0 | 0.0 | 0 • 2 | 0 • 3 | 9.0 | 6.1 | 219 | 34 | 11 | 2 • 2 | 0 • 2 | 0.0 | 6 | | 8 | 0.0 | 0.0 | 0 • 2 | 0 • 3 | 7.9 | 6.0 | 106 | 44 | 9 • 8
9 • 3 | 2+1 | 0 • 1 | 0.0 | 9 | | 9 | C+0 | 0.0 | 0 • 2 | 0 • 3 | 17 | 6 • 3 | 60 | 68 | 8.9 | 1.9 | 0.1 | 0.0 | 10 | | 10 | 0.0 | 0.0 | 0 • 2 | 0 • 3 | 162 | 6+2 | 51 | 44 | 8.9 | 1.9 | 0 • 1 | 0.0 | | | 10 | 0+0 | 0 • 0 | 0 - 2 | 0 • 3 | 35 | 6.1 | 43 | 51 | 9.9 | 1.6 | 0.1 | 0.0 | 11 | | 12 | C • O | 0.0 | 0 • 2 | 0 • 3 | 27 | 5 • 6 | 36 | 41 | 11 | 1.5 | 0 • 1 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0 • 2 | 0 • 3 | 92 | 5.1 | 31 | 35 | 12 | 1.4 | 0 - 1 | 0.0 | 13 | | 14 | 0 + 1 | 0.0 | 0 • 3 | 0 • 3 | 69 | 6.0 | 299 | 35 | 10 | 1.2 | 0.0 | 0.0 | 15 | | 15 | 0 • 0 | 0.1 | 0 • 4 | 0 • 3 | 36 | 9 • 8 | 2 38 | 32 | 9 • 0 | 1 • 2 | 0.0 | 0.0 | 13 | | 16 | 0.0 | 0.0* | 2.5 | 0.3 | 27 | 17 | 111 | 29 | * 8 + 2 | 1.0 | 0 • 0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 2 • 3 * | 0.3 | 21 | 27 | 79 | 26 | 7 • 3 | 0.9 | 0 • 0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 1 • 3 | 0.4 | 17 | 19 | 66 | 23 | 6.7* | 0.9* | 0 • 0 | 0.0 | 19 | | 19 | 0.0 | 0.0 | 1.0 | 0 • 4 | 15 | 19 | 95 | 21 | 5 . 8 | 0.9 | 0 • 0 | 0 • 1 | | | 20 | 0.0 | 0 • 1 | 0 + 8 | 0 • 3 | 13 | 16 | 164 | 20 | 5 • 3 | 0.8 | 0.0 | 0.0* | 20 | | 21 | 0.0 | 0 • 1 | 0 + 8 | 0 • 3 | 12 | 14 | 176 | 19 • | 5.0 | 0.8 | 0.0 | 0.0 | 21 | | 2.2 | 0.0 | 0.1 | 0.7 | 0.4 | 11 | 1.2 | 123 + | 19 | 4.9 | 0.7 | 0.0 | 0 • 0 | 2 2 | | 23 | 0.0 | 0 • 1 | 0 • 7 | 0 • 4 | 10 | 46 | 100 | 18 | 4.9 | 0.6 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0 • 1 | 0 • 7 | 0.4 | 9 • 6 | 35 | 84 | 20 | 5 • 2 | 0.6 | 0 • 0 | 0.0 | 24 | | 2.5 | 0.0 | 0 • 1 | 0 + 6 | 0 • 4 | 8 • 9 | 21 | 75 | 20 | 4 • 5 | 0.5 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0 • 1 | 0.6 | 0 • 4 | 8 • 4 | 17 | 119 | 19 | 4 • 1 | 0.5 | 0.0 | 0.0 | 2 6 | | 27 | 0.0 | 0 • 2 | 0.6 | 0.4 | 7.9 | 18 | 85 | 18 | 3 . 8 | 0.5 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0 • 1 | 0.5 | 0 • 4 | 7.5 | 207 * | 68 | 18 | 3 • 5 | 0.4 | 0 • 0 | 0.0 | 26 | | 29 | 0.0 | 0 • 1 | 0.5 | 0.5 | | 5 7 | 59 | 18 | 3.4 | 0 • 4 | 0.0 | 0.0 | 30 | | 30 | 0.0 | 0 • 1 | 0.5 | 233 * | | 3.8 | 55 | 16 | 3 • 3 | 0 • 4 | 0 • 0 | 0.0 | | | 31 | 0 • 0 | | 0 • 5 | 1400 E | | 33 | | 15 | | 0 + 3 | 0.0 | | 3 | | MEAN | 0.0 | 0+0 | 0.6 | 53.0 | 60.4 | 22.4 | 89.3 | 30.6 | 7.9 | 1.3 | 0 • 1 | 0.0 | MEAN | | MAX | 0.1 | 0 • 2 | 2.5 | 1400 E | 916 E | 207 | 299 | 68.0 | 14.0 | 3.1 | 0 • 2 | 0.1 | MAX. | | MIN. | 0.0 | 0.0 | 0 • 1 | 0.3 | 7.5 | 5.1 | 18.0 | 15.0 | 3 • 3 | 0 • 3 | 0+0 | 0.0 | MIN. | | AC.FT. | 340 | 3 | 35 | 3259 | 3352 | 1375 | 5314 | 1884 | 472 | 82 | 4 | | AC.FT. | E - Estimated NR - No Record # - Orecharge measurement or observation of no flow mode on this day, # - E and # WATER YEAR SUMMARY MINIMUM DISCHARGE GAGE HT MO DAY TIME 10 1 0000 0.0 TOTAL ACRE-FEET 15780 | | LOCATION | V | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|---------|-------------|-------------|---------------|----|------|-------| | LATITUDE | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | LATITUDE | LONGITUOE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 25 14 | 119 52 25 | SE10 6S 19E | 3590E | 8.67 | 4- 3-58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | Station located 15 ft. below Indian Peak Road Bridge, 6.7 mi. SE of Mariposa. Drainage area is 33.6 sq. mi. Altitude of gage is 1,680 ft. (from topographic map.) # DAILY MEAN DISCHARGE IN SECONO FEET MIDDLE FORK CHOWCHILLA RIVER NEAR NIPINNAWASEE WATER STATION NO 864360 | OAY | ост | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |-------|---------|-------|-------|--------|-------|-------|------|------|---------|-------|---------|-------|--------| | 1 | 0.0 | 0.1 | 0+2 | 0.3 | 473 | 4.0 | 17 | 26 | 9.6 | 2.8 | 0+2 | 0+2 | 1 | | 2 | 0.0. | 0+1 | 0.2 | 0+4 | 39 | 3.9 | 14 | 24 | 9.1 | 2.7 | 0.2 | 0 • 2 | 2 | | 3 | 0.0 | 0 • 1 | 0.2 | 0.4 | 1.7 | 3.8 | 12 | 23 | 8 • 2 | 2 • 1 | 0 • 2 | 0 • 2 | 3 | | 4 | 0 • 0 | 0+1 | 0 • 2 | 0.3* | 12 | 3.9 | 11 | 21 | 6 • 8 | 1.9 | 0 • 2 | 0 • 2 | 4 | | 5 | 0.0 | 0.1 | 0 • 2 | 0 • 3 | 8.9* | 4 • 8 | 10 | 19 | 6.6 | 1.8 | 0+2 | 0 • 2 | 5 | | 6 | 0.0 | 0 • 2 | 0.2 | 0.3 | 7.3 | 4.8 | 10 | 19 | 6 . 8 | 1.6 | 0 • 1 E | 0 • 1 | 6 | | 7 | 0.0 | 0+2 | 0 • 2 | 0.3 | 6+1 | 4.7 | 176 | 20 | 6.8 | 1.6 | 0 • 2 E | 0 • 1 | 7 | | 6 | 0.0 | 0 + 1 | 0 • 2 | 0.3 | 5 • 2 | 4.5 | 59 | 25 | 6.5 | 1.5 | 0 • 2 E | 0+1 | 8 | | 9 | 0.0 | 0 • 2 | 0.2 | 0.4 | 8 • 2 | 4.6 | 28 | 43 | 6.2 | 1.5 | 0 • 1 E | 0 • 1 | 9 | | 10 | 0.0 | 0 • 2 | 0 • 2 | 0 • 4 | 71 • | 4 • 4 | 25 | 25 | 6 • 2 | 1.2 | 0.1E | 0.1 | 10 | | 11 | 0.0 | 0.2 | 0 • 2 | 0.4 | 17 | 4.4 | 23 | 28 | 6.2 | 1.0 | 0.1E | 0 • 1 | 11 | | 12 | 0.0 | 0.2 | 0 • 2 | 0.3 | 14 | 4.1 | 22 | 23 | 6.8 | 0.8 | 0 • 1 E | 0 + 1 | 12 | | 13 | 0 • 1 | 0 • 2 | 0 • 2 | 0.3 | 44 | 3 . 7 | 20 | 20 | 7.1 | 0.7 | 0 • 1 E | 0 - 1 | (3 | | 14 | 3.9 | 0 • 3 | 0 • 2 | 0.3 | 36 | 4 • 3 | 141 | 21 | 5.9 | 0.6 | 0 • 1 E | 0 • 2 | 14 | | 15 | 0 + 3 * | 0.3 | 0 • 3 | 0 • 3 | 18 | 5.7 | 125 | 19 | 5.5 | 0.6 | 0 • 1 E | 0 • 2 | 15 | | 16 | 0.1 | 0.3* | 2.7 | 0 • 3 | 14 | 8.0 | 46 | 17 | 5.0 | 0.5 | 0 • 1 E | 0 • 2 | 16 | | 17 | 0.1 | 0 • 3 | 1.2* | 0.3 | 11 | 11 | . 32 | 17 | 4.9 | 0.5 | 0.1E | 0 + 2 | 17 | | 18 | 0.1 | 0 • 3 | 0.7 | 0.3 | 9.7 | 8.4* | 28 | 15 | 4 . 1 + | 0.5* | 0 • 1 E | 0.3 | 18 | | 19 | 0.1 | 0.2 | 0.6 | 0.4 | 8.8 | 13 | 52 | 14 | 3.6 | 0.5 | 0 • 1 E | 0 - 4 | 19 | | 2.3 | 0 • 1 | 0 • 2 | 0.5 | 0 • 4 | 7.8 | 19 | 78 | 14 | 3.5 | 0.5 | 0.1E | 0.40 | 20 | | 21 | 0.1 | 0.3 | 0.4 | 0.4 | 6.4 | 15 | 87 | 12 + | 3.5 | 0.5 | 0 • 1 E | 0.3 | 1.5 | | 22 | 0 + 1 | 0 • 2 | 0.4 | 0.4 | 5 . 8 | 11 | 71 • | 12 | 3 . 8 | 0.5 | 0.1E | 0 • 3 | 2.2 | | 23 | 0.1 | 0.2 | 0.4 | 0.3 | 5.3 | 37 | 54 | 12 | 4.0 | 0.5 | 0.1# | 0 • 3 | 2.3 | | 24 | 0.1 | 0 • 2 | 0 • 4 | 0.3 | 4 • 8 | 24 | 38 | 13 | 3.9 | 0.4 | 0 • 2 | 0.3 | 24 | | 25 | 0.1 | 0 • 2 | 0.4 | 0.3 | 4 • 5 | 13 | 30 | 12 | 3 . 7 | 0 • 3 | 0.1 | 0 + 2 | 2.5 | | 26 | 0.2 | 0 • 2 | 0.4 | 0.4 | 4.5 | 11 | 68 | 12 | 3 • 2 | 0.3 | 0+2 | 0 • 2 | 2 6 | | 27 | 0 • 6 | 0+2 | 0.4 | 0.4 | 4.5 | 11 | 44 | 12 | 3.0 | 0.3 | 0.1 | 0 • 2 | 2.7 | | 28 | 0.2 | 0.2 | 0.4 | 0 • 4 | 4.2 | 182 • | 34 | 11 | 3 • 1 | 0.3 | 0 • 1 | 0 • 1 | 2.8 | | 29 | 0.1 | 0 • 2 | 0 • 4 | 0.6 | | 35 | 29 | 11 | 3.1 | 0.3 | 0 • 1 | 0 • 1 | 29 | | 30 | 0.1 | 0 • 2 | 0.4 | 134 * | | 21 | 28 | 9.9 | 3 • 1 | 0.2 | 0 • 2 | 0.1 | 30 | | 3 | 0.1 | | 0 • 4 | 572 • | | 17 | | 9.3 | | 0 • 2 | 0 • 2 | | 3 - | | MEAN | 0.2 | 0 • 2 | 0.4 | 23 • 1 | 31.0 | 16.2 | 47.1 | 18.0 | 5 • 3 | 0.9 | 0+1 | 0 • 2 | MEAN | | MAX. | 3.9 | 0.3 | 2.7 | 572 | 473 | 182 | 176 | 43.0 | 9.6 | 2 . 8 | 0 • 2 | 0.4 | MAX | | MIN. | 0.0 | 0 • 1 | 0 • 2 | 0.3 | 4.2 | 3.7 | 10.0 | 9.3 | 3.0 | 0.2 | 0+1 | 0 • 1 | MIN. | | C.FT. | 12 | 12 | 26 | 1421 | 1722 | 996 | 2801 | 1109 | 317 | 57 | 8 | 12 | AC.FT. | E — Estimated NR = No Recard & - Oischarge measurement or abservation of no flow mode on this day # - E and ## WATER YEAR SUMMARY MEAN DISCHARGE DISCHARGE MAXIMUM MINIMUM GAGE HT MO DAY TIME 10+10 2 1 0150 DISCHARGE GAGE HT MO DAY TIME 11.7 1280 0.0 10 1 0000 TOTAL 4 C R E - F E E T 8492 | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|--------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | 2ERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.8.M. | C.F.S. | GAGE HT. | DATE | DIO GILLANOE | ONLY | FROM | то | GAGE | OATUM | | 37 22 56 | 119 50 11 | NE25 6S 19E | 1280 | 10.10 | 2- 1-63 | MAR 58-DATE | MAR 58-DATE | 1958 | Date | 0.00 | LOCAL | Station located 6 mi. W of Nipinnawasee, 10 mi. SE of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 sq. mi. Altitude of gage is 1,520 ft. (from topographic map.) ## DAILY MEAN DISCHARGE STRIPED ROCK CREEK NEAR RAYMOND IN SECONO FEET | | WATER | |------------|-------| | STATION NO | YEAR | | B64260 | 1963 | | OAY | OCT. | NOV | O E C. | JAN | FEB. | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | OAY | |----------------------------------|--|--|--|---|---------------------------------|---|-----------------------------------|---------------------------------|---|---------------------------------|----------------------------------|---------------------------------|-------------------------------| | 2
3
4
5 | 0.0
0.0
0.0
0.0 | 0.1
0.1
0.1
0.1
0.1 | 0.1
0.2
0.2
0.2
0.2
0.1 | 0.2
0.2
0.2
0.2
0.2 | 297 #
23
12
9.4
7.5 | 5.4
5.2
4.5
3.4*
2.8 | 6.9
5.8
5.0
5.7
5.0 | 14
13
13
12 | 4.3
3.9
3.5
3.1
3.1 | 0.3
0.3
0.2*
0.2 | 0.0
0.0
0.1
0.1 | 0.1
0.0
0.0
0.0
0.0 | 2 3 4 5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0
0.1 | 0.1
0.1
0.1
0.1
0.1 | 0.1
0.2
0.2
0.1
0.2 | 0.2
0.2
0.2
0.3
0.2 | 6.1
5.0
4.7
11
78 | 2 · 8
2 · 8
2 · 5
2 · 5
2 · 5 | 5 • 2
8 4
2 9
1 5
1 2 | 11 *
10
11
16
11 | 3.2
2.8
2.7
2.6
2.5 | 0.2
0.2
0.2
0.1
0.1 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 |
6
7
8
9 | | 11
12
13
14 | 0.1
0.1
0.2
1.5
0.3* | 0.1
0.1
0.1
0.2
0.2 | 0.2
0.2
0.2
0.2
0.3 | 0 • 2
0 • 2
0 • 2
0 • 2
0 • 2 | 15
14
41
16
13 | 2 • 1
2 • 3
1 • 7
2 • 5
4 • 3 | 11
9.5
8.9
104
55 | 9.8
9.1
9.4
8.7 | 2 · 8
2 · 8
2 · 9
2 · 4
2 · 1 | 0.1
0.1
0.1
0.1 | 0 • 0
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0 | 11
12
13
4
15 | | 16
17
18
19
20 | 0.2
0.2
0.3
0.3
0.3 | 0.1*
0.2
0.2
0.2
0.2 | 1.7
0.4.
0.2
0.2
0.2 | 0.2*
0.2
0.2
0.2
0.2 | 12
10
9•1
8•6
8•1 | 5.0
16
7.5
4.7
3.6 | 26
19
16
31
79 | 8.0
7.2
6.3
5.6
5.4 | 1.9
1.6
1.1
0.9
0.8 | 0.0
0.1
0.1
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.1
0.1 | 16
17
18
19
20 | | 2 I
2 2
2 3
2 4
2 5 | 0.3
0.3
0.3
0.4
0.3 | 0.1
0.2
0.2
0.2
0.2 | 0 • 2
0 • 2
0 • 2
0 • 2
0 • 2 | 0 • 2
0 • 2
0 • 2
0 • 2
0 • 2 | 7.3
7.0
6.5
6.1
6.1 | 3 • 1
3 • 4
12
4 • 1
3 • 2 | 78
34
26
21
22 | 5.0
5.1
5.0
5.2
5.4 | 0.6
0.7
0.7
0.7
0.6 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.1
0.0
0.0 | 21 22 23 24 25 | | 26
27
28
29
30
31 | 0.3
0.2
0.1
0.1
0.1
0.1 | 0.1
0.2
0.2
0.2
0.2
0.2 | 0 • 2
0 • 2
0 • 2
0 • 2
0 • 2
0 • 2 | 0.2
0.2
0.1
0.1
63 * | 5.7
5.2
4.9 | 2.8
3.0
101 *
15
9.6
7.6 | 47
25
20
17
15 | 4.9
4.5
4.4
4.9
4.5 | 0.5
0.4
0.4
0.4 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 26
27
28
29
30 | | MEAN
MAX
MIN.
AC.FT. | 0 • 2
1 • 5
0 • 0
12 | 0.1
0.2
0.1
9 | 0.2
1.7
0.1
15 | 11.9
300 E
0.1
731 | 23.3
297 £
4.7
1292 | 8.0
101
1.7
493 | 27.9
104
5.0
1662 | 8.3
16.0
4.4
507 | 1.9
4.3
0.4
112 | 0.1
0.3
0.0
5 | 0.0
0.1
0.0
1 | 0.0
0.1
0.0
1 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - Na Record # - Discharge measurement or observation of no flow made on this day. # - E and # WATER YEAR SUMMARY | MEAN | OISCHARGE | GAGE HT | MO | DAY | TIME | 892 | E | 7.53 | 2 | 1 | 0150 | MINIMUM | OSCHARGE | GAGE HT | MO | OAY | TIME | Oo0 | 10 | 1 | 0000 TOTAL 4841 11 EX III III | | | LOCATION | V. | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |-------|-----|-----------|-------------------|--------|-----------|---------|--------------|-------------|------|-------|---------|-------| | LATIT | UOF | LONGITUDE | 1/4 SEC. T. B. R. | | OF RECORD |) | OISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | | | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | O S O TARROE | ONLY | FROM | TO | GAGE | DATUM | | 37 20 | 1 | 119 53 35 | NE 9 7S 19E | 1180E | 8.87 | 4- 3-58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | Station located 8.7 mi. N of Raymond, 11 mi. SE of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 sq. mi. Altıtude of gage is approximately 1090 ft. (from USGS topographic maps.) ## DAILY MEAN DISCHARGE MARIPOSA CREEK NEAR CATHAY IN SECOND FEET STATION NO YEAR 1963 862400 | DAY | OCT. | NOV | OEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG. | SEPT. | OAY | |-------------|-------|-------|-------|--------|--------|-------|-------|------|-------|-------|------|--------|--------| | 1 | 0.0 | 0.0 | 0.0 | 1.5 | 1700 * | 10 • | 57 | 64 | 12 | 2.3 | 0.0 | 0.0 | 1 | | 2 | 0.0* | 0.0* | 0.0 | 1.6 | 153 | 9.7 | 41 | 57 | 11 | 2 • 1 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.0 | 1.6 | 62 | 9.5 | 32 | 50 | 10 | 1.7 | 0.0 | 0.0 | 3 | | 4 5 | 0.0 | 0.0 | 0.0 | 1.5 | 35 | 8.9 | 26 | 44 | 8.7 | 1.8 | 0.0 | 0.0 | 4 | | 2 | 0.0 | 0.0 | 0.0* | 1 • 4 | 21 | 8 • 2 | 21 | 38 | 8.4 | 1.8 | 0.0 | 0 • 0* | 5 | | 6 | 0.0 | 0.0 | 0.0 | 1 • 4 | 15 | 8.1 | 23 | 35 | 8 • 6 | 1.7 | 0.0* | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 1.4 | 11 | 8.1 | 327 | 34 | 7.9 | 1.6 | 0.0 | 0.0 | 7 | | 6 | 0.0 | 0.0 | 0.0 | 1.4 | 9.2 | 7.5 | 179 | 40 | 7.4 | 1.4 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 1.4 | 66 | 9.5 | 102 | 65 | 6.8 | 1 . 4 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 1.3 | 647 | 8.8 | 75 | 39 | 6.4 | 1.3 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0 • 2 | 1.3 | 120 | 8 • 2 | 58 | 41 | 7.0 | 1.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 0.8 | 1.2 | 79 | 7.6 | 47 | 34 | 7.3 | 0.9 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.9 | 1.1 | 529 | 6.8 | 38 | 30 | 7.2 | 0.8 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 1.0 | 1.1 | 332 | 7.5 | 423 | 27 | 7.2 | 0.6 | 0.0 | 0.0 | +4 | | 15 | 0.0* | 0.0 | 1.3 | 1.2* | 125 | 13 | 440 | 25 | 6.5 | 0.5 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0* | 86 | 1.2 | 79 | 24 | 211 | 23 | 5.6 | 0.4 | 0.0 | 0.0 | 16 | | 17 | C • O | 0.0 | 16 | 1.2 | 55 | 72 | 132 | 21 | 4.9* | 0.3 | 0.0 | 0.0 | 17 | | 16 | 0.0 | 0.0 | 6.3 | 1.3 | 41 | 53 | 95 | 19 | 4.2 | 0.3* | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 4 • 1 | 1.2 | 33 | 33 | 143 | 18 | 3.7 | 0.3 | 0.0 | 0.0* | 19 | | 20 | 0.0 | 0.0 | 3 • 3 | 1 • 2 | 26 | 24 | 3 3 3 | 17 | 3 • 4 | 0.3 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 2 • 8 | 1.2 | 20 | 20 | 415 | 16 | 3.3 | 0.2 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 2 • 5 | 1.2 | 18 | 21 | 240 * | 16 | 3.7 | 0.1 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0 • C | 2 • 2 | 1.2 | 16 | 47 | 162 | 16 | 3 . 3 | 0.1 | 0.0* | 0.0 | 2 3 | | 24 | 0.0 | 0.0 | 2.1 | 1.2 | 14 | 46 | 121 | 17 * | 3.1 | 0.1 | 0.0 | 0.0 | 24 | | 25 | C.O | 0.0 | 2.0 | 1 • 2 | 13 | 31 | 108 | 18 | 3.1 | 0.0 | 0.0 | 0.0 | 2.5 | | 26 | 0.0 | 0.0 | 1.8* | 1.3 | 12 | 25 | 199 | 16 | 2.9 | 0.0 | 0.0 | 0.0 | 2 6 | | 27 | 0.0 | 0.0 | 1.8 | 1.2 | 11 | 24 | 128 | 14 | 2.5 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 1.6 | 1.2 | 11 | 662 * | 100 | 14 | 2.5 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 1.6 | 1.3 | | 155 | 85 | 14 | 2 • 4 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 1.6 | 453 * | | 86 | 75 | 13 | 2 • 3 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 1.6 | 2490 # | | 64 | | 12 | | 0.0 | 0.0 | | 3 1 | | MEAN | 0.0 | 0.0 | 4.6 | 96.1 | 152 | 49.0 | 148 | 28.6 | 5 . 8 | 0.7 | 0.0 | 0.0 | MEAN | | MAX
MIN. | 0.0 | 0.0 | 86.0 | 2490 E | 1700 | 662 | 440 | 65.0 | 12.0 | 2.3 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 1.1 | 9.2 | 6.8 | 21.0 | 12.0 | 2.3 | 0.0 | 0.0 | 0.0 | MIN | | AC.FT. | | | 281 | 5912 | 8436 | 3012 | 8799 | 1759 | 344 | 46 | | | AC.FT. | - Estimoted E - Estimatea NR - No Record # - Discharge measurement or observation of no flow mode on this day. # - E and # WATER YEAR SUMMARY MINIMUM DISCHARGE GAGE HT MO DAY TIME 0 +0 1 0000 MEAN DISCHARGE DISCHARGE MAXIMUM GAGE HT MO DAY TIME 10.69 2 1 0150 39.5 5290 TOTAL ACRE-FEET 28590 | | | LOCATION | ٧ | MAXII | MUM DISCH | ARGE | PERIOD O | FRECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|---------|---------------|-------------|------|-------|---------|-------| | Ī | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | DOD | ZERD | REF. | | ı | CATTIONE | LONGITODE | M. D. B. B. M. | C.F.S. | GAGE HT. | DATE | 5.0 5.1141.02 | ONLY | FROM | TO | GAGE | DATUM | | | 37 23 55 | 120 00 10 | NE21 6S 18E | 7180Eª | 11.62 | 4- 3-58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | Station located at Co. Rd. bridge, 5.6 mi. E. of Cathay School. Tributary to San Joaquin River. Drainage area is 66.0 sq. mi. Altitude of yage is 1100 ft. (from topographic map.) a-Previously reported as 4530E cfs. After obtaining additional high flow discharge measurements, the stage-discharge relation for high flows was more closely defined. Maximum discharge of record adjusted to present rating. See Table 8-1 for additional information. # DAILY MEAN DISCHARGE IN SECOND FEET MARIPOSA CREEK BELOW MARIPOSA RESERVOIR WATER YEAR 1963 STATION NO B62100 | DAY | OCT. | NOV | ØEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |----------------------|-------------------|--------------------------|-------------------|-------------------|--------------------------|----------------------|----------------------|----------------------|------------------------------|--------------------------|-------------------|-------------------|--------------------| | 1
2
3
4 | 0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0 | 916
896
738
637 | 15
16
14
14 | 64
50
38
35 | 80
63
58
48 | 10 a
10 a
9.9a
9.3a | 1.8
1.7
1.5
1.3 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 1
2
3
4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 325 | 16 | 32 | 40 | 9•0a | 1.2 | 0.0 | 0.0 | 5 | | 6 7 8 | 0.0 | 0.0 | 0.0 | 0.0 | 64
24
22 | 16
14
14 | 23
62
321 | 35
33
32 | 8.7a
8.1a
7.8a | 1.0
0.7
0.5 | 0.0 | 0.0 | 6
7
8 | | 9 10 | 0.0 | 0.0 | 0.0 | 0.0 | 343 | 14
15 | 187
127 | 48 | 7.5a
7.2 | 0.2 | 0.0 | 0.0 | 9 10 | | 11 12 | 0.0 | 0.0 | 0.0 | 0.0 | 374
134 | 16
14 | 90
67 | 34
33 | 7.2
6.9 | 0.0 | 0.0 | 0.0 | 11 12 | | 14 | 0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 174
449
275 | 13
12
16 | 50
124
375 | 28
25
24 | 6.9
6.9 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 14 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 108
64 | 16
27 | 355
239 | 21
20 | 6.6 | 0.0 | 0.0 | 0.0 | 16 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 43
38
32 | 46
39
30 | 155
134
183 | 20
19
18 | 5.3
5.0
4.6 | 0.0 | 0.0 | 0.0 | 18 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 25
21 | 410 | 17 | 4.0 | 0.0 | 0.0 | 0.0 | 21 | | 23
24
25 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | 28
43 | 244
190 | 16
16 | 3.4
3.0 | 0.0 | 0.0 | 0.0 | 23
24
28 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | 39
29 | 134 | 15
14 a | 2.6 | 0.0 | 0.0 | 0.0 | 2.0 | | 2 8
2 9 |
0.0 | 0.0 | 0.0
0.0
0.0 | 0.0 | 18 | 27
258
427 | 198
148
120 | 13 a
12 a
12 a | 2.0
2.0
1.9 | 0.0 | 0.0 | 0.0 | 27
28
29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0
552 | | 198
93 | 96 | 11 a
11 a | 1.9 | 0.0 | 0.0 | 0.0 | 30 | | MEAN
MAX.
MIN. | 0.0 | 0.0 | 0.0 | 18
552
0+0 | 210
916
17 | 50
427
12 | 160
410
23 | 28
80
11 a | 5.9
10.0a
1.9 | 0.3
1.8
0.0 | 0.0 | 0.0 | MEAN
MAX
MIN | | AC.FT. | 0.0 | 0.0 | 0.0 | 1095 | 11687 | 3106 | 9515 | 1742 | 352 | 20 | 0.0 | 0.0 | AC.FT. | E - Estimated NR - Na Recard # - Discharge measurement or abservation of na flow made on this day. # - E and # a - Partially estimated | MAXIMU | М | | 1 | MINIM | UM | | |------------|---|-------|---|---------------|----|-------| |
CACCUT | |
W | 1 |
0 4 0 F F | |
W | 2 1 WATER YEAR SUMMARY 0.0 TOTAL 27517 5 | | | LOCATION | N | MAXII | NUM DISCH | HARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|----------|-------------|-------------|------|-------|------------|-------| | | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF | | 1 | CATITODE | CONGITODE | M. D. B. B. M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 16 52 | 120 09 45 | NE36 7S 16E | 6020 | | 12-24-55 | NOV 52-DATE | NOV 52-DATE | 1952 | | 337.63 | USCGS | Station located 1.5 mi, below Mariposa Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Mariposa Reservoir. Records furn. by U.S.C.E. Drainage area is 108 sq. mi. 941 MEAN 38.0 DISCHARGE MARIPOSA BYPASS NEAR CRANE RANCH IN SECOND FEET WATER STATION NO | DAY | ост | NOV | DEC. | JAN | FEB. | MAR | APR | MAY | JUNE | JOFA | AUG. | SEPT. | VAO | |----------------------------------|-----|-----|------|-----|------|------|-----|-----|------|------|------|-------|----------------------------------| | 1
2
3
4
5 | | | | | | | | | | | | | 3 4 5 | | 6
7
8
9 | | | | | | | | | | | | | 6
7
8
9 | | 11
12
13
14 | | | | | | | | | | | | | 12 13 -4 | | 16
17
18
19
20 | | | | | | No í | low | | | | | | 16
17
18
9 | | 21
22
23
24
25 | | | | | | | | | | | | | 2
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | | | | | | | | | | | | | 26
27
28
29
30
31 | | MEAN
MAX.
MIN.
AC.FT. | | | | | | | | | | | | | MEAN
MAX
MIN.
ACFT | E - Estimated NR - No Record # - Discharge measurement or abservation of no flow made on this day. # - E and # | WATER YEAR SUMM | R YEA | R SU | MMARY | |-----------------|-------|------|-------| |-----------------|-------|------|-------| | MEAN) | 1 | MAXIMUM | | , | 1 (| MINIM | UМ | | | |----------|-----------|----------|---------|------|-----------|----------|----|-----|------| | ISCHARGE | DISCHARGE | GAGE HT. | MO. OAY | TIME | OISCHARGE | GAGE HT. | мо | YAC | TIME | | TOTAL | ١ | |-----------|---| | ACRE-FEET | ı | | NID | ı | | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | 1 | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|------|-------|------------|-------| | | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF | | LATITUDE | LONGITUOE | M.D.B.B.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 12 00 | 130 41 50 | NW 31 8S 11E | | | | | | 1962 | | 0.00 | uscgs | This station was installed in January 1962 for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa bypass by float activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate. 0 OWENS CREEK BELOW OWENS RESERVOIR IN SECOND PEET STATION NO YEAR 806170 1963 | DAY | OCT | NOV | OEC. | JAN | FE8 | MAR. | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|-------|------|------|-------|-----------|------|-----|-----|------|------|-----|------|--------| | | 0.1 | 0.5 | 0.5 | 0.5 | 76 a | 2 | 6 | 8 | 0.8 | 0.0 | 0.0 | 0.0 | 1 | | 5 | 0.2 | 0.5 | 0.5 | 0.5 | 43 a
7 | 2 | 5 | 7 | 0.8 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0 • 2 | 0.5 | 0.5 | 0.5 | 4 | 2 2 | 3 | 6 | 0.6 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.3 | 0.5 | | | 3 | 2 | 3 | 5 | | 0.0 | 0.0 | 0.0 | 5 | | 5 | 0.4 | 0.5 | 0.5 | 0.5 | , | | 3 | 4 | 0.5 | 0.0 | 0.0 | 0.0 | , | | δ | 0.4 | 0.5 | 0.5 | 0.5 | 2 | 2 | 3 | 4 | 0.5 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.4 | 0.5 | 0.5 | 0.5 | 2 | 2 | 9 | 4 | 0.5 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.4 | 0.5 | 0.5 | 0.5 | 2 | 2 | 12 | 5 | 0.5 | 0.0 | 0+0 | 0.0 | 8 | | 9 | 0.5 | 0.5 | 0.5 | 0.5 | 7 a | 2 | 6 | 11 | 0.5 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.5 | 0.5 | 0.5 | 0.5 | 73 a | 2 | 5 | 5 | 0.5 | 0.0 | 0.0 | 0.0 | 10 | | D | 0.5 | 0.5 | 0.5 | 0.5 | 22 a | 2 | 4 | 5 | 0.5 | 0.0 | 0.0 | 0.0 | -11 | | 12 | 0.5 | 0.5 | 0.5 | 0.5 | 8 | 2 | 4 | 4 | 0.5 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.5 | 0.5 | 0.5 | 0.5 | 55 a | 2 | 4 | 3 | 0.5 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.5 | 0.5 | 0.5 | 0.5 | 73 | 2 | 18 | 3 | 0.5 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.5 | 0.5 | 0.5 | 0.5 | 19 | 4 | 39 | 3 | 0.5 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.5 | 0.5 | 5.0 | 0.6 | 10 | 3 | 16 | 3 | 0.5 | 0.0 | 0.0 | 0.0 | 18 | | 17 | 0.5 | 0.5 | 1.2 | 0.6 | 7 | 4 | 11 | 2 | 0.5 | 0.0 | 0.0 | 0.0 | 17 | | 16 | 0.5 | 0.5 | 0.7 | 0.6 | 5 | 4 | 8 | 2 | 0.5 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.5 | 0.5 | 0.6 | 0.6 | 4 | 3 | 9 | 2 | 0.5 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.5 | 0.5 | 0.6 | 0.6 | 4 | 2 | 23 | 1.6 | 0.5 | 0.0 | 0.0 | 0.0 | 5.0 | | 21 | 0.5 | 0.5 | 0.6 | 0.6 | 3 | 2 | 80 | 1.6 | 0.5 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0+5 | 0.5 | 0.6 | 0.6 | 3 | 2 | 48 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 5.5 | | 23 | 0.5 | 0.5 | 0.6 | 0.6 | 3 | 6 | 19 | 1.5 | 0.5 | 0+0 | 0.0 | 0.0 | 2.3 | | 24 | 0.5 | 0.5 | 0.6 | 0.6 | 3 | 4 | 14 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 24 | | 2.5 | 0.5 | 0.5 | 0.6 | 0.6 | 3 | 3 | 12 | 1.6 | 0.5 | 0.0 | 0.0 | 0.0 | 2.5 | | 26 | 0.5 | 0.5 | 0.5 | 0.6 | 2 | 3 | 42 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.5 | 0.5 | 0.5 | 0.6 | 2 | 3 | 21 | 1.3 | 0.4 | 0.0 | 0.0 | 0.0 | 27 | | 2.8 | 0.5 | 0.5 | 0.5 | 0.6 | 2 | 60 | 14 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 2.6 | | 29 | 0.5 | 0.5 | 0.5 | 0.7 | | 46 | 11 | 1.2 | 0.1 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.5 | 0.5 | 0.5 | 1.7 | | 10 | 9 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.5 | | 0.5 | 34.0a | | 7 | | 1.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.4 | 0.5 | 0.7 | 1.7 | 16 | 6.2 | 15 | 3,3 | 0.5 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.5 | 0.5 | 5.0 | 34.0 | 76 | 60 | Bó | 11 | 0.8 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.1 | 0.5 | 0.5 | 0.5 | 2.0 | 2.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC,FT. | 27.6 | 29.8 | 42.8 | 103 | 887 | 385 | 920 | 204 | 28.6 | 0.0 | 0.0 | 0.0 | AC.FT. | E - Estimoted NR - No Record & - Dischorge measurement or observation of no flow mode on this day. # - E and a - Flow partially computed from reservoir outlet | | | | | | | | | | | | _ | |----------|-----------|---------|--------|------|---|-----------|----------|----|-----|------|---| | MEAN | | MAXIMU | | | 1 | | MINIM | | | | | | ISCHARGE | DISCHARGE | GAGE HT | MO OAY | TIME | l | DISCHARGE | GAGE HT. | мо | OAY | TIME | П | | 3.6 | 88 | | 4 21 | | ш | 0.0 | | | | | | WATER YEAR SUMMARY TOTAL ACRE-FEET 2627 | | LOCATIO | v. | MAXII | MUM DISCH | ARGE | PERIOD 0 | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-------------------------|--------|-----------|----------|---------------|-------------|------|-------|---------|-------| | LATITUOE | LONGITUDE | GITUDE 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | OATE | OID CITATION. | ONLY | FROM | то | GAGE | DATUM | | 37 18 28 | 120 11 35 | SW23 7S 16E | 590 | | 12-24-55 | FEB 50-DATE | | 1950 | | 338.22 | usces | Station located 0.25 mi. below Owens Dam. Tributary to San Joaquin River, via Mariposa Creek and Bear Creek. Flow regulated by Owens Reservoir. Records furn. by U.S.C.E. Drainage area is 25.6 sq. mi. # DAILY MEAN DISCHARGE IN SECONO FEET BEAR CREEK NEAR CATHAY WATER STATION NO 855400 1963 | DAY | OCT. | NOV | OEC | JAN | FEB. | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----------|------|------|--------------|-------|--------|-------|-------|-------|-------|-------|--------|--------|--------| | - | 0.0 | 0.0 | 0.0 | 0.6 | 1060 E | 2.0* | 41 | 24 | 1.3 | 0.0 | | | | | 2 | 0.0* | 0.0* | 0.0 | 0.6 | 95 | 1.8 | 33 | 19 | 1.2 | 0.3 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.0 | 0.6 | 40 | 1.8 | 23 | 17 | 1.1 | 0.4 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.5 | 24 | 1.5 | 19 | 14 | 1.0 | 0.3 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.0* | 0.5 | 15 | 1.4 | 17 | 12 | 0.8 | | | | 5 | | , | 0.0 | 0.0 | 0.0* | 0.5 | 15 | 1.4 | 17 | 12 | 0.8 | 0 • 3 | 0.0 | 0 • 0* | 1 | | 6 | 0.0 | 0.0 | 0.0 | 0.5 | 11 | 1.3 | 17 | 9.7 | 0.9 | 0.3 | 0 • 0* | 0 + 0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.5 | 8.0 | 1.2 | 34 | 8.6 | 0.9 | 0.2 | 0.0 | 0.0 | | | 8 | 0.0 | 0.0 | 0.0 | 0 • 4 | 5.7 | 1.2 | 36 | 12 | 0.9 | 0 • 2 | 0.0 | 0.0 | 6 | | 9 | 0.0 | 0.0 | 0.0 | 0.5 | 40 | 1.4 | 28 | 19 | 0 • 8 | 0 + 3 | 0.0 | 0 • 0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0 • 4 | 290 | 1 + 4 | 21 | 11 | 0 • 8 | 0.3 | 0.0 | 0.0 | 10 | | £1 | 0.0 | 0.0 | 0+0 | 0 • 3 | 61 | 1.3 | 18 | 14 | 0 • 8 | 0.3 | 0.0 | 0 • 0 | | | 12 | 0.0 | 0.0 | 0.0 | 0.3 | 41 | 1.2 | 15 | 11 | 0.9 | 0 • 2 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.3 | 374 | 1.0 | 13 | 8.7 | 0 • 8 | 0.2 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.3 | 154 | 1.2 | 312 E | 7.6 | 0.7 | 0.2 | 0.0 | 0.0 | 14 | | 15 | 0.0* | 0.0 | 0.0 | 0.3* | 58 | 2.6* | 336 | 6.1 | 0.6 | 0.2 | 0.0 | 0.0 | 15 | | | **** | *** | | | '' | | | | 0.00 | | 0.0 | 0.0 | | | 16 | 0.0 | 0.0* | 24 | 0 • 3 | 33 | 3.7 | 114 | 5.2 | 0.6 | 0.2 | 0.0 |
0.0 | 16 | | 17 | 0.0 | 0.0 | 8.6 | 0.3 | 22 | 29 | 60 | 4.7 | 0.5* | 0.2 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 3.7 | 0 • 3 | 17 | 37 | 39 | 4.0 | 0.4 | 0.2 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 2 • 3 | 0 • 3 | 13 | 28 | 75 | 3.4 | 0.4 | 0.2 | 0.0 | 0.0* | 19 | | 20 | 0.0 | 0.0 | 1.7 | 0.2 | 11 | 18 | 219 | 3.3 | 0.4 | 0.2 | 0.0 | 0.0* | 20 | | 20 | 0.0 | 0.0 | 1.7 | 0.2 | 11 | 10 | 217 | ,,, | 0.4 | 0.2 | 0.0 | 0.0 | - | | 21 | 0.0 | 0.0 | 1.3 | 0.3 | 8.0 | 14 | 248 | 2 . 8 | 0 • 4 | 0 • 1 | 0 • 0 | 0 • 0 | 2! | | 22 | 0.0 | 0.0 | 1.1 | 0.3 | 6.4 | 18 | 108 * | 2.5 | 0 • 4 | 0 + 1 | 0.0 | 0.0 | 5.5 | | 23 | 0.0 | 0.0 | 0.9 | 0.2 | 5.4 | 66 | 63 | 2.4 | 0 • 3 | 0.1 | 0.0* | 0 • 0 | 2.3 | | 24 | 0.0 | 0.0 | 0 • 8 | 0 • 2 | 4.5 | 42 | 43 | 2.6* | 0.3 | 0.1 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.7 | 0 • 2 | 3.5 | 27 | 37 | 2.7 | 0 • 3 | 0 • 1 | 0.0 | 0.0 | 2.5 | | 1 | | | | | | | | | 0.0 | 0.1 | 0.0 | 0.0 | | | 5.6 | 0.0 | 0.0 | 0 • 6 * | 0 • 2 | 3.1 | 20 | 122 | 2.3 | 0.3 | 0.1 | 0.0 | 0.0 | 2.6 | | 27 | 0.0 | 0.0 | 0.7 | 0 • 2 | 2.7 | 20 | 80 | 2.1 | 0 • 3 | 0.0 | 0.0 | 0.0 | 2.7 | | 28 | 0.0 | 0.0 | 0.7 | 0.2 | 2.3 | 5/6 # | 51 | 1.8 | 0 • 3 | 0.0 | 0.0 | 0.0 | 2.8 | | 29 | 0.0 | 0.0 | 0+6 | 0.2 | | 108 | 37 | 1.7 | 0.3 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.6 | 128 | | 54 | 29 | 1.6 | 0.3 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0.6 | 937 # | | 39 | | 1.5 | | 0.0 | 0.0 | 0.0 | 3 1 | | MEAN | 0.0 | 0.0 | 1.6 | 34.1 | 86.0 | 36.2 | 76.3 | 1.7 | 0.6 | 0 • 2 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 0.0 | 24.0 | 937 E | 1060 E | 576 E | 336 | 24.0 | 1.3 | | | | MAX | | MIN. | 0.0 | | | | 2 • 3 | 1.0 | | | | 0 • 4 | 0.0 | 0.0 | MIN | | AC.FT. | 0.0 | 0.0 | 0 • 0
9 7 | 0 • 2 | | | 13.0 | 1.5 | 0.3 | 0.0 | 0 • 0 | 0.0 | AC.FT. | | MUT L | | | 97 | 2132 | 4777 | 2225 | 4538 | 4 7 3 | 3.8 | 11 | | | | E — Estimated NR — Na Record & — Oischarge measurement or observation at no flow made on this day. # — E and # O'SCHARGE 19.7 MEAN MAXIMUM 015CHARGE GAGE HT MO DAY TIME 3850 E 9.98 2 1 0220 2 1 0220 MINIMUM DISCHARGE GAGE HT MO DAY TIME 10 1 0000 0.0 YEAR SUMMARY TOTAL ACRE-FEET 14290 | | LOCATION | ٧ | MAXI | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|--|-------|-----------|--------|-----------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | DNGITUDE 1/4 SEC. T.8 R.
M. O.B. B.M. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF | | LATITUDE | LONGITUDE | | | GAGE HT. | DATE | - OTO OTTAIN OF | ONLY | FROM | TO | GAGE | DATUM | | 37 28 38 | 120 06 43 | SW21 5S 17E | 3850E | 9.98 | 2-1-63 | DEC 57-DATE | | 1957 | | 0.00 | LOCAL | 4538 WATER Station located at Co. Rd. bridge, 3.7 mi. N of Cathay School. Tributary to San Joaquin River. Drainage area is 24.6 sq. mi. Altitude of gage is approx. 1,210 ft. (From U.S.G.S. topographic map.) ## DAILY MEAN DISCHARGE BEAR CREEK BELOW REAR RESERVOIR IN SECOND FEET WATER YEAR 1963 STATION NO B05570 | DAY | ост | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|-----|-----|------|------|------|----------|----------|----------|--------|------|-----|------|-------| | | 0.0 | 0.0 | 0.0 | 3 | 1185 | 14 | 43 | 40 | 6 | 0.4 | 0.0 | 0.0 | 1 2 | | 2 | 0.0 | 0.0 | 0.0 | 3 | 424 | 14 | 38 | 35 | 6 | 0.4 | 0.0 | 0.0 | 3 | | 3 | 0.0 | 0.0 | 0.0 | 3 | 75 | 13 | 30 | 31 | 5
5 | 0.4 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 3 | 42 | 12
12 | 23
18 | 28
25 | 9 | 0.3 | 0.0 | 0.0 | 5 | | 2 | 0.0 | 0.0 | 0.0 | 3 | 28 | 12 | 1.0 | 25 | 4 | 0.3 | 0.0 | 0.0 | 1 | | 6 | 0.0 | 0.0 | 0.0 | 3 | 21 | 11 | 17 | 22 | 4 | 0.3 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 3 | 1 4 | 10 | 21 | 21 | 4 | 0.3 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 3 | 12 | 12 | 38 | 20 | 4 | 0.2 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 3 | 2.4 | 11 | 32 | 33 | 3 | 0.1 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 3 | 450 | 11 | 27 | 30 | 3 | 0.1 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 3 | 140 | 11 | 22 | 23 | 3 | 0.1 | 0.0 | 0.0 | -11 | | 12 | 0.0 | 0.0 | 0.0 | 3 | 60 | 12 | 19 | 23 | 3 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 3 | 400 | 12 | 16 | 19 | 3 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 2 | 506 | 11 | 157 | 16 | 3 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 2 | 135 | 14 | 488 | 14 | 3 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 2 | 90 | 18 | 195 | 14 | . 3 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 3 | 68 | 21 | 94 | 12 | 2 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 3 | 52 | 50 | 55 | 10 | 2 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 2 | 43 | 56 | 56 | 10 | 1 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 2 | 37 | 44 | 152 | 9 | 1 | 0.0 | 0.0 | 0.0 | 2 0 | | 21 | 0.0 | 0.0 | 0.0 | 2 | 32 | 34 | 513 | 9 | 1 | 0.0 | 0.0 | 0.0 | 21 | | 2.2 | 0.0 | 0.0 | 0.5 | 2 | 28 | 30 | 190 | 8 | 1 | 0.0 | 0.0 | 0.0 | 2.2 | | 2.3 | 0.0 | 0.0 | 4 | 3 | 25 | 54 | 105 | 6 | 1 | 0.0 | 0.0 | 0.0 | 2 3 | | 24 | 0.0 | 0.0 | 4 | 3 | 23 | 84 | 74 | 8 | 1 | 0.0 | 0.0 | 0.0 | 24 | | 2.5 | 0.0 | 0.0 | 4 | 2 | 21 | 56 | 50 | 8 | 0.9 | 0.0 | 0.0 | 0.0 | 2.5 | | 2.6 | 0.0 | 0.0 | 4 | 3 | 19 | 46 | 139 | 8 | 0.8 | 0.0 | 0.0 | 0.0 | 26 | | 2.7 | 0.0 | 0.0 | 4 | 3 | 17 | 41 | 135 | 8 | 0.7 | 0.0 | 0.0 | 0.0 | 27 | | 2.8 | 0.0 | 0.0 | 4 | 3 | 16 | 647 | 86 | 7 | 0.6 | 0.0 | 0.0 | 0.0 | 2.8 | | 29 | 0.0 | 0.0 | 4 | 3 | | 290 | 55 | 7 | 0.5 | 0.0 | 0.0 | 0.0 | 29 | | 3.0 | 0.0 | 0.0 | 4 | 4 | | 78 | 44 | 7 | 0.4 | 0.0 | 0.0 | 0.0 | 3.0 | | 31 | 0.0 | | 3 | 513 | | 49 | | 6 | | 0.0 | 0.0 | | 3 1 | | MEAN | 0.0 | 0.0 | 1.2 | 19 | 143 | 57 | 98 | 17 | 2.5 | 0.9 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 0.0 | 4 | 513 | 1185 | 647 | 513 | 40 | 6 | 0.4 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 2 | 12 | 10 | 16 | 6 | 0.4 | 0.0 | 0.0 | 0.0 | MIN. | | AC.FT. | 0.0 | 0.0 | 70 | 1188 | 7932 | 3531 | 5816 | 1029 | 150 | 5.7 | 0.0 | 0.0 | AC.F1 | E - Estimated NR - No Record # - Discharge measurement or observation of no flow mode on this day. # - E and 兼 WATER YEAR SUMMARY | MEAN | | MAXIMU | м | - | | 1 | | MINIM | UM | _ | | |-----------|-----------|---------|----|-----|------|---|-----------|---------|----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | 1 | DISCHARGE | GAGE HT | мо | DAY | TIME | | 27.2 | 1320 | | 2 | 1 | | ŀ | 0.0 | | | | | TOTAL ACRE-FEET 19722 | ı | | LOCATION | 1 | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|----------|-------------|-------------|------|-------|---------|-------| | | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | OISCHARGE | GAGE HEIGHT | PER | 8100 | ZERO | REF | | į | LATITUDE | LUNGITUDE | M, D, B, & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 21 27 | 120 14 05 | NE 5 7S 16E | 4460 | | 12-24-55 | JAN 55-DATE | | 1955 | | 320.50 | USCGS | Station located approx. 0.75 mi. below Bear Dam. Tributary to San Joaquin River. Flow regulated by Bear Reservoir. Records furn. by U.S.C.E. Drainage area is 72 sq. mi. ## DAILY MEAN DISCHARGE BURNS CREEK AT HORNITOS IN SECOND FEET WATER STATION ND 856400 1963 | DAY | OCT | NOV | OEC | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | OAY | |----------------------------------|---------------------------------|---------------------------------|---|---------------------------------|-------------------------------------|--|---------------------------------|---------------------------------|---|----------------------------------|---------------------------------|---------------------------------|----------------------------------| | 1
2
3
4
5 | 0.0
0.0*
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.1
0.1
0.1 | 252 #
22
9.3
6.0
4.4 | 1.4
1.4
1.1
1.0 | 8.1
5.2
4.5
3.9* | 17
15
14
13 | 0.6
0.5
0.4
0.4* | 0.1
0.1
0.0*
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.1
0.0 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.1
0.1
0.1
0.1
0.1 | 3.0
2.6
2.1
103 E
118 * | 1.0
0.9
1.0
1.1
1.0 | 4.0
4.8
3.9
3.2
3.0 | 11 *
11
13
16
13 | 0.3
0.3
0.3
0.2
0.1 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 6
7
8
9 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.1
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.1
0.1
0.1
0.1
0.1 | 12
29
231
43
14 | 0.9
0.9
0.8
1.0
1.4* | 2.9
2.5
2.2
71
70 | 14
11
7.2
4.0
1.7 | 0 • 1
0 • 1
0 • 1
0 • 1
0 • 1 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 11
12
13
14 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 5.0
0.5
0.2
0.2
C.1 | 0.1
0.1
0.1
0.2
0.2 | 8.9
6.2
4.9
4.2
3.6 | 1.9
1.9
1.5
1.1 | 15
8.6
6.1
13
219 E | 1.5
1.4
1.2
1.0
1.0 | 0.1
0.1
0.1
0.1
0.1 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0+0
0+0
0+0
0+0 | 16
17
18
19
20 | | 2 1
2 2
2 3
2 4
2 5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0 • 1
0 • 1
0 • 1
0 • 1
0 • 1 | 0.2
0.2
0.1
0.2
0.2 | 3+1
2+8
2+3
2+0
1+7 | 1.0
3.5
6.0
2.8
2.3 | 127
28
15
9•8
8•9 | 1.0
1.0
0.9
0.9 | 0.1
0.1
0.1
0.1
0.1 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0
0.0 |
0.0
0.0
0.0
0.0 | 0.1*
0.1
0.1
0.1
0.1 | 0.2
0.2
0.2
0.3
1.0 | 1.6
1.6
1.4 | 2.2
9.5
287 E
21
10
8.0 | 40
13
8.4
6.6
5.7 | 0.9
0.9
0.8
0.8
0.7 | 0 • 1
0 • 1
0 • 1
0 • 1
0 • 1 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 26
27
28
29
30
31 | | MEAN
MAX.
MIN.
AC.FT. | 0.0
0.1
0.0 | 0.0
0.0
0.0 | 0.2
5.0
0.0
14 | 3.3
99.0E
0.0
206 | 32.0
252 E
1.4
1777 | 12•1
287 E
0•8
747 | 23.9
219 E
2.2
1422 | 6 • 1
17 • 0
0 • 6
374 | 0.2
0.6
0.1 | 0.0
0.1
0.0 | 0 • 0
0 • 0
0 • 0 | 0.0
0.1
0.0 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - No Record # - Discharge measurement or observation of no flow mode on this day. I - E and # WATER YEAR SUMMARY | MEAN | MEAN | MAXIMUM | MINIMUM TOTAL ACRE-FEET 4551 | | | LOCATION | V | | MAXII | NUM DISCH | HARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|---------------|-----|--------|-----------|---------|-------------|-------------|------|-------|------------|-------| | ľ | LATITUOS | LONGITUDE | 1/4 SEC. T. 8 | R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF. | | 1 | LATITUDE | LONGITODE | M. D. B. 8 M. | | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 29 42 | 120 14 17 | SE17 5S | 16E | 4340E | 10.66 | 2-15-62 | DEC 58-DATE | DEC 58-DATE | 1958 | | 0.00 | LOCAL | Station located 130 ft. S of Stockton-Mariposa Road, 0.2 mi. SW of Hornitos. Drainage area is 26.7 sq. mi. Maximum discharge from slope-area measurement. Altitude of gage is approx. 780 ft. (From U.S.G.S. topographic mag) ## TABLE 8-22 ## DAILY MEAN DISCHARGE BURNS CREEK BELOW BURNS RESERVOIR WATER STATION NO B56400 1963 | DAY | ост | NOV | OEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | 111 | |--------|-----|-----|------|-----|------|------|------|-----|------|------|-----|------|--------|---------| | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 260 | 4 | 14 | 10 | 0.5 | 0.0 | 0.0 | 0.0 | 1 | Ш | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 63 | 4 | 11 | 9 | 0.5 | 0.0 | 0.0 | 0.0 | 2 | and the | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | 4 | 8 | 8 | 0.5 | 0.0 | 0.0 | 0.0 | 3 | 100 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 3 | 7 | 8 | 0.5 | 0.0 | 0.0 | 0.0 | 4 | 100 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | 4 | 6 | 7 | 0.5 | 0.0 | 0.0 | 0.0 | 5 | ll' | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 4 | 6 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 6 7 | . 5 | | | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 4 | 6 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 3 | 6 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 8 9 | 400 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 80 | 3 | 6 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | 400 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 364 | 3 | 5 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | an a | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 58 | 3 | 5 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | BU. | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 60 | 3 | 4 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 1 1 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 494 | 2 | 4 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 400 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 246 | 2 | 7 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | 400 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 66 | 4 | 106 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | | 16 | 0.0 | 0.0 | 1.9 | 0.0 | 46 | 4 | 59 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | 3 5 | | 17 | 0.0 | 0.0 | 1.4 | 0.0 | 31 | 4 | 20 | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | | 18 | 0.0 | 0.0 | 0.9 | 0.0 | 20 | 4 | 10 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | 1 12 | | 19 | 0.0 | 0.0 | 0.5 | 0.0 | 15 | 4 | 8 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | | 50 | 0.0 | 0.0 | 0.4 | 0.0 | 11 | 4 | 87 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 100 | | 2 1 | 0.0 | 0.0 | 0.2 | 0.0 | 9 | 4 | 427 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2 ! | 4 . | | 2.2 | 0.0 | 0.0 | 0.2 | 0.0 | 8 | 3 | 100 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 1 1 | | 2.3 | 0.0 | 0.0 | 0.1 | 0.0 | 7 | 3 | 54 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2 3 | | | 24 | 0.0 | 0.0 | 0.1 | 0.0 | 6 | 4 | 34 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 21 | | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | 5 | 22 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | - 85 | | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | 5 | 79 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | 1 25 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | 5 | 70 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | 1 | | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 339 | 31 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 1 51 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 79 | 18 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | 23 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 32 | 14 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | 30 | | 31 | 0.0 | | 0.0 | 79 | | 17 | | 1.0 | | 0.0 | 0.0 | | 3 1 | 17 | | MEAN | 0.0 | 0.0 | 0.2 | 2.5 | 68 | 18 | 41 | 4.1 | 0.1 | 0.0 | 0.0 | | MEAN | EN | | MAX | 0.0 | 0.0 | 1.9 | 79 | 494 | 339 | 427 | 10 | 0.5 | 0.0 | 0.0 | 0.0 | MAX. | I HAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 2 | 4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | 1/15 | | AC.FT. | 0.0 | 0.0 | 11 | 157 | 3773 | 1123 | 2448 | 251 | 5 | 0.0 | 0.0 | 0.0 | AC.FT. | 1 MFT | E - Estimated NR - No Record # - Diecharge measurement or observation of no flow mode on this day # - E and # WATER YEAR SUMMARY MEAN MAXIMUM MINIMUM OISCHARGE GAGE HT MO DAY TIME OISCHARGE GAGE HT MO DAY TIME 10.7 890 3 28 0.0 TOTAL ACRE-FEET 7768 | LOCATION | | | | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----------|----------|-----------|---------------------|-------------------|----------|----------|--------------|---------------|--------|----|--------|-------| | LATI | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | | OIS CHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REE | | | LATTIOUE | LONGITUDE | M. D. B. B. M | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 22 27 | 120 16 35 | NE36 6 5 15E | 2590 | | 12-24-55 | APR 50- DATE | | 1950 | | 260.60 | uscgs | Station located 0.5 mm. below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furn. by U.S.C.E. Drainage area is 73.8 sq. mi. #### DAILY MEAN DISCHARGE SAN JOAQUIN RIVER NEAR STEVINSON IN SECONO FEET | STATION NO | WATER | |------------|-------| | 807400 | 1963 | | OAY | ост | NDV | DEC. | JAN | FE8 | MAR. | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |--------|--------|------|------|------|--------|------|-------|-------|------|------|------|-------|--------| | 1 | 22 | 9.1 | 12 | 16 | 177 | 97 | 659 | 881 | 115 | 61 | 55 | 53 | 1 | | 2 | 25 | 9.1 | 9.0 | 15 | 515 | 90 | 591 | 581 | 124 | 67 | 54 | 54 | 2 | | 3 | 23 | 9.2 | 7.9 | 15 | 1590 | 83 | 458 | 441 | 127 | 78 | 51 | 54 | 3 | | 4 | 21 | 20 | 7.7 | 15 | 2120 * | 77 | 349 | 339 | 127 | 89 | 56 | 53 | 4 | | 5 | 32 | 30 | 7.7 | 13 | 1630 | 74 | 234 | 326 | 120 | 100 | 60 | 54 | 5 | | 6 | 36 | 30 | 7.9 | 11 | 1020 | 67 | 2 29 | 249 | 120 | 104 | 66 | 55 | 6 | | 7 | 33 | 22 | 7.7 | 40 | 579 | 60 | 356 | 212 | 128 | 104 | 71 | 54 | 7 | | В | 28 | 17 | 7.9 | 87 | 298 | 56 | 390 | 180 | 134 | 95 | 74 | 50 | 8 | | 9 | 23 | 12 | 8.3 | 96 | 190 | 51 | 371 | 161 | 143 | 92 | 73 | 47 | 9 | | 10 | 17 | 11 | 8.3 | 88 | 403 | 48 | 339 | 149 | 135 | 97 | 70 | 43 | 10 | | B | 17 | 12 | 8.5 | 75 | 722 | 45 | 400 | 145 | 144 | 91 | 66 | 42 | 11 | | 15 | 17 | 14 | 8.3 | 54 | 1040 | 42 | 456 # | 258 | 137 | 81 # | 69 | 43 | 12 | | 13 | 20 | 14 | 8.7 | 62 | 1230 | 40 | 445 | 261 | 146 | 72 | 71 | 47 | 13 | | 14 | 17 | 14 | 9.0 | 64 | 1490 | 39 | 412 | 205 | 164 | 67 | 68 | 62 | 14 | | 15 | 14 | 13 * | 9.9 | 61 | 1960 | 38 | 393 | 196 | 164 | 72 | 69 | 77 | 15 | | 16 | 14 | 13 | 17 | 47 | 1930 | 41 | 644 | 184 | 151 | 71 | 65 | 83 | 16 | | 17 | 13 | 13 | 21 | 35 * | 1370 | 40 | 920 | 167 | 150 | 61 | 61 | 82 | 17 | | 1.8 | 13 * | 13 | 34 | 29 | 932 | 49 | 1140 | 142 | 145 | 58 | 58 | 78 * | 18 | | 19 | 12 | 8.9 | 38 + | 24 | 648 | 59 | 1080 | 124 | 123 | 56 | 56 | 94 | 19 | | 5.0 | 12 | 7.8 | 39 | 23 | 464 | 57 | 916 | 106 | 99 * | 58 | 59 | 106 | 50 | | 21 | 11 | 9.3 | 39 | 22 | 354 | 52 * | 905 | 99 # | 83 | 61 | 56 | 125 | 21 | | 5.5 | l îô l | 12 | 37 | 20 | 279 | 52 | 1120 | 96 | 75 | 61 | 54 * | 141 | 5.5 | | 23 | 10 | ii | 35 | 19 | 193 | 53 | 1530 | 91 | 73 | 53 | 50 | 145 | 2.3 | | 24 | 10 | 10 | 33 | 20 | 162 | 79 | 1700 | 90 | 76 | 51 | 53 | 143 | 24 | | 25 | 11 | 8.9 | 31 | 27 | 144 | 103 | 1580 | 97 | 8.8 | 52 | 59 | 112 | 2.5 | | 26 | 11 | 9.3 | 29 | 23 | 131 | 87 | 1370 | 95 | 93 | 54 | 65 | 114 | 2.6 | | 27 | ii | 11 | 23 | 18 | 116 | 91 | 1200 | 101 | 90 | 56 | 74 | 91 | 2.7 | | 2.8 | ii | 11 | 19 | 16 | 106 | 103 | 1180 | 111 | 79 | 53 | 79 | 80 | 2.6 | | 29 | 10 | 11 | îé | 17 | | 252 | 1160 | 122 | 75 | 52 | 66 | 73 | 29 | | 30 | 9.5 | 12 | 16 | 23 | | 765 | 1070 | 127 | 67 | 52 | 58 | 70 | 30 | | 31 | 9.2 | | 15 | 51 | | 775 | | 126 | | 56 | 54 | -,0 | 3 1 | | MEAN | 16.9 | 13.3 | 18.5 | 36.3 | 778 | 115 | 787 | 209 | 117 | 70.2 | 62.6 | 77.5 | MEAN | | MAX. | 36.0 | 30.0 | 39.0 | 96.0 | 2120 | 775 | 1700 | 881 | 164 | 104 | 79.0 | 145 | MAX | | MIN. | 0.2 | 7.8 | 7.7 | 11.0 | 106 | 38.0 | 229 | 90.0 | 67.0 | 51.0 | 50.0 | 42.0 | MIN. | | AC,FT. | 1037 | 789 | 1136 | 2233 | 43230 | 7071 | 46800 | 12820 | 6932 | 4314 | 3848 | 4612 | AC.FT. | E - Estimated NR - No Record # - Discharge measurement or observation of no flow made on this day. # - E and # WATER YEAR SUMMARY TOTAL 134800 | LOCATION MAXIMUM DISCHARGE | | | | PERIOD O | F RECORD | DATUM OF GAGE | | | | | | | | |----------------------------|-----------|---|----|--------------------------|----------|---------------|-----------|-------------|--------|------|------|------|-------| | LATITUDE | LONGITUDE | _DNGITUDE 1/4 SEC. T. B. R. M. D. 8. 8 M. | | 4 SEC. T. B.R. OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | | | LONGITODE | | | В.М. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 17 42 | 120 51 00 | 26 | 78 | 10E | 606D | 73.D4 | 2-17-62 | OCT 61-DATE | | 1961 | | 0.00 | USCGS | Station located on bridge 2.3 miles south of
Stevinson on Lander Avenue. PANOCHE DRAIN NEAR DOS PALOS | STATION NO | WATER
YEAR | |------------|---------------| | B00975 | 1963 | IN SECONO FEET AUG SEPT. DAY APR JUNE JULY OAY FE8. MAR MΔY OCT NOV DEC. JAN 6.5** 20.6** 56.2** 3 4 5 4 8.4** 39.6** 19.1** 9 10 8 9 0 INSUFFICIENT DATA TO PUBLISH DAILY FLOWS 11 12 13 14 15 17.8** STATION DISCONTINUED AS OF 16 17 18 19 29.9** 2 2 2 3 2122232324 24 26 27 28 29 30 2 6 2 7 34.1** 28 29 30 31 MEAN MAX MEAN MAX MIN. AC.FT. MIN. E - Estimated NR - Na Record NN - No Record * - Discharge measurement or abservation of no flow made on this day. # - E and # ** - Result of discharge measurement. | WATER YEAR SU | JMMARY | |---------------|--------| |---------------|--------| | MEAN) |) (| MAXIMUM | | | | | | MINIMUM | | | | | | | | |----------|-----------|---------|--|--|--------------|--|-----------|---------|----|-----|------|--|--|--|--| | ISCHARGE | DISCHARGE | | | | TIME
0700 | | DISCHARGE | GAGE HT | МО | DAY | TIME | | | | | | TOTAL | | |-----------|--| | ACRE-FEET | | | NR | | NEW. | | LOCATION | J | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|-----------------|-----------|-----------|-----------|---------------|---------------|---------------|------|------|-------| | LATITUDE | LONGITUDE | 1/4 SEC T. 8 R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | | LATITUDE | LONGITUDE | M. D. 8 8 M | C.F.S | GAGE HT. | DATE | 0.00 | ONLY | FROM | TO | GAGE | DATUM | | 36 55 25 | 120 41 19 | NW 5 12S 12E | | 8.12 | 2/11/63 | FEB 59-SEP 62 | FEB 59-JUL 63 | 1959 | | 0.00 | LOCAL | Station located midway between outside and main canals 0.5 mi. S of main canal levee road, 5.6 mi. SW of Dos Palos. This is drainage returned to San Joaquin River. Gage sometimes affected by backwater due to inadequate drainage facilities. Station discontinued 7-2-63. # DAILY MEAN DISCHARGE NORTH FORK MERCED RIVER NEAR COULTERVILLE IN SECONO FEET WATER STATION NO YEAR 1963 852600 | DAY | ост | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |----------------------------------|--|----------------------------------|---|---|---|--------------------------------------|---------------------------------|------------------------------|---|---|--------------------------------------|------------------------------------|----------------------------------| | 2 3 4 5 | 0+3
0+2
0+2*
0+2
0+3 | 0 • 6
0 • 6
0 • 4
0 • 4 | 0.5
0.6
0.7*
0.8
0.7 | 0.6
0.6
0.5
0.5* | 1100 E
151
49
26
17 | 6.7°
6.6
6.6
6.4
6.4 | 35
27
23
19 • | 34
30
28
25
23 | 11
10
9.7
9.2*
9.1 | 2.8
2.6
2.7
2.6
2.4 | 1 • 4
1 • 4
1 • 4
1 • 4 | 1 • 1
1 • 1
1 • 0
0 • 8 * | 1
2
3
4
5 | | 6
7
8
9 | 0.3
0.4
0.5
0.5 | 1.0
0.9
0.8
0.8 | 0.7
0.9
0.9
0.9
1.0 | 0.4
0.4
0.4
0.5 | 13
10
9.2
11
25 | 6.3
6.1
5.9
6.8
6.3 | 24
39
38
34
31 | 23 *
22
30
32
29 | 8.9
8.7
8.2
7.6
7.9 | 2.4
2.3
2.4
2.3
2.1 | 1.4
1.3
1.3
1.3 | 1.0
0.9
0.8
0.9 | 6
7
8
9 | | 11
12
13
14 | 0.7
0.8
1.0
1.0 | 0.5
0.4
0.4
0.4* | 1.0
1.1
1.2
1.3
2.0 | 0 • 4
0 • 4
0 • 4
0 • 4 | 15
14
44 •
51 | 6.3
6.3
5.8
6.3
7.6 | 27
24
21
145
207 | 45
42
35
30
26 | 8 · 3
7 · 2
6 · 9
6 · 8
5 · 8 | 2 · 1
2 · 1
2 · 1
1 · 8
1 · 7 | 1.4
1.4
1.4
1.0E | 0.9
0.8
1.0
1.0 | 11
12
13
14 | | 16
17
18
19 | 0.6
0.8
1.1
1.4 | 0.6
0.7
0.9
1.1
1.2 | 8 • 0
1 • 9
1 • 5 •
1 • 3
1 • 0 | 0 • 4
0 • 4
0 • 4
0 • 3
0 • 3 | 20
16
13
11 | 9.0
11
9.9
11 | 122
74
55
79
94 | 24
21
20
19 | 5 • 4
5 • 0
4 • 6
4 • 3
3 • 9 | 1.6
1.5
1.5* | 0.9E
0.9E
0.9E
0.8E
0.8E | 0.8
0.8
0.8
0.9* | 16
17
18
19 | | 21
22
23
24
25 | 1.6
1.7
1.9
1.9
2.0 | 1.3
1.5
1.6
1.7
1.7 | 1.2
1.2
1.2
1.0 | 0.3
0.3
0.3
0.4
0.4 | 8 · 4
8 · 1
8 · 1
7 · 7
7 · 7 | 13
14
26
32
24 | 104
110 *
111
96
79 | 16
16
15
15 | 3 • 7
4 • 0
4 • 0
3 • 7
3 • 5 | 1.5
1.5
1.5
1.4
1.3 | 0.8E
0.8#
0.7E
0.7E | 1.0
0.9
1.1
1.1 | 21
22
23
24
25 | | 26
27
28
29
30
31 | 2 • 2
2 • 2
2 • 3
1 • 1
0 • 4
0 • 5 | 1.9
1.1
0.6
0.6
0.4 | 0.9
0.9
0.8
0.8
0.7 | 0.5
0.5
0.5
0.7
186 * | 7.2
6.9
6.9 | 19
22
212 *
117
60
41 | 69
57
49
43
39 | 14
13
13
13
12 | 3 · 2
3 · 0
3 · 1
2 · 9
2 · 9 | 1.3
1.3
1.3
1.3
1.4 | 0.6#
0.6E
0.5#
0.8
1.0 | 1.2
1.2
1.1
1.1 | 26
27
28
29
30
31 | | IEAN
IAX.
VIIN.
C.FT. | 1.0
2.3
0.2
61 | 0.9
1.9
0.4
51 | 1 • 2
8 • 0
0 • 5
76 | 60.9
1690 E
0.3
3746 | 60+6
1100 E
6+9
3363 | 23+6
212
5+8
1449 | 63.1
207
17.0
3753 | 22.9
45.0
11.0
1406 | 6 · 1
11 · 0
2 · 9
362 | 1 · 8
2 · 6
1 · 3
114 | 1.0
1.4
0.5E
64 | 1 • 0
1 • 2
0 • 8
58 | MEAN
MAX
MIN
AC.FT. | E - Estimated NR - No Record # - Oischarge measurement ar observation at no flow mode on this day # - E and # DISCHARGE MEAN MAXIMUM DISCHARGE GAGE HT MO DAY TIME 20.0 NR OISCHARGE GAGE HT MO DAY TIME WATER YEAR SUMMARY NR TOTAL ACRE-FEET 14500 | | LOCATION | 4 | MAXII | NUM DISCH | JM DISCHARGE PERIOD OF RECORD | | | | DATUM OF GAGE | | | | | |----------|-----------|------------------|-----------|-----------|-------------------------------|-------------|-------------|--------|---------------|------|-------|--|--| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | | | LATITUDE | LONGITODE | M.O.B.&M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | | 37 44 51 | 120 02 12 | NW19 2S 18E | 3440 | 7,83 | 1-31-63 | DEC 58-DATE | | 1958 | | 0.00 | LOCAL | | | Station located 40 ft. above Greeley Hill Road Bridge, 9 mi. NE of Coulterville. Drainage area is 30.3 sq. mi. Altitude of gage is 2,360 ft. (from U.S.G.S. topographic map.) #### DAILY MEAN DISCHARGE MAXWELL CREEK AT COULTERVILLE IN SECONO FEET STATION NO YEAR 1963 851250 | OAY | OCT | NOV | OEC. | JAN | FE8. | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |---------|------|-------|------|-------|-------|-------|------|------|------|------|-----|------|-------| | - | | | 0.0 | 0.2 | 279 E | 1.5* | 18 | 9.8 | 2.2 | 0.4 | 0.0 | 0.0 | | | 1 | 0.0 | 0.0 | | | 14 | 1.4 | 15 | 9.4 | 2.3 | 0.4 | 0.0 | 0.0 | 2 | | 2 | 0.0 | 0.1 | 0.0 | 0.2 | | | | 8.5 | 2.0 | 0.3* | 0.0 | | 3 | | 3 | 0.0* | 0 • 1 | 0.0 | 0.2 | 5.0 | 1.5 | 12 | | | | | 0.0 | 4 | | 4 | 0.0 | 0.1 | 0.0 | 0.2 | 3.0 | 1.3 | 8.0 | 7.9 | 2.0* | 0.3 | 0.0 | 0.0 | | | 5 | 0.0 | 0.0 | 0.0 | 0.2 | 2.3 | 1.4 | 6.5 | 7.0 | 1.9 | 0.3 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.2 | 1.8 | 1.5 | 8.5 | 6.8* | 1.9 | 0.3 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.3 | 1.5 | 1.4 | 14 | 6.3 | 1.8 | 0.3 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.3 | 1.4 | 1.3 | 11 | 9.8 | 1.6 | 0.3 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.3 | 5.0 | 1.5 | 8.9 | 9.6 | 1.5 | 0.2 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.2 | 49 | 1.3 | 7.6 | 10 | 1.6 | 0.2 | 0.0 | 0.0 | 10 | | 0 | 0.0 | 0.0 | 0.0 | 0.2 | 7.9 | 1.2 | 6.9 | 35 | 1.7 | 0.1 | 0.0 | 0.0 | 31 | | 12 | 0.0 | 0.0 | 0.0 | 0.2 | 5.5 | 1.3 | 5.9 | 20 | 1.8 | 0.2 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.2 | 97 | 1.1 | 5.5 | 15 | 1.8 | 0.2 | 0.0 | 0.0 | 13 | | 14 | 0.3 | 0.0 | 0.1 | 0 • 2 | 38 | 1.3 | 106 | 12 | 1.6 | 0.1 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 0.2 | 0.2* | 11 | 1.7 | 139 | 9.9 | 1.3 | 0.1 | 0.0 | 0.0 | 15 | | 13 | 0.0 | 0.0 | 0.2 | 0.2 | ** | | | | | | | | | | 16 | 0.0 | 0.0 | 6.1 | 0.2 | 6+2 | 2 • 8 | 50 | 7.7 | 1.2 | 0.1 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 1.3 | 0.2 | 4.6 | 6.1 | 26 | 7.1 | 1.1 | 0.1 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.6* | 0.2 | 3.4 | 6.3 | 18 | 6.3 | 1.0 | 0.1 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.5 | 0.2 | 2.9 | 6.3 | 56 | 5.2 | 0.9 | 0.1* | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.4 | 0.2 | 2.6 | 8.6 | 88 | 4.6 | 0.9 | 0.0 | 0.0 | 0.0 | 2.0 | | 2 1 | 0.0 | 0.0 | 0.3 | 0.2 | 2.2 | 8 • 2 | 124 | 4.3 | 0.9 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.3 | 0.2 | 1.9 | 9.3 | 94 * | 4.0 | 1.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.3 | 0.2 | 1.9 | 34 | 51 | 3.8 | 0.9 | 0.0 | 0.0 | 0.0 | 2 3 | | 24 | 0.0 | 0.0 | 0.2 | 0.3 | 1.8 | 18 | 31 | 3.5 | 0.8 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.2 | 0.2 | 1.6 | 9.8 | 23 | 3.4 | 0.7 | 0.0 | 0.0 | 0.0 | 2.5 | | | 0.0 | 0.0 | 0.2 | 0.2 | 1.00 | 7 6 0 | | | | | | | | | 26 | 0.1 | 0.0 | 0.2 | 0.3 | 1.6 | 6.4 | 27 | 2.9 | 0.6 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.1 | 0.1 | 0.3 | 0.3 | 1.6 | 9.1 | 19 | 2.7 | 0.6 | 0.0 | 0.0 | 0.0 | 27 | | 2.6 | 0.0 | 0.0 | 0.2 | 0.3 | 1.5 | 263 # | 16 | 2.8 | 0.5 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.2 | 0.3 | | 47 | 14 | 2.8 | 0.6 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.1 | 0.0 | 0.2 | 52 * | | 20 | 12 | 2.2 | 0.5 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.1 | 0.0 | 0.2 | 331 # | | 15 | | 2.0 | | 0.0 | 0.0 | | 3 1 | | MEAN | 0.0 | 0.0 | 0.4 | 12.6 | 19.8 | 15.8 | 34.1 | 7.8 | 1.3 | 0.1 | 0.0 | 0.0 | MEA | | MAX. | | | | 331 E | 279 E | 263 E | 139 | 35.0 | 2.3 | 0.4 | 0.0 | 0.0 | MAX | | MIN. | 0.3 | 0.1 | 6.1 | | | | | | 0.5 | 0.0 | 0.0 | 0.0 | MIN | | AC.FT. | 0.0 |
0.0 | 0.0 | 0.2 | 1.4 | 1.1 | 5.5 | 2.0 | 78 | 8 | 0.0 | 0.0 | AC.F | | 46.F 1. | 2 | 1 | 23 | 773 | 1101 | 973 | 2027 | 481 | / 6 | 8 | | | 1.0.1 | E - Estimoted NR - No Record # - Dischorge measurement or observation of no flow made on this doy # - E and # MEAN MAXIMUM | MAXIMUM | | OISCHARGE | GAGE HT | MO DAY | TIME | 1300 E | 5.47 | 1 | 31 | 2330 MINIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | 10 | 1 | 0000 WATER YEAR SUMMARY TOTAL ACRE-FEET 5466 EM HL (1) (1) | | LOCATION | N | MAXII | NUM DISCH | HARGE | PERIOD OF RECORD DATUM OF GAG | | | | OF GAGE | | |----------|-----------|------------------|-----------|-----------|---------|-------------------------------|-------------|--------|----|---------|-------| | | | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | 515 51111102 | ONLY | FROM | TO | GAGE | DATUM | | 37 42 58 | 120 11 20 | SE34 2S 16E | 1720Eª | 5.73 | 2- 8-60 | DEC 58-DATE | | 1958 | | 0.00 | LOCAL | Station located below Dogtown Road Bridge, 0.5 mi. NE of Coulterville. Tributary to Merced River. Drainage area is 17.0 sq. mi. Altitude of gage is 1740 ft. (from topographic map.) a-Previously reported as 956 cfs. After obtaining additional high flow discharge measurements, the stage-discharge relation for high flows was more closely defined. See Table B-1 for additional information. TABLE 8-27 # DAILY MEAN DISCHARGE MERCED RIVER BELOW SHELLING IN SECOND FEET WATER STATION NO 805170 1963 | DAY | OCT. | NOV | O € C. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | OAY | |--------------|-------|-------|--------|------|--------|-------|-------|--------|--------|------|------|-------|--------| | 1 | 61 | 8 • 6 | 7.5 | 9.9 | 177 | 1510 | 868 | 887 | 2880 | 132 | 84 | 65 | | | 2 | 16 | 7.8 | 7.6 | 9.7 | 61 | 499 | 862 | 892 | 2900 | 140 | 85 | 70 | 2 | | 3 | 8 . 8 | 8.6 | 7.8 | 9.2 | 38 | 67 | 875 | 882 | 3270 | 149 | 84 | 62 | 3 | | 4 | 7.2 | 11 | 9.7 | 8.5 | 32 | 55 | 857 | 873 | 3000 | 164 | 86 | 61 | 4 | | 5 | 6.1 | 11 | 9.4 | 10 | 31 | 48 | 631 | 780 | 1750 | 147 | 85 | 64 | 5 | | 6 | 6.7 | 12 | 9.4 | 14 | 766 | 45 | 971 | 558 | 1740 | 84 | 76 | 68 | 6 | | 7 | 8 • 4 | 12 | 9 • 2 | 17 | 552 | 42 | 1080 | 743 | 1490 | 72 | 73 | 61 | 7 | | 8 | 8.0 | 11 | 8.8 | 18 | 1440 | 50 | 978 | 1540 | 987 | 76 | 84 | 60 | 6 | | 9 | 7.1 | 10 | 9.9 | 18 | 1520 | 99 | 668 | 3150 * | 1190 | 73 | 81 | 66 | 9 | | 10 | 6.3 | 10 | 9 • 2 | 17 | 1630 | 107 | 679 | 4630 | 1060 | 72 | 82 | 61 | 10 | | 11 | 6+3 | 9.9 | 9.6 | 17 | 1510 | 82 | 664 | 3930 | 203 | 80 | 85 | 59 | 1 | | 12 | 6.4 | 9 • 2 | 11 | 16 | 1510 | 6.8 | 676 | 3420 | 165 | 61 * | 85 | 56 | 12 | | 13 | 7.7 | 6.8 | 9.3 | 17 | 1730 | 63 | 670 | 1970 | 145 | 77 | 85 | 75 | 13 | | 14 | 11 | 7.9 | 11 | 16 | 1550 | 64 | 851 | 1250 | 145 | 77 | 87 | 66 | 14 | | 15 | 11 | 6.90 | 29 | 17 | 1530 * | 65 | 856 | 1090 | 139 | 78 | 91 | 66 | 15 | | 16 | 13 | 6.9 | 45 | 17 | 1510 | 64 | 829 | 1190 | 792 | 80 | 85 | 67 | 16 | | 17 | 15 | 6.8 | 33 | 18 * | 1510 | 69 | 733 • | 2440 | 3010 | 86 | 8.6 | 69 4 | | | 18 | 14 | 7.4 | 25 * | 19 | 1500 | 74 | 859 | 3530 | 2930 | 98 | 85 | 81 | 18 | | 19 | 11 • | 8.0 | 21 | 23 | 1500 | 62 * | 990 | 3720 | 2940 | 104 | 73 | 76 | (9) | | 2.0 | 12 | 7.6 | 20 | 24 | 1500 | 54 | 974 | 3960 | 2300 • | 100 | 70 | 63 | 20 | | 21 | 12 | 7.5 | 19 | 24 | 1500 | 48 | 946 | 4030 | 2230 | 101 | 56 | 60 | 21 | | 22 | 11 | 7.6 | 18 | 24 | 1510 | 46 | 893 | 4110 | 1390 | 104 | 68 | 60 | 2.2 | | 23 | 11 | 7.9 | 17 | 25 | 1490 | 42 | 896 | 4230 | 901 | 106 | 72 • | 61 | 23 | | 24 | 9.8 | 7 . 8 | 17 | 25 | 1490 | 42 | 1270 | 4120 | 758 | 112 | 76 | 63 | 2.4 | | 25 | 9+3 | 6 • 3 | 16 | 25 | 1490 | 41 | 1450 | 2830 | 428 | 107 | 75 | 46 | 25 | | 26 | 9•3 | 8.7 | 14 | 26 | 1500 | 42 | 1720 | 2730 | 262 | 107 | 70 | 45 | 26 | | 27 | 8 • 6 | 10 | 12 | 25 | 1490 | 44 | 1580 | 3690 | 347 | 96 | 71 | 41 | 2.7 | | 2 6 | 8 - 4 | 8 • 3 | 10 | 24 | 1500 | 311 | 1420 | 3990 | 447 | 92 | 61 | 42 | 2.8 | | 29 | 8.6 | 7.4 | 10 | 25 | | 1130 | 1180 | 3070 | 403 | 91 | 61 | 38 | 29 | | 30 | 8.1 | 7.7 | 10 | 32 | | 1020 | 1090 | 2890 | 195 | 97 | 64 | 38 | 30 | | 31 | 8 • 7 | | 10 | 100 | | 875 | | 2700 | | 93 | 62 | | 3 1 | | MEAN | 11.2 | 8 . 8 | 14.7 | 21.6 | 1199 | 220 | 961 | 2575 | 1347 | 99.3 | 77+1 | 60.4 | MEAN | | MAX.
MIN. | 61.0 | 12.0 | 45 . 0 | 100 | 1730 | 1510 | 1720 | 4630 | 3270 | 164 | 91.0 | 81.0 | MAX | | MIN. | 6.1 | 6 • 8 | 7.5 | 8.5 | 31.0 | 41.0 | 664 | 558 | 139 | 72.0 | 56.0 | 38.0 | MIN. | | AC,FT. | 690 | 521 | 903 | 1330 | 66580 | 13540 | 58350 | 156300 | 80130 | 6105 | 4740 | 3594 | AC.FT. | E — Estimated NR - Na Recard # — Otecharge measurement ar abservation af no flow made on this day - E and # | MEAN | H | |-----------|---| | D:SCHARGE | Ш | | 545 | Ц | | MEAN | | MAXIMU | | | | ١ | | MINIM | | | | |---------|-----------|---------|----|-----|------|---|-----------|---------|----|-----|------| | SCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | П | DISCHARGE | GAGE HT | MO | DAY | TIME | | 545 | 4910 | 12.51 | 5 | 10 | 0510 | | 5 • 7 | 4 - 85 | 10 | 5 | 2400 | WATER YEAR SUMMARY | 1 | TOTAL | | |---|-----------|--| | | ACRE-FEET | | | - | 394800 | | | | LOCATION | N . | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|-----------|-----------|---------|-------------|-------------|---------------|----|------|-------| | | LONGITUDE | 1/4 5EC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | LATITUDE | CONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 30 06 | 120 27 03 | NE17 5S 14E | 4910 | 12.51 | 5-10-63 | NOV 58-DATE | | 1958 | | 0.00 | LOCAL | Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Plow regulated by Exchequer power plant and Lake McClure. Prior to November, 1958, records available for a site 3.6 mi. downstream. Altitude of gage is 221 feet, USGS datum. -CACTS FICE 1 -1,0 "52" TO TRAINED R G WOMENT THE LEGISLATE CHARGE PROPERTY OF THE CONTROL CONTR | * * | | |---------|-----| | was see | 240 | -455 | a | | As. | D, | -1 | 2.5 | 443 | 75 | 1016 | * 04 | | 5.6 | 4i | |-----------|------|-----|------|-----|-------|------|------|----------|-------|---------------|----------|------| | | | | | 3 | 6 | * q | UN | ~. | 4 4 | 74 | · q. | 6 | | | 13 | á | 4 | 3 | 46 | -3 | - 3 | 20 | · · | 7 | ۵ | D | | | 12 | ds. | | 3 | 20 | 42 | 2.3 | 9 % | 4 7 | | -0- | G | | | 74 | 4 | 4 | -3 | 75 | 23 | | >2 | 24 | of the second | - | 4 | | | 19 | à | | 3 | .7 | - | 8.2 | 9.2 | 900 | 3.05 | - | -40 | | | 20 | 4 | 4 | 3 | 4.7 | | | | | | | | | | -27 | 4 | - 6 | 7 | - | 7 | 40 | 12 | 11 % | 20 | - | -0 | | | 35 | A. | i i | 79 | 48 | 3 14 | ~ 13 | - | 20 44 | 6.43 | 75- | - | | | | 4. | | 3 | 43 | 34 | Off | 100 | D 43 | 6.3 | 1767 | 2 | | | 9 | 26 | 7 | - 2 | 127 | 3 | ų. | 3 " | 1.00 | - | 100 | 8 | | | Z | Δ. | 4 | 3 | -27 | 7 6 | 4.0 | -m es 10 | 143 | ij. | ~ | - | | | 3 | 4 | 3 | 3 | 170 | 19 | 7. | - 26 | 70 | ٦ | in. | 4 | | | - 2 | ě | 6 | | 3-7 | 79 | 700 | 70 | 6.2 | (d) (q) | 3.69 | 3 | | | 9 | 5 | 4 | 3 | 1.7 | 20 | 7 | 2110 - | 7% | A | 2: | 0 | | | 4 | 2 | L | | 342 | t-m. | 30- | 7 | Cl-4 | 114_ | 7. | 4. | | | | ü | è | 3 | 130 | 4.39 | 410 | 760 | 2~ | 12 | -6- | 127 | | | | | | | | 2.5 | 9= | 2 | - ~9 | q- | 24 | -244 | | | 4. | 4 | 4 | | 248 | | 86 | 136 | 21 | 18 | 394 | 11 | | | E | 9 | 7.76 | 3 | 3-4 | 7 | 4 | 7.7 | 424 | 2. | UL | 11 . | | | 7 | 5 | -2 | 3 | 253 | 3- | 9.6 | 429 | 750 | 7 | Li | .2 | | | 7 | 5 | 2/ | 3 | 322 | | 94 | 42.0 | 7-7 | -3 | 3,4 | 16 | | | 3- | - | 5 | 4 | 200 | 14 | 74 | 4.4 | | - | | | | | - | * | 4 | 161 | 340 | 2-4 | -0 | -429 | -3.7 | - 1 | žu. | 14 | | | 2 | 4 | 3 | - | 550 | 3.6 | 706 | -070 - | 206 | | 320 00 | 15 | | - | ó | -4 | Z. | Z | 546 | 3-0 | 93 | -007 | Ď ž. | 1 - | | 13 | | 2 | ó | 0 | 7 | 3 | 244 | 30 | .06 | -4-2 | 129 | -7 | The same | 34_ | | - | 7 | 4 | 3 | 3 | 544 | 22 | 3.90 | 730 | 0 | 7 | 200 | 34 | | · c | **** | | -6 | 9 | 549 | 12 | 249 | 257 | 73 | 20 | Car. | 14 | | | | - | 7 | 20 | 344 | 11 | :59 | 2:2 | 144- | 22 | the | .3 | | 2 | - 2 | -6 | 9 | 2 | 340 | 35 | F0-4 | 416 | -90 | | 347 | 131 | | 2 | 9 | 4 | 7 | 15 | 2 -4 | 30 | 126 | 770 | 69 | 3 | 781 | 12 | | - | 7 | 9 | ž. | - 9 | | 100 | 112 | 311 | -05 | 16 | 19. | 10- | | | ± | 2 | 7 | 13 | | -27 | | 366 | | :0 | "Bi | | | 4E3001 | 249 | 7=4 | 7920 | 601 | 340 | 31 | 105 | 71. | 342 | -45" | 15144 | -1- | | AME. | 77 | | 72 | -23 | .442 | 153 | 355 | 3 | 3.2 | .29 | Bt | 3-40 | | HISTO | | 4 | 504 | 3-4 | 7.4 | 12 | 2.7 | 12 | .22. | To de | Street, | 2n+D | | | | 600 | | | 3420 | 9736 | 5779 | 36-30 | 5004 | 719 | 194451 | 5949 | | William . | 535 | 200 | -465 | 559 | 04450 | 2444 | 7773 | 30- 20 | 2000 | 7.7 | 744 | | | | | | WI THE | 514 | IST ISTANIARY | | | | | | |---------|--------|-----------|-----------|-----------------|---------------|-------|-------------|--|--|--| | MELDI | | 46.23 H.J | | At Militerality | | | | | | | | i mage: | . sage | wife F | r6 and 46 | - 2 | BRADE | 42E 5 | HE IDS " ME | | | | | 43 | ~659 | 2 = = 5 | 2 .+99 | | Seed | - 66 | - 99 LTM | | | | | -C 73 | | | 4047 | in in Inci- | GRE | -EMIL . | | INTIN IF BUT | | | |-------|--------|-----------|------|-------------|--------|---------------------------------------|-------------|--------------|--------|----| | | _MATTE | 1 EC = | | F FEEGBR | | A PORTE | use + Eller | FPMO. | EST | F | | TE DE | | - U.S.See | -7. | MGE - | , Jack | , , , , , , , , , , , , , , , , , , , | 1, | THIS | afric. | DE | e see o . . # DAILY MEAN DISCHARGE ORESTIMBA CREEK NEAR CROWS LANDING IN SECOND FEET WATER STATION NO 808720 1963 | DAY | ост. | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG. | SEPT | DAY | |--------|-------|---------|--------|------|--------|-------|--------|------|-------|---------|--------|------|--------| | , | 2 • 8 | 0 • 0
× | 0.0 | 0.0 | 1880 # | 0.0 | 60 | 68 | 29 | 8.7 | 14 | 10 | 1 | | 2 | 1.8 | 0.0 | 0.0 | 0.0 | 359 # | 0.0 | 39 | 21 | 22 | 6.4 | 13 | 24 | 2 | | 3 | 1.8 | 0.0 | 0.0* | 0.0* | 101 | 0.0 | 71 | 9.6 | 12 | 13 | 11 | 12 | 3 | | 4 | 1 • 3 | 0.0 | 0.0 | 0.0 | 27 . | 0.0 | 55 | 6.7 | 1.9 | 9.4 | 16 | 12 | 4 | | 5 | 1+1 | 0.0 | 0.0 | 0.0 | 5 • 6 | 0.0 | 23 | 4.4 | 2 • 8 | 8.4 | 26 | 12 | 5 | | 6 | 1.7 | 2 • 1 | 0.0 | 0.0 | 0.9 | 0.00 | 26 | 5.2 | 1.9 | 11 | 12 | 23 | 6 | | 7 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 264 | 16 | 1.4 | 15 | 11 | 29 | 7 | | 8 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 158 | 6.3 | 2.1 | 27 | 12 | 31 | 8 | | 9 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96 ≉ | 11 | 4.0 | 25 | 9.7 | 18 | 9 | | 10 | 0.3 | 6 • 1 | 0.0 | 0.0 | 57 | 12 | 67 | 6.4 | 10 | 8.5 | 9.9 | 8.9 | 10 | | -11 | 0.1 | 2 • 2 | 0 • 0 | 0.0 | 40 | 21 | 65 | 5.7 | 24 | 6.5 | 8 • 2 | 6.5 | 0 | | 12 | 0 • 2 | 0 • 2 | 0.0 | 0.0 | 15 | 1.2 | 104 | 6.8 | 20 | 11 | 11 | 11 | 12 | | 13 | 0.1 | 0.0 | 0.0 | 0.0 | 399 | 2 • 3 | 109 | 8.0 | 25 | 18 | 13 | 20 | 13 | | 14 | 0.1 | 3+5 | 0 • 0. | 0.0 | 314 * | 4.4 | 113 | 8.4 | 7.1 | 14 | 13 | 16 | 14 | | 15 | 0.0 | 2.9* | 0.0 | 0.0 | 127 | 3 • 3 | 73 | 6.6 | 2.4 | 7.6 | 18 | 9.2 | 15 | | 16 | 0.0 | 0.7 | 0.0 | 0.0 | 62 | 41 | 76 | 8.4* | 2.5 | 8.4 | 12 | 5.7 | 16 | | 17 | 0.0 | 0.1 | 0.0* | 0.0 | 31 | 85 | 101 | 12 | 2.6 | 8 . 2 * | 16 | 5.7 | 17 | | 18 | 0.0* | 0.0 | 0.0 | 0.0* | 16 | 11 | 76 | 10 | 3.5 | 8 . 2 | 14 | 7.2* | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 1.7 | 74 * | 8.5 | 2.2* | 9.3 | 25 | 8.5 | 19 | | 20 | 0.0 | 0.0 | 0+0 | 0.0 | 2 • 1 | 0.9* | 88 | 8.5 | 1 • 0 | 13 | 16 * | 7.8 | 5.0 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 13 | 141 | 9.5 | 1.9 | 13 | 12 | 8.8 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 49 | 1 23 | 13 | 2.5 | 13 | 12 | 8.1 | 23 | | 23 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 101 | 128 | 6.5 | 3 • 0 | 13 | 11 | 6.4 | | | 24 | 0.0 | 3 • 0 | 0.0 | 0.0 | 0.0 | 55 | 84 | 12 | 5 • 1 | 15 | 12 | 11 | 24 | | 25 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 104 | 55 | 42 | 4 • 8 | 12 | 9.7 | 7.4 | 23 | | 26 | 0.0 | 0+2 | 0.0 | 0.0 | 0.0 | 55 | 80 | 29 | 2.6 | 12 | 8 • 7 | 6.0 | 26 | | 27 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 49 | 108 | 37 | 2.3 | 10 | 7.9 | 5.6 | 2.7 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 137 | 96 | 47 | 1.8 | ii | 9.4 | 7.7 | 2.8 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 251 | 105 | 22 | 2 • 2 | 13 | 14 | 6.6 | 2 9 | | 30 | 0.0 | 0.0 | 0.0 | 0.0* | | 92 | 111 | 53 | 2.5 | 14 | 13 | 5.3 | 3.0 | | 31 | 0.0 | | 0.0 | 361 | | 65 | | 39 | | 14 | 9.4 | | 3 1 | | MEAN | 0.4 | 0.8 | 0.0 | 11.6 | 123 | 37.3 | 92 • 3 | 17.7 | 6.9 | 12 • 1 | 12.9 | 11.7 | MEAN | | MAX | 2 • 8 | 6 • 1 | 0.0 | 361 | 1880 E | 251 | 264 | 68.0 | 29+0 | 27.0 | 26 • 0 | 31.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 4.4 | 1.0 | 6.4 | 7.9 | 5.3 | MIN. | | AC.FT. | 25 | 45 | | 716 | 6833 | 2291 | 5492 | 1086 | 409 | 747 | 793 | 695 | AC.FT. | E - Estimated NR - Na Record # - Directorge measurement or observation at na flow made on this day. # - E and # WATER YEAR SUMMARY TOTAL ACRE-FEET 19130 | | LOCATION | V | MAXI | MUM DISCH | ARGE | PERIOD (| F RECORD | DATUM OF GAGE | | | | |----------|------------|------------------|--------|---------------|---------|-------------|-------------|---------------|-----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF | | LATITODE | EDIVOTIODE | M D.B.&M. | C.F.S. | GAGE HT. DATE | | | ONLY | FROM | TO | GAGE | DATUM | | 37 24 59 | 121 00 45 | SW B 6S 9E | 2650E | 12.08 | 2- 1-63 | DEC 57-DATE | Dec 57-DATE | 1957 | | 0.00 | LOCAL | Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map). # DAILY MEAN DISCHARGE MERCED RIVER AT CRESSEY IN SECONO FEET WATER YEAR STATION ND 805155 1963 | DAY | ост | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|-------|------|-------|--------| | , | 174 | 63 | 59 | 74 | 450 | 1530 | 906 | 991 | 3070 | 258 | 86 | 91 | 1 | | 2 | 177 | 61 | 59 | 76 | 502 | 1320 | 916 | 923 | 3130 | 173 | 92 | 95 | 2 | | 3 | 154 | 62 | 59 | 77 | 241 | 449 | 916 | 909 | 3270 | 187 | 95 | 92 | 3 | | 4 | 134 | 62 | 55 | 78 | 162 | 255 | 922 | 895 | 3510 | 207 | 102 | 99 | 4 | | 5 | 118 | 62 | 58 | 76 | 129 | 175 | 883 | 883 | 2440 | 218 | 114 | 97 | 5 | | 6 | 109 | 61 | 60 | 78 | 97 | 170 | 914 | 735 | 2060 | 214 E | 102 | 97 | 6 | | 7 | 101 | 59 | 60 | 79 | 980 | 162 | 1090 | 520 | 2060 | 168 E | 85 | 88 | 7 | | 8 | 95 | 61 | 60 | 83 | 828 | 142 | 1080 | 1110 | 1590 | 128 | 66 | 85 | 6 | | 9 | 96 | 62 | 73 | 82 | 1510 | 138 | 930 | 1810 * | 1250 | 97 | 68 | 85 | 9 | | 10 | 91 | 61 | 69 | 83 E | 2270 | 151 | 822 | 4400 | 1820 | 90 | 79 | 84 | 10 | | 11 | 93 | 62 | 63 | 83 E | 1790 | 188 | 732 | 4150 | 796 | 91 | 94 | 86 | - 11 | | 12 | 89 | 60 | 62 | 84 E | 1670 | 179 | 710 | 3700 | 445 | 83 * | 100 | 76 | 12 | | 13 | 89 | 58 | 62 | 83 E | 2120 | 156 | 707 | 2890 * | 354 | 81 | 76 | 95 | 13 | | 14 | 88 | 59 | 61 | 84 E | 2420 | 144 | 744 | 1770 | 304 | 82 | 71 | 94 | 14 | | 15 | 86 | 60 * | 62 | 83 E | 1760 * | 149 | 890 | 1590 | 261 | 89 | 72 | 105 | 15 | | 16 | 86 | 59 | 94 | 84 E | 1680 | 155 | 909 | 1520 | 256 | 90 | 82 | 101 | 16 | | 17 | 81 | 56 | 122 | 83 # | 1640 | 170 | 882 * | 1950 | 2010 | 85 | 89 | 111 | 17 | | 18 | 78 | 56 | 120 * | 83 | 1630 | 164 | 827 | 3510 | 2950 | 85 | 102 | 111 * | | | 19 | 75 * | 56 | 107 | 83 | 1610 | 159 * | 919 | 3850 | 2990 | 70 | 101 | 123 | 19 | | 20 | 74 | 54 | 92 | 84 | 1600 | 148 | 992 | 4090 | 2570 * | 93 | 88 | 145 | 2.0 | | 21 | 72 | 55 | 86 | 83 | 1590 | 141 | 1180 | 4250 | 2370 E | 101 | 82 | 148 | 2 1 | | 2.2 | 69 | 55 | 83 | 84 | 1580 | 139 | 1060 | 4300 * | 2060 E | 107 | 85 * | 136 | 2 2 | | 2.3 | 68 | 61 | 82 | 82 | 1560 | 140 | 993 | 4420 | 1790 E | 113 | 87 | 133 | 2 3 | | 24 | 68 | 60 | 87 | 82 | 1540 | 130 | 1060 | 4410 | 1450 E | 109 | 92 | 141 | 24 | | 2.5 | 70 | 60 | 81 | 74 | 1540 | 122 | 1300 | 3790 | 1180 E | 101 | 104 | 142 | 2.5 | | 26 | 72 | 61 * | 80 | 89 | 1540 | 120 | 1490 | 2970 | 731 E | 100 | 104 | 141 | 26 | | 2.7 | 71 | 64 | 79 | 100 | 1540 | 121 | 1550 | 3520 | 444 E | 105 | 118 | 130 | 2.7 | | 2.8 | 69 | 60 | 78 | 82 | 1540 | 158 | 1430 | 4160 | 508 | 94 | 97 | 126 | 2.8 | | 29 | 95 | 59 | 79 | 76 | | 750 | 1280 | 3750 | 593 | 93 | 78 | 126 | 29 | | 30 | 64 | 58 | 81 | 75 | | 1100 | 1110 | 3210 | 458 | 88 | 74 | 114 | 30 | | 31 | 65 | | 78 | 123 | | 927 | | 3060 | | 90 | 78 | | 5 1 | | MEAN | 92 • 6 | 59+6 | 75 . 8 | 82.9 | 1340 | 321 | 1005 | 2711 | 1624 | 119 | 89+1 | 110 | MEAN | | MAX | 177 | 64 • 0 | 122 | 123 | 2420 | 1530 | 1550 | 4420 | 3510 | 258 | 118 | 148 | MAX | | MIN. | 64.0 | 54 + 0 | 55.0 | 74 . 0 | 97.0 | 120 | 707 | 520 | 256 | 70+0 | 66+0 | 76.0 | MIN. | | AC.FT. | 5695 | 3544 | 4663 | 5098 | 74420 | 19740 | 59790 | 166700 | 96640 | 7319 | 5480 | 6540 | AC.FT. | WATER YEAR SUMMARY E - Estimated NR - No Record # - Oischarge measurement or observation of no flow made on this day # - E and # MEAN MAXIMUM | MINIMUM | DISCHARGE | DAGE NT | MO | DAY | TIME | 34.0 | 9.86 | 7 | 19 | 1740 015CHARGE GAGE HT MO DAY TIME 4590 19.56 5 10 1430 629 TOTAL 455600 25 27 28 23 30 31 WESN: WAX: WAX: WAX: 2 | | LOCATION MAXIMUM DISCHARGE | | | | HARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|----------------------------|------------------|--------|-----------|----------|------------------------------|-------------|---------------|----|-------|-------| | | | 1/4 SEC. T, & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PERIOO | | ZERO | REF. | | LATITUDE | LONGITUDE | M 0.B.8M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | MUTAO | | 37 25 28 | 120 39 47 | SW 9 6S 12E | 34400 | 22.67 | 12- 4-50 | JUL 41-DEC 41
JUL 42-DATE | APR 41-DATE | 1950 | | 96.24 | USCGS | Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. Altitude of gage is approximately 85 ft. (USC & GS datum) # DAILY MEAN DISCHARGE # ORESTIMBA CREEK NEAR CROWS LANDING WATER STATION NO 808720 1963 | | | OKE ST I'M | IN SECONO | CAR CROWS | Pumping | | | | | | 08720 | 1463 | | |--------|-------|------------|-----------|-----------|---------|------|--------|-------|-------|------|-------|-------|--------| | DAY | OCT. | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | | - | 2.8 | 0.0* | 0.0 | 0.0 | 1880 # | 0.0 | 60 | 68 | 29 | 8.7 | 14 | 10 | 1 | | 2 | 1.8 | 0.0 | 0.0 | 0.0 | 359 * | 0.0 | 39 | 21 | 22 | 6.4 | 13 | 24 | 2 | | 3 | 1.8 | 0.0 | 0.0* | 0.0* | 101 | 0.0 | 71 | 9.6 | 12 | 13 | 11 | 12 | 3 | | 4 | 1.3 | 0.0 | 0.0 | 0.0 | 27 * | 0.0 | 55 | 6.7 | 1.9 | 9.4 | 16 | 12 | 4 | | 5 | 1+1 | 0.0 | 0.0 | 0.0 | 5.6 | 0.0 | 23 | 4.4 | 2.8 | 8.4 | 26 | 12 | 5 | | 6 | 1.7 | 2 • 1 | 0.0 | 0.0 | 0.9 | 0.00 | 26 | 5.2 | 1.9 | 11 | 12 | 23 | 6 | | 7 | 0.7 | 0 • 1 | 0.0 | 0.0 | 0.0 | 0.0 | 254 | 16 | 1.4 | 15 | 11 | 29 | 7 | | 8 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 158 | 6.3 | 2.1 | 27 | 12 | 31 | 8 | | 9 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96 * | 11 | 4.0 | 25 | 9.7 | 18 | 9 | | 10 | 0.3 | 6.1 | 0.0 | 0.0 | 57 | 12 | 67 | 6 - 4 | 10 | 8.5 | 9.9 | 8.9 | 10 | | 10 | 0 • 1 | 2 • 2 | 0.0 | 0.0 | 40 | 21 | 65 | 5.7 | 24 | 6.5 | 8 • 2 | 6.5 | 11 | | 12 | 0 • 2 | 0 • 2 | 0.0 | 0.0 | 15 | 1.2 | 104 | 6.8 | 20 | 11 | 11 | 11 | 12 | | 13 | 0.1 | 0.0 | 0.0 | 0.0 | 399 | 2.3 | 109 | 8.0 | 25 | 18 | 13 | 20 | 13 | | 15 | 0.1 | 3 - 5 | 0.0. | 0.0 | 314 * | 4.4 | 113 | 8.4 | 7.1 | 14 | 13 | 16 | 14 | | 15 | 0.0 | 2.9* | 0.0 | 0.0 | 127 | 3.3 | 73 | 6.6 | 2 • 4 | 7.6 | 18 | 9 • 2 | 15 | | 16 | 0.0 | 0 • 7 | 0.0 | 0.0 | 62 | 41 | 76 | 8.4* | 2.5 | 8.4 | 12 | 5.7 | 16 | | 17 | 0.0 | 0+1 | 0.0* | 0.0 | 31 |
85 | 101 | 12 | 2.6 | 8.2* | 16 | 5.7 | 17 | | 18 | 0.0* | 0.0 | 0.0 | 0.0* | 16 | 11 | 76 | 10 | 3.5 | 8.2 | 14 | 7.2* | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 1.7 | 74 * | 8.5 | 2.2* | 9.3 | 25 | 8.5 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 2+1 | 0.9* | 88 | 8.5 | 1.0 | 13 | 16 = | 7.8 | 2.0 | | 2) | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 13 | 141 | 9.5 | 1.9 | 13 | 12 | 8 . 8 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 49 | 123 | 13 | 2.5 | 13 | 12 | 8 • 1 | 22 | | 23 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 101 | 128 | 6.5 | 3.0 | 13 | 11 | 6.4 | 23 | | 24 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 55 | 84 | 12 | 5 - 1 | 15 | 12 | 11 | 24 | | 25 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 104 | 55 | 42 | 4 - 8 | 12 | 9.7 | 7.4 | 2.5 | | 26 | 0.0 | 0 • 2 | 0.0 | 0.0 | 0.0 | 55 | 80 | 29 | 2 • 6 | 12 | 8 • 7 | 6.0 | 26 | | 27 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 49 | 108 | 37 | 2+3 | 10 | 7.9 | 5.6 | 2.7 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 137 | 96 | 47 | 1.8 | 11 | 9.4 | 7.7 | 2.8 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 251 | 105 | 22 | 2 • 2 | 13 | 14 | 6.6 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0* | | 92 | 111 | 53 | 2.5 | 14 | 13 | 5.3 | 30 | | 31 | 0.0 | | 0.0 | 361 | | 65 | | 39 | | 14 | 9 • 4 | | 3 1 | | MEAN | 0.4 | 0.8 | 0.0 | 11.6 | 123 | 37.3 | 92 • 3 | 17.7 | 6.9 | 12.1 | 12+9 | 11.7 | MEAN | | MAX. | 2 • 8 | 1 • 6 | 0.0 | 361 | 1880 E | 251 | 264 | 68.0 | 29.0 | 27.0 | 26+0 | 31.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 4 . 4 | 1.0 | 6.4 | 7.9 | 5 . 3 | MIN. | | AC.FT. | 25 | 45 | | 716 | 6833 | 2291 | 5492 | 1086 | 409 | 747 | 793 | 695 | AC.FT. | E - Estimoted NR - No Recard # - Discharge measuremen of no flow mode on ti # - E and # | nf | ar | observotion | |----|----|-------------| | hı | 5 | day. | | | | | | MEAN |) (| | MAXIMU | М | _ | | |----------|-----|-----------|---------|----|-----|-------| | ISCHARGE | Ш | DISCHARGE | GAGE HT | MO | OAY | TIME | | 26.4 | Ш | 2650 F | 12-08 | 2 | 1 | 0.730 | MINIMUM OISCHARGE GAGE HT MO DAY TIME 0+0 10 12 2210 WATER YEAR SUMMARY TOTAL 19130 | | LOCATION MAXIMUM DISCHARGE | | | | | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-------------------------------------|---------------|-----------|----------|---------|-------------|-------------|---------------|----|------|-------| | ATITUOE | LATITUDE LONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F,S, | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | OATUM | | 37 24 59 | 121 00 45 | SW 8 6S 9E | 2650E | 12.08 | 2- 1-63 | DEC 57-DATE | Dec 57-DATE | 1957 | | 0.00 | LOCAL | Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows ame estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map). # DAILY MEAN DISCHARGE SAN JOAQUIN RIVER AT GRAYSON WATER STATION NO 807080 1963 IN SECOND FEET | YAO | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |------|-------|-------|-------|-------|--------|-------|--------|--------|--------|-------|-------|-------|--------------| | 1 | 575 | 385 | 350 | 450 | 1580 | 2420 | 3040 | 3490 | 4370 | 1280 | 530 | 630 | 1 | | 2 | 535 | 365 | 335 | 450 | 2070 | 2430 | 2590 | 3130 | 4260 | 1160 | 505 | 605 | 2 | | 3 | 535 | 355 | 305 | 450 | 2750 | 2240 | 2310 | 2680 | 4210 | 1060 | 510 | 590 | 3 | | 4 | 575 | 340 | 300 | 470 | 3430 | 1840 | 2260 | 2380 | 4170 | 1010 | 520 | 515 | 4 | | 5 | 550 | 320 | 305 | 465 | 3770 | 1470 | 2120 | 2230 | 4030 | 1010 | 630 | 585 | 5 | | 6 | 560 | 325 | 300 | 450 | 3890 | 1280 | 1940 | 2110 | 3690 | 995 | 665 | 585 | 6 | | 7 | 525 | 325 | 295 | 445 | 3620 | 1160 | 2100 | 2000 | 3190 | 1010 | 585 | 630 | | | 8 | 540 | 335 | 295 | 480 | 2620 | 1060 | 2390 | 1790 | 2870 | 1090 | 575 | 650 | 8 | | 9 | 475 | 340 | 275 | 585 | 2390 | 900 | 2680 | 1720 | 2700 | 990 | 600 | 680 | 9 | | 10 | 455 | 340 | 250 | 650 | 2510 | 960 | 2870 | 1960 | 2510 | 890 | 635 | 710 | 10 | | 11 | 485 | 345 | 250 | 660 | 3190 | 920 | 2930 | 2760 | 2500 | 785 | 685 | 610 | - 14 | | 15 | 510 | 350 | 275 | 665 | 3520 | 845 | 3260 | 3750 | 2680 | 775 | 685 | 565 | 12 | | 13 | 570 | 365 | 305 | 660 | 3530 | 775 | 3360 | 4180 | 1970 | 735 | 625 | 635 | 13 | | 1A | 560 | 365 | 330 | 635 | 4140 | 680 | 2710 | 4110 | 1540 | 715 | 630 | 690 | 15 | | 15 | 570 | 370 | 310 | 630 | 4870 | 615 | 2660 | 3520 | 1380 | 710 | 610 | 715 | 13 | | 16 | 650 | 365 | 325 | 625 | 4610 | 665 | 3300 | 2870 | 1360 | 655 | 560 | 890 | 16 | | 17 | 540 | 365 | 330 | 600 | 4320 | 875 | 3170 | 2550 | 1310 | 660 | 520 | 945 | 17 | | 18 | 445 | 365 | 365 | 565 | 4120 | 860 | 2700 | 2370 | 1370 | 655 | 510 | 925 | 18 | | 19 | 400 | 360 | 465 | 5 2 5 | 3910 | 785 | 2810 | 2800 | 2420 | 590 | 515 | 960 | 19 | | 50 | 375 | 355 | 525 | 505 | 3720 | 755 | 3010 | 3390 | 2840 | 575 | 505 | 980 | 5.0 | | 21 | 345 | 355 | 525 | 490 | 3340 | 725 | 3300 | 3690 | 3280 | 600 | 465 | 905 | 21 | | 2.2 | 340 | 355 | 585 | 490 | 3140 | 715 | 3360 | 3570 | 3370 | 665 | 515 | 1080 | 2.2 | | 2.3 | 325 | 335 | 575 | 490 | 3010 | 825 | 3360 | 4040 | 3030 | 660 | 530 | 1100 | 2.3 | | 24 | 340 | 320 | 540 | 475 | 2850 | 900 | 3400 | 4150 | 2550 | 560 | 540 | 1060 | 2.4 | | 25 | 310 | 325 | 505 | 470 | 2700 | 915 | 3440 | 4190 | 2190 | 505 | 555 | 1010 | a 25 | | 2 6 | 320 | 330 | 490 | 460 | 2620 | 930 | 3570 | 4430 | 1890 | 500 | 565 | 990 | e 26 | | 27 | 340 | 335 | 460 | 455 | 2560 | 920 | 36 70 | 4260 | 2000 | 480 | 530 | 755 | e 27 | | 2.8 | 370 | 330 | 450 | 445 | 2490 | 1030 | 3700 | 4040 | 1690 | 495 | 510 | 675 | 28 | | 29 | 380 | 315 | 430 | 440 | | 1220 | 3550 | 4280 | 1250 | 530 | 590 | 700 | a 29
a 30 | | 30 | 380 | 330 | 415 | 460 | | 2030 | 3510 | 4580 | 1280 | 525 | 600 | 685 | | | 31 | 385 | | 405 | 575 | 1 | 2680 | - | 4520 | 1 | 515 | 610 | | 3 : | | AEAN | 460 | 346 | 383 | 523 | 3260 | 1175 | 2969 | 3275 | 2597 | 754 | 568 | 769 | MEAN | | MAX. | 650 | 385 | 585 | 665 | 4870 | 2680 | 3700 | 4580 | 4370 | 1280 | 685 | 1100 | MAX | | MIN. | 310 | 315 | 250 | 440 | 1580 | 615 | 1940 | 1720 | 1250 | 480 | 465 | 515 | MIN | | CFT. | 28294 | 20559 | 23544 | 32162 | 181031 | 72248 | 176668 | 201402 | 154512 | 46383 | 34929 | 45729 | AC.FT. | E - Estimoted NR - No Record # - Oischarge measurement or observation of no flow made on this day. # - E and # WATER YEAR SUMMARY MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME 34.10 2 15 1300 DISCHARGE GAGE HT MO DAY TIME DISCHARGE 1423 4950 TOTAL ACRE-FEET 1017000 | | LOCATION | | | MUM DISCH | ARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|-----------------|--------|-----------|---------|---------------------------------------|-------------|---------------|------|----------------------|-----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF | | LATITOBE | LONGITUDE | M. O. B. B. M. | C.F.S. | GAGE HT. | DATE | o o o o o o o o o o o o o o o o o o o | ONLY | FROM | TO | GAGE | DATUM | | 37 33 47 | 121 09 06 | NW25 4S 7E | 23900 | 45.15 | 3- 8-41 | JUL 28-DATE | JUL 28-DATE | 1960
1960 | 1959 | 0.00
0.00
3.81 | USED
USCGS
USED | Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco. BURKHARDT DRAIN NEAR GRAYSON WATER YEAR 1963 STATION NO B00935 IN SECONO FEET | DAY | OCT. | NDV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|---------------------------------|-----|------|-----|-----|------------|------------|------|------|------|------|-------|----------------------------------| | 1
2
3
4
5 | 6.0
11
12
17
8.7 | | | | | | | | | | | | 1
2
3
4
5 | | 6
7
8
9 | 8.2
7.2
5.3
4.0
3.2 | | | | | | | | | | | | 6
7
8
9 | | 11
12
3
14
15 | 4.7
4.7
5.8
3.4
4.1 | | | | STA | ATION DISC | ONTINUED A | S OF | | | | | 11
12
13
14 | | 16
17
18
19 | 3.0
3.7* | | | | | 10-1 | 7~62 | | | | | | 16
17
18
19
20 | | 2 1
2 2
2 3
2 4
2 5 | | | | | | | | | | | | | 2 1
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | | | | | | | | | | | | | 26
27
28
29
30
31 | | MEAN
MAX
MIN.
ACFT. | | | | | | | | | | | | | MEAN
MAX.
MIN.
AC.FT | E - Estimated NR - No Record # - Discharge measurement or observation of no flow made on this day. # - E and # | WATER | YEAR | SUMMARY | |-------|------|---------| | MEAN | 16 | | MAXIMU | | MINIMUM | | | | | | | | |--------|----|-----------|----------|-----|---------|------|---|-----------|---------|----|-----|------| | CHARGE | Н | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | DISCHARGE | GAGE HT | MO | DAY | TIME | | | 11 | | | | | | Į | | | | | | TOTAL ACRE-FEET NR | | LOCATION MAXIMUM DISCHARGE | | | | | PERIOD O | | DATUM OF GAGE | | | | |----------|------------------------------------|------------|-----------|----------|-----------|---------------|---------------|---------------|------|------|-------| | LATITUDE | ATITUDE LONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERD | REF. | | | LATITODE | LONGITODE | M D.B.8.M | C.F.S. | GAGE HT. | DATE | | DNLY | FROM | то | GAGE | DATUM | | 37 30 53 | 121 12 20 | SW 4 4S 7E | 105E | 2.00 | 7/4/59 | APR 57-SEP 62 | APR 57-SEP 62 | 1959 | | 0.00 | LOCAL | Station located 1.2 mi. E.of El Solyo Ranch, 2.6 mi. N. of Grayson. This includes flow of Hospital Creek and drainage returned to San Joaquin River. Record available during irrigation season only. Station discontinued 10-17-62. # DAILY MEAN DISCHARGE TUOLUMNE RIVER AT LAGRANGE BRIDGE IN SECONO FEET WATER STATION NO B04175 1963 | DAY | ост | NOV | DEC. | JAN
 FEB | MAR | APR | MAY | JUNE | JULY | AuG | SEPT | DAY | |--------|-------|-------|------------|------------|--------|-------|--------|--------|--------|--------|-------|------|--------| | 1 | 60 | 587 | 1040 | 470 | 2750 | 587 | 1090 * | 1830 | 4650 E | 1660 E | 23 | 16 | 1 | | 2 | 53 | 575 | 812 | 1200 | 6850 # | 511 | 1020 | 1360 | 4700 E | 259 | 22 | 12 | 2 | | 3 | 13 | 564 | 1340 | 1060 | 6870 | 506 | 876 | 1330 | 4380 E | 163 | 22 | 11 | 3 | | 4 | 12 | 448 | 1390 | 669 | 6900 | 698 | 349 | 1340 | 2650 E | 131 | 22 | 20 | 4 | | 5 | 11 | 488 | 1610 | 479 | 6730 | 674 | 7.9 | 1230 | 1300 | 136 | 20 | 5.2 | 5 | | 6 | 11 | 606 | 1800 | 378 | 5930 | 5 3 6 | 101 | 954 | 1290 | 540 | 19 | 6.8 | 6 | | 7 | 10 | 595 | 1780 | 793 | 2520 | 544 | 1390 | 383 | 1300 | 823 | 20 | 5.0 | 7 | | 8 | 11 | 607 | 1270 | 760 | 3150 | 547 | 3640 | 346 | 1890 | 454 | 19 | 8.0 | 8 | | 9 | 23 | 630 | 1060 | 591 | 3420 | 526 | 3400 | 347 | 2440 | 1290 | 17 | 12 | 9 | | 10 | 380 | 604 | 1800 | 791 | 3190 | 379 | 4750 | 772 | 3170 E | 751 | 16 | 2.9 | 10 | | | | *** | 1510 | 814 | 2230 | 470 | 5510 | 2210 | 4680 E | 1220 | 20 | 8.2 | | | | 602 | 582 | | | | | 3540 # | 1510 | 628 # | 924 | 19 | 16 | 12 | | 15 | 611 | 635 | 1400 | 491 | 1810 | 82 | 1630 | 844 | 305 | 319 | 18 | 15 | 13 | | 13 | 592 | 695 | 1130 | 481 | 4210 | 27 | | | | | | | 14 | | 14 | 501 | 655 | 1020 | 480 | 4580 | 23 | 35 70 | 1710 | 1050 | 353 | 18 | 14 | | | 15 | 419 | 702 + | 796 | 501 | 2110 | 18 | 5760 | 2590 | 1290 | 285 + | 19 | 13 | 15 | | 16 | 571 | 642 | 522 | 572 | 1730 | 19 | 2140 | 2150 | 703 | 300 | 19 (| 13 | 16 | | 17 | 562 | 622 | 1280 | 579 + | 1690 | 17 | 1210 | 1560 * | 297 | 72 | 16 | 11 * | | | 18 | 550 | 593 | 1270 | 589 | 2940 | 16 | 2400 | 1420 | 712 | 36 | 18 | 12 | 18 | | 19 | 567 | 721 | 1230 * | 538 | 2460 | 12 | 3240 | 1450 | 3340 E | 34 | 30 | 15 | 19 | | 2.0 | 563 | 639 | 1500 | 430 | 1970 | 12 | 3230 | 1230 | 5390 € | 31 | 15 | 16 | 5.0 | | 21 | 429 | 644 | 1640 | 484 | 2160 | 13 + | 2770 | 1120 | 5070 € | 29 | 14 + | 19 | 1.5 | | 2.5 | 423 * | 593 | 1250 | 573 | 1980 | 16 | 2700 | 1130 | 2200 | 28 | 14 | 10 | 5.5 | | 23 | 601 | 985 | 913 | 466 | 1380 | 9.4 | 2680 | 1550 | 2050 | 28 | 14 | 27 | 23 | | 2.4 | 579 * | 952 | 1120 | 582 | 991 | 11 | 2690 | 2500 | 820 | 25 | 48 | 29 | 24 | | 2.5 | 610 | 699 | 707 | 575 | 1440 | ii | 2750 | 3070 | 445 | 25 | 9 • 4 | 20 | 25 | | 26 | 613 | 1390 | 1330 | 550 | 1700 | 12 | 2890 | 3100 | 341 | 24 | 6+5 | 28 | 26 | | 27 | 613 | 1370 | 950 | 313 | 1460 | 276 | 1710 | 3490 | 325 | 25 | 7.5 | 25 | 27 | | 28 | 576 | 1500 | 968 | 447 | 1010 | 3530 | 1120 | 4330 | 834 | 23 | 16 | 24 | 28 | | 29 | 558 | 1680 | 844 | 501 | | 5640 | 3180 | 4710 | 1310 | 22 | 12 | 15 | 2.9 | | 30 | | | | | | 4930 | 2720 | 4690 | 1170 | 22 | 12 | 12 | 30 | | 31 | 615 | 1590 | 446
739 | 512
473 | | 4960 | 2,50 | 4670 | 11.0 | 22 | 12 | 12 | 3 1 | | MEAN | | 201 | 1174 | 500 | 2077 | 024 | 2469 | 1965 | 2024 | 324 | 18+0 | 15+3 | MEAN | | | 399 | 786 | 1176 | 588 | 3077 | 826 | | | | | | | MAX | | XAM | 617 | 1680 | 1800 | 1200 | 6900 | 5640 | 5760 | 4710 | 5390 E | 1660 E | 48+0 | 29.0 | MIN. | | MIN. | 10.0 | 448 | 446 | 313 | 991 | 9 • 4 | 7.9 | 346 | 297 | 22.0 | 6+5 | 2.9 | AC.FT. | | AC.FT. | 24510 | 46800 | 72330 | 36160 | 170900 | 50800 | 146900 | 120800 | 120500 | 19940 | 1110 | 910 | MUPI | WATER YEAR SUMMARY E - Estimated NR - No Record & - Discharge measurement or observation of no flow made on this day. I - E and # | MEAN | | MAXIMU | | | | |-----------|-----------|---------|----|-----|------| | DISCHARGE | DISCHARGE | GADE HT | MD | DAY | TIME | | 1121 | 7190 | 75 • 28 | 2 | 3 | 1030 | MINIMUM DISCHARGE GAGE HT MD DAY TIME 0.0 3 15 2030 TOTAL 811700 4 | NEAN VAX NEX ACFT | | LOCATION | | | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|----------------|--------|-----------|----------|------------------------------|------------------------------|---------------|------|------------|-------| | | | 1/4 SEC T.8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF | | LATITUDE | LONGITUDE | м 0.8 8м. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 39 59 | 120 27 40 | NW20 3S 14E | 48200 | 188.0 | 12- 8-50 | OCT 36-SEP 60
OCT 61-DATE | OCT 36-SEP 60
OCT 61-DATE | 1937 | | 0.00 | usgs | Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. Drainage area is 1,540 sq. mi. Altitude of gage is approximately 175 feet (from USGS topographic map.) TABLE B-33 TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE IN SECONO FEET STATION NO WATER 804165 1963 | DAY | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|-------|-------|--------|-------|--------|-------|--------|--------|--------|--------|--------|------|--------| | 1 | 37 | 659 | 1630 | 859 | 1830 | 826 | 1730 • | 2070 | 4140 | 1260 | 43 | 44 | 1 | | 2 | 60 | 649 | 1330 | 1290 | 6880 * | 733 | 1190 | 1470 | 4180 | 842 | 43 | 46 | 2 | | 3 | 79 | 647 | 1500 | 1530 | 7150 | 672 | 1020 | 1420 | 4060 | 200 | 37 | 40 | 3 | | 4 | 49 | 580 | 1880 | 1170 | 7020 | 696 | 764 | 1410 | 2860 | 151 | 37 | 40 | 4 | | 5 | 39 | 475 | 2080 | 939 | 6990 | 907 | 88 | 1320 | 1340 | 144 | 43 | 44 | 5 | | 6 | 40 | 642 | 2410 | 811 | 6630 * | 819 | 59 | 1040 | 1300 | 275 | 41 | 46 | 6 | | 7 | 39 | 642 | 2430 | 889 | 2620 | 700 | 940 | 416 | 1290 | 1060 | 39 | 40 | 7 | | 8 | 34 | 643 | 1880 | 1220 | 3500 | 707 | 3130 | 408 | 1600 | 305 | 40 | 39 | 8 | | 9 | 35 | 670 | 1600 | 1010 | 3760 | 701 | 3540 | 396 | 2220 | 1220 | 43 | 40 | 9 | | 10 | 143 | 681 | 2090 | 1090 | 3630 | 560 | 4350 | 383 | 2380 | 1030 | 44 | 37 | 10 | | 61 | 586 | 656 | 2150 | 1280 | 2790 | 555 | 5430 | 1950 | 4500 | 1050 | 47 | 40 | 1 11 | | 12 | 723 | 643 | 1910 | 966 | 1950 | 334 | 4370 | 1690 | 1250 * | 1080 | 46 | 43 | 12 | | 13 | 679 | 731 | 1690 | 806 | 3350 | 101 | 1590 | 1030 | 339 | 572 | 39 | 48 | 13 | | 14 | 618 | 793 • | 1500 | 601 | 5210 | 72 | 2660 | 1230 | 805 | 429 | 40 | 54 | 4 | | 15 | 496 | 790 | 1200 | 620 | 2580 | 65 | 5770 | 2270 | 1250 | 346 • | | 54 | 15 | | 16 | 625 | 747 | 1040 | 731 | 2030 | 65 | 3030 | 2130 | 953 | 359 | 46 | 49 | 16 | | 17 | 627 | 744 | 1370 | 724 • | 2060 | 62 | 1300 | 1590 * | | 217 | 43 | 44 | 17 | | 18 | 614 * | 705 | 1800 * | 746 | 2500 | 60 | 2420 * | 1370 | 451 | 79 | 45 | 48 | 18 | | 19 | 637 | 740 | 1720 | 737 | 3210 | 56 | 2830 | 1400 | 2200 | 51 | 46 | 55 | 19 | | 2 D | 643 | 756 | 1980 | 611 | 1980 | 53 | 3250 | 1280 | 4820 | 45 | 47 | 56 | 20 | | 21 | 518 | 744 | 2160 | 566 | 2180 | 52 + | 3110 | 1140 | 4810 | 42 | 42 * | 58 | 21 | | 22 | 455 | 736 | 1880 | 733 | 2100 | 53 | 2660 | 1140 | 2520 | 44 | 48 | 62 | 2.2 | | 23 | 661 | 896 | 1470 | 605 | 1690 | 57 | 2720 | 1160 | 1930 | 42 | 50 | 61 | 2.3 | | 24 | 631 | 1430 | 1530 | 717 | 1230 | 54 | 2700 | 2370 | 1190 | 45 | 48 | 58 | 2.4 | | 25 | 651 | 1180 | 1270 | 733 | 1430 | 53 | 2750 | 2550 | 501 | 46 | 91 | 68 | 2.5 | | 26 | 678 | 1540 | 1440 | 716 | 1830 | 54 | 2860 | 2810 | 452 | 46 | 52 | 73 | 2 6 | | 27 | 671 | 1860 | 1590 | 428 | 1630 | 154 | 2300 | 3040 | 359 | 4.3 | 39 | 76 | 2.7 | | 28 | 650 | 1950 | 1360 | 523 | 1440 | 2120 | 1310 | 3650 | 597 | 43 | 40 | 75 | 2.8 | | 29 | 621 | 2270 | 1240 | 721 | | 5150 | 2430 | 4210 | 1290 | 42 | 44 | 76 | 29 | | 30 | 674 | 2240 | 1050 | 721 | | 4780 | 3130 | 4180 | 1220 | 40 | 47 | 72 | 30 | | 31 | 685 | | 949 | 631 | | 4970 | | 4170 | | 40 | 44 | | 3 / | | MEAN | 442 | 948 | 1649 | 830 | 3257 | 847 | 2514 | 1829 | 1904 | 361 | 45 • 2 | 52.9 | MEAN | | MAX. | 723 | 2270 | 2430 | 1530 | 7150 | 5150 | 5770 | 4210 | 4820 | 1260 | 91.0 | 76.0 | MAX | | MIN. | 34.0 | 475 | 949 | 428 | 1230 | 52.0 | 59.0 | 383 | 318 | 40 • 0 | 37+0 | 37.0 | MIN | | AC.FT. | 27170 | 56410 | 101400 | 51020 | 180900 | 52050 | 149600 | 112400 | 113300 | 22190 | 2779 | 3146 | AC.FT. | E - Estimated NR - No Record # - Otecharge measurement or observation of no flow made an this day, # - E and # | WATER YEAR SUMM | ARY | |-----------------|-----| |-----------------|-----| MEAN MAXIMUM MINIMUM D:50 HARGE 1205 OISCHARGE GAGE HT MD DAY TIME 16.04 2 2 2400 DISCHARGE GAGE HT MO DAY TIME 29.0 8.24 10 2 0640 7320 TOTAL 872400 | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|----------|---|-------------|---------------|------|--------|----------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | OISCHARGE | GAGE HEIGHT | PER | 8100 | ZERO | REF | | LATITODE | LONGITUDE | M. O. B. B. M. | C.F.S. | GAGE HT. | OATE | 0.20 | ONLY | FROM | TO | GAGE | DATUM | | 37 38 08 | 120 37 03 | NW35 3S 12E | 49800 | 128.2 | 12- 8-50 | JUL 28-OCT 36
JAN 37-FEB 38
JUN 38-DATE | | | | 106.20 | USCGS
USCGS | Station located at highway bridge, 7.5 mi. E of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 110 feet (from USGS topographic map.) # DAILY MEAN DISCHARGE TUOLUMNE RIVER AT HICKMAN BRIDGE IN SECOND FEET WATER STATION NO YEAR 804150 1963 | DAY | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |---------|-----------------|-------------------|----------------------|--------------------|------------------------|-------------------|------------------------|----------------------|----------------------|---------------------|-------------------|-------------------|---------| | 2 3 | 98
93
118 | 618
619
612 | 1580
1230
1230 | 879
949
1480 | 1500
6270 *
6840 | 833
722
648 | 2360 *
1360
1190 | 2270
1610
1580 | 4270
4300
4180 | 1210
1140
288 | 103
105
102 | 107
109
101 | 2 3 | | 5 | 100 | 567
469 | 1660
1720 | 1130
866 | 6730
6680 | 603
908 | 1030
253 | 1510
1440 | 3230
1480 | 231
217 | 101
106 |
94
91 | 5 | | 6 | 89 | 631 | 1990
2120 | 717
715 | 6550
2850 | 816
693 | 192
883 | 1240
532 | 1370
1360 | 233 | 106
97 | 98 | 6 7 | | 8 | 89
87 | 640
641 | 1800 | 1050 | 3310 | 706 | 3020 | 494 | 1530 | 1010 | 92 | 96
86 | é | | 9 | 86 | 648 | 1470 | 924 | 3610 | 708 | 3840 | 482 | 2300 | 1060 | 97 | 89 | 9 | | 10 | 88 | 654 | 1610 | 885 | 3600 | 611 | 4410 | 436 | 2320 | 1160 | 105 | 84 | 10 | | 0 | 419 | 639 | 1920 | 1100 | 2930 | 544 | 5660 | 1790 | 4420 | 949 | 107 | 88 | 1 10 | | 12 | 639 | 619 | 1650 | 920 | 1920 | 481 | 5070 | 1950 | 1840 | 1070 | 108 | 92 | 12 | | 13 | 625
629 | 692
769 | 1560 | 743
563 | 2740
5350 | 182
154 | 1850
2520 | 1180
1140 | 436
742 | 659
462 | 102 | 100 | 14 | | 15 | 497 | 757 * | 1120 | 574 | 2670 | 124 | 5940 | 2370 | 1330 | 386 * | 100
108 | 104 | 15 | | 16 | 585 | 745 | 1020 | 644 | 1990 | 124 | 3750 | 2350 | 1160 | 385 | 111 | 96 * | 16 | | 17 | 594 | 701 | 1020 | 660 | 2040 | 121 | 1460 | 1760 | 414 | 315 | 110 | 92 | 17 | | 18 | 585 | 671 | 1620 | 675 | 2140 | 121 | 2410 * | 1470 | 417 | 173 | 112 | 92 | 19 | | 19 | 599
597 | 689
744 | 1480 *
1610 | 697
584 | 3450
1930 | 118 | 2700
3440 | 1500
1400 * | 1910 | 131
117 | 113 | 102 | 20 | | | | | | | | | | | | | 104 | 102 | | | 21 | 502 | 718 | 1780 | 526 * | 2130 | 118 * | 3470 | 1210 | 4820 * | 109 | 105 * | 102 | 2 | | 22 | 433 * | 711 | 1670 | 677
575 | 2120
1710 | 116 | 2740 | 1210 | 2950 | 107 | 110 | 106 | 2 2 2 3 | | 24 | 611 | 705
1320 | 1360 | 660 | 1220 | 113
107 | 2890
2830 | 1180
2380 | 2040 | 103
101 | 111 | 99
94 | 24 | | 2.5 | 619 | 1120 | 1250 | 676 | 1260 | 102 | 2860 | 2530 | 593 | 109 | 141 | 94 | 2.5 | | 26 | 639 | 1210 | 1100 | 679 | 1770 | 95 | 2940 | 2920 | 557 | 108 | 128 | 101 | 26 | | 2.7 | 631 | 1620 | 1490 | 486 | 1600 | 95 | 2640 | 3060 | 429 | 106 | 105 | 103 | 27 | | 2.8 | 611 | 1680 | 1170 | 470 | 1510 | 1860 | 1460 | 3630 | 523 | 101 | 99 | 95 | 28 | | 30 | 583 | 1910 | 1150 | 687 | | 5340 | 2190 | 4280 | 1320 | 104 | 103 | 94 | 30 | | 31 | 638
650 | 1930 | 1040
793 | 708
626 | | 5170
5020 | 3410 | 4270
4270 | 1300 | 102
91 | 106
104 | 92 | 31 | | MEAN | 427 | 868 | 1449 | 759 | 3158 | 886 | 2692 | 1918 | 1988 | 412 | 107 | 96.9 | MEAN | | MAX | 650 | 1930 | 2120 | 1480 | 6840 | 5340 | 5940 | 4280 | 4820 | 1210 | 141 | 109 | MAX | | MIN. | 86.0 | 469 | 793 | 470 | 1220 | 95.0 | 192 | 436 | 414 | 91.0 | 92.0 | 84.0 | MIN. | | AC, FT. | 26260 | 51670 | 89100 | 46660 | 175400 | 54490 | 160200 | 117900 | 118300 | 25310 | 6571 | 5764 | AC.FT. | E - Estimoted NR - No Record # - Discharge measurement or observation of no flow made on this day # - E and # | | WATER | YEAR | SUMMARY | |-------|-------|---------------|---------| | 45.41 | | $\overline{}$ | | | MEAN | | MAXIMU | | | |) | | MINIM | | | | | |---------|----------|-----------|----|-----|------|---|-----------|---------|----|-----|------|----| | SCHARGE | DISCHARG | E GAGE HT | MO | OAY | TIME | 1 | DISCHARGE | GAGE HT | MD | DAY | TIME | | | 1212 | 6970 | 79.38 | 2 | 2 | 1950 | J | 17.0 | 71.31 | 3 | 26 | 1330 | l. | | TOTAL | | |-----------|--| | ACRE-FEET | | | 877600 | | | | LOCATION | ١ | MAXI | MUM DISCH | HARGE | PERIOD O | DATUM OF GAGE | | | | | |----------------------------------|-----------|-------------|--------|-----------|----------|---|---------------|--------|----|------------|-------| | LATITUDE LONGITUDE 1/4 SEC. T. 8 | | | | OF RECORD |) | OISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | LATITUDE | LONGITUDE | M D.8 8.M. | C.F.S. | GAGE HT. | DATE | O S C I M NOE | ONLY | FROM | TO | ON
GAGE | OATUM | | 37 38 10 | 120 45 14 | NW34 3S 11E | 59000 | 96.2 | 12- 8-50 | JUL 32-OCT 36
JAN 37-MAR 37
JUL 37-FEB 38
JUL 38-DEC 38
MAR 39-DATE | JAN 37-MAR 37 | | | 0.00 | USCGS | Station located at Hickman-Waterford Road Bridge, immediately SE of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 80 feet. USCAGS Datum TABLE B-35 # DAILY MEAN DISCHARGE IN SECOND FEET DRY CREEK NEAR MODESTO STATION NO WATER B04130 1963 | OAY | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | ΔUG | SEPT | OAY | |----------------------------------|----------------------------------|------------------------------|------------------------------------|----------------------------------|------------------------------------|--------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------|---------------------------------| | 1
2
3
4
5 | 48
45
47
58
66 | 23
24
22
21
20 | 15
14
14
14
14 | 11
11
12
12 | 465 *
1160 *
209
92
58 | 25
22
23
23
22 | 68
53
46
41
36 | 53
46
54
56
46 | 77
102
125
120
114 | 131
120
100
115
122 | 65
59
61
62
64 | 70
67
65
65
74 | 3 4 5 | | 6
7
8
9 | 65
68
68
60
62 | 19
18
17
18
17 | 13
13
13
12
12 | 11
11
11
11 | 40
30
24
23
386 | 21
18
16
21
19 | 34 E
39 E
337 E
193 | 50
50
43
55
65 | 109
115
96
79 E
86 # | 82
79
83
76
87 | 70
67
69
68
70 | 77
74
77
77
73 | 6
7
8
9 | | 11
12
13
14
15 | 63
68
116
113
102 | 19
18
17
16 * | 12
12
12
12
12 | 11
10
9.6
9.6
9.8 | 704
145
392
1620 * | 20
19
20
20 | 116
102
92
88
336 | 65
75
74
71
74 | 86
79
75
76
83 | 79
74
74
73
93 | 64
70
60
59
58 | 67
73
74
72
80 | 11 12 13 4 | | 16
17
18
19
20 | 94
45
35
30 * | 18
16
16
16 | 21
39 *
43
27
20 | 9.6
9.4*
9.3
9.3 | 141
98
78
66
55 | 19
22
23
20
19 | 371
182
113 *
85
593 | 77
77
91
80
71 * | 104
93
95
95
78 | 91
82
79
79
75 | 63
59
59
55
55 | 79 4
82
94
94
81 | 16 17 8 19 20 | | 2 1
2 2
2 3
2 4
2 5 | 21
19
18
19 | 16
15
14
13 | 17
15
13
13 | 11
11
11
9.6
9.5 | 48
43
38
35
32 | 18 *
20
37
31
23 | 372
355
181
135
115 | 71
72
93
81
73 | 73
77
94
124
134 | 79
80
75
68
63 | 56
62
55
53
58 | 78
77
75
75
77 | 2 l
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 20
22
23
23
21
18 | 13
14
14
15
15 | 12
12
12
12
12
11 | 9 • 3
9 • 3
10
12
12 | 29
28
26 | 21
23
34
230 *
155 | 105
118
135
103
65 | 101
94
89
90
87
79 | 128
124
123
119
120 | 63
67
70
73
70
62 | 63
72
72
67
66
64 | 73
62
60
64
67 | 26
27
26
29
3D | | MEAN
MAX.
MIN.
AC.FT. | 48+4
116
18+0
2975 | 17.0
24.0
13.0
1012 | 15 • 6
43 • 0
11 • 0
96 2 | 10.5
13.0
9.3
648 | 229
1620
23.0
12710 | 35+5
230
18+0
2180 | 159
593
34+0
9433 | 71+1
101
43+0
4370 | 100
134
73+0
5956 | 82 • 7
131
62 • 0
5086 | 62 • 7
72 • 0
53 • 0
3858 | 74.1
94.0
60.0
4409 | MEAN
MAX
MIN.
AC.FT. | WATER YEAR SUMMARY E - Estimated NR - No Recard # - Oischarge measurement or abservation of no flow made on this day. # - E and # | MEAN | | MAXIMU | М | | | |-----------|-----------|---------|----|-----|------| |) SCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | | 74.0 | 2130 | 79.74 | 2 | 14 | 0750 | | MINIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | 6.8 | 67.66 | 2 | 1 | 0000 ΤΩΤΔΙ ACRE FEET 53600 | | LOCATION | 1 | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|--------------------|-------|-----------|----------|--------------|-------------|------|-------|------------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD | | 015 CHARGE | GAGE HEIGHT | PER | QOI | 2ERO
ON | REF | | LATITUDE | LONGITUDE | LONGITUDE M O.B.8M | | GAGE HT. | OATE | OID GITALLOC | ONLY | FROM | TO | GAGE | DATUM | | 37 39 26 | 120 55 19 | SE24 3S 9E | 7710 | BB.04 | 12-23-55 | MAR 41-DATE | MAR 41-DATE | 1941 | | 0.00 | USCGS | Station located 0.1 mi. below Claus Road Bridge, 4 mi. E of Modesto. Tributary to Tuolumme River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. This is a Department of Water Resources—Modesto Irrigation District Cooperative station. Altitude of gage is approximately 80 feet. USC & GS datum. TUOLUMNE RIVER AT TUOLUMNE CITY IN SECOND FEET STATION NO YEAR B04105 1963 | OAY | ост | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |--------|-------|-------|--------|-------|-------|------|--------|--------|--------|-------|-------|-------|---------| | 1 | 365 | 885 | 1870 | 1040 | 785 | NR | 3700 | 2760 | 3840 | 1350 | 430 | 405 | | | 2 | 345 | 875 | 2370 | 1040 | 2510 | NR | 2030 | 2200 | 3810 | 1410 | 425 | 400 | 2 | | 3 | 355 | 860 | 2630 | 1180 | 4870 | NR | 1570 | 1780 | 3810 | 1080 | 415 | 385 | 3 | | 4 | 360 | 845 | 2600 | 1140 | 5140 | NR | 1400 | 1690 | 3680 | 735 | 415 | 385 | 4 | | 5 | 375 | 810 | 2340 | 1340 | 5210 | NR | 1180 | 1640 | 2830 | 715 | 410 | 370 | 5 | | 6 | 380 | 725 | 2230 | 1040 | 5230 | NR | 1130 | 1550 | 1970 | 640 | 405 | 385 | 6 | | 7 | 380 | 800 | 2340 | 925 | 4740 | NR | 720 | 1330 | 1740 | 660 | 410 | 395 | 7 | | 8 | 3.85 | 860 | 2000 | 950 | 2780 | NR | 1590 | 990 | 1630 | 1040 | 410 | 385 | 8 | | 9 | 370 | 870 | 1770 | 985 |
2900 | NR | 2880 | 935 | 1800 | 755 | 425 | 400 | 9 | | 10 | 360 | 875 | 1550 | 745 | 3130 | NR | 3160 | 930 | 2120 | 1126 | 425 | 385 | 10 | | - 11 | 365 | 875 | 1740 | 1080 | 3570 | NR | 3740 | 1030 | 2440 | 1100 | 425 | 375 | 10 | | 12 | 505 | 865 | 1860 | 1090 | 2820 | NR. | 4350 | 2060 | 3150 | 1100 | 425 | 375 | 12 | | 13 | 915 | 850 | 1720 | 1060 | 2370 | NR. | 3600 | 2240 | 1560 | 1110 | 405 | 385 | 13 | | 14 | 1080 | 885 | 1610 | 895 | 4070 | NR | 2300 | 1910 | 960 | 850 | 405 | 415 | -(4 | | 15 | 1060 | 930 | 1500 | 760 | 4620 | NR | 2900 | 1830 | 1130 | 780 | 405 | 405 | 15 | | 16 | 1010 | 945 | 1430 | 740 | 3110 | NR | 4550 | 2200 | 1410 | 720 | 415 | 410 | 16 | | 17 | 935 | 950 | 1250 | 780 | 2590 | NR | 3010 | 2040 | 1230 | 675 | 390 | 390 | 17 | | 18 | 915 | 915 | 1300 | 790 | 2430 | NR | 1970 | 1710 | 885 | 655 | 390 | 385 | 18 | | 19 | 885 | 885 | 1610 | 795 | 2770 | NR | 2380 | 1610 | 960 | 550 | 390 | 405 | 19 | | 2.0 | 875 | 890 | 1580 | 795 | 2680 | 405 | 2880 | 1690 | 2190 | 505 | 385 | 410 | 5.0 | | 2 1 | 8 7 5 | 940 | 1660 | 730 | 2190 | 400 | 3340 | 1690 | 35 10 | 485 | 385 | 420 | 2 1 | | 2.2 | 810 | 925 | 1790 | 690 | 2180 | 405 | 3100 | 1690 | 3580 | 475 | 390 | 420 | 2 2 2 3 | | 2.3 | 720 | 915 | 1680 | 775 | 2070 | 410 | 2860 | 1780 | 2450 | 475 | 400 | 405 | | | 2.4 | 760 | 950 | 1450 | 720 | 1750 | 420 | 2800 | 1960 | 2060 | 455 | 405 | 385 | 2.4 | | 2.5 | 850 | 1330 | 1420 | 750 | 1460 | 410 | 2760 | 2510 | 1510 | 435 | 415 | 395 | 2.5 | | 2 6 | 860 | 1250 | 1320 | 775 | 1560 | 395 | 2400 | 2810 | 1070 | 435 | 425 | 395 | 26 | | 2.7 | 885 | 1400 | 1350 | 775 | NR | 390 | 2880 | 2840 | 990 | 435 | 425 | 385 | 2.7 | | 28 | 890 | 1600 | 1450 | 660 | NR | 475 | 2500 | 3000 | 895 | 435 | 395 | 390 | 2.8 | | 2.9 | 870 | 1720 | 1340 | 630 | | 565 | 1960 | 3410 | 1000 | 450 | 400 | 390 | 29 | | 3.0 | 840 | 1880 | 1270 | 765 | | 3860 | 2610 | 3820 | 1370 | 445 | 410 | 385 | 3.0 | | 3 1 | 860 | | 1140 | 825 | | 3810 | | 3860 | | 435 | 405 | | 3 > | | MEAN | 692 | 1010 | 1715 | 880 | NR. | NR | 2608 | 2048 | 2053 | 726 | 408 | 394 | MEAN | | MAX | 1080 | 1880 | 2630 | 1340 | NR | NR | 4550 | 3860 | 3840 | 1410 | 430 | 420 | MAX | | MIN | 345 | 725 | 1140 | 630 | NR | NP | 720 | 930 | 885 | 435 | 385 | 370 | MIN. | | AC.FT. | 42526 | 60109 | 105461 | 54079 | NR NR | NR | 155207 | 125207 | 122142 | 44648 | 25111 | 23445 | AC.FT. | E - Estimated NR - No Record a - Oischarge measurement or observation of no flow made on this day # - E and # MEAN 5480 WATER YEAR SUMMARY MAXIMUM GAGE HT MO DAY TIME 36.15 2 14 2350 MINIMUM DISCHARGE GAGE HT MO DAY TIME TOTAL ACRE-FEET | | LOCATION | V | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-----------|-------------|------|-------|---------|---------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | OISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF | | LATITODE | LUNGITUUE | M 0,8,8M, | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 36 12 | 121 07 50 | NW 7 4S 8E | | | | 30-DATE | 30-DATE | 1960 | 1959 | 0.00 | USED
USCGS | | | | | | | | | | 1960 | | 3.50 | USED | Station located at highway bridge, 3.35 mi. above mouth. Backwater at times affects the stage-discharge relationship. Records furn, by City of San Francisco. TABLE B-37 SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING IN SECONO FEET WATER YEAR 1963 STATION NO 807060 | | | | IN SECONO | PEET | | | | | | | | | | |--------|-------|-------|-----------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------| | OAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | | 1 | 920 | 1120 | 1790 | 1450 | 1650 | 3520 | 7170 | 6720 | 10800 | 2400 | 725 | 860 | 1 | | 5 | 890 | 1110 | 1720 | 1490 | 3620 | 3100 | 5480 | 4660 | 10500 | 2200 | 710 | 865 | 2 | | 3 | 880 | 1090 | 1510 | 1430 | 7180 | 2860 | 4050 | 4610 | 9780 | 2060 | 700 | 865 | 3 | | 4 | 925 | 1090 | 1520 | 1730 | 10300 | 2550 | 3670 | 4410 | 9290 | 1580 | 720 | 830 | 4 | | 5 | 955 | 1060 | 1590 | 1680 | 10500 | 2100 | 3370 | 4540 | 7750 | 1510 | 780 | 850 | 5 | | 6 | 955 | 1010 | 1670 | 1480 | 10500 | 1990 | 2680 | 4310 | 6040 | 1400 | 770 | 865 | 6 | | 7 | 965 | 1000 | 1790 | 1350 | 9800 | 1850 | 2590 | 4100 | 5960 | 1360 | 755 | 920 | 7 | | 8 | 955 | 1060 | 1870 | 1300 | 6590 | 1690 | 3970 | 3920 | 4280 | 1700 | 750 | 960 | 8 | | 9 | 815 | 1080 | 1800 | 1530 | 5620 | 1620 | 6010 | 4070 | 4280 | 1600 | 760 | 960 | 9 | | 10 | 805 | 1090 | 1590 | 1600 | 5720 | 1540 | 7390 | 4390 | 4560 | 1610 | 810 | 980 | 10 | | -11 | 820 | 1100 | 1550 | 1540 | 6900 | 1440 | 7380 | 5220 | 4660 | 1740 | 895 | 865 | 1 | | 15 | 910 | 1100 | 1780 | 1860 | 7890 | 1300 | 9170 | 7740 | 5020 | 1570 | 920 | 885 | 12 | | 13 | 1210 | 1090 | 1720 | 1620 | 6930 | 1230 | 10000 | 9250 | 4590 | 1620 | 845 | 890 | 13 | | 14 | 1360 | 1100 | 1700 | 1450 | 8270 | 980 | 7590 | 8610 | 2430 | 1430 | 800 | 1000 | 14 | | 15 | 1360 | 1130 | 1590 | 1920 | 11100 | 860 | 5980 | 6920 | 2140 | 1330 | 800 | 1030 | 15 | | 16 | 1380 | 1150 | 1560 | 1290 | 9450 | 905 | 8320 | 5660 | 2700 | 1230 | 890 | 1170 | 16 | | 17 | 1300 | 1160 | 1470 | 1290 | 8020 | 1130 | 8320 | 4810 | 3100 | 1220 | 770 | 1340 | 1.7 | | 18 | 1180 | 1150 | 1390 | 1290 | 7400 | 1270 | 6050 | 4070 | 2620 | 1120 | 780 | 1320 | - 8 | | 19 | 1120 | 1130 | 1670 | 1260 | 7140 | 1130 | 5490 | 4240 | 3480 | 1030 | 765 | 1360 | (9 | | 20 | 1090 | 1120 | 1760 | 1250 | 7250 | 990 | 5940 | 5600 | 4120 | 920 | 755 | 1360 | 5.0 | | 2 1 | 1060 | 1160 | 1830 | 1210 | 5890 | 940 | 7230 | 6600 | 6430 | 920 | 700 | 1380 | 2 1 | | 2.2 | 1040 | 1150 | 1900 | 1150 | 5250 | 900 | 8000 | 6000 | 7470 | 920 | 725 | 1450 | 5.5 | | 23 | 975 | 1140 | 1830 | 1190 | 4970 | 980 | 7890 | 7740 | 5830 | 880 | 890 | 1510 | 2.3 | | 24 | 950 | 1110 | 1790 | 1190 | 5460 | 1070 | 7880 | 8230 | 4670 | 770 | 800 | 1450 | 2.4 | | 25 | 1020 | 1300 | 1650 | 1170 | 4020 | 1140 | 7470 | 9220 | 3730 | 730 | 835 | 1430 | 2.5 | | 26 | 1060 | 1370 | 1630 | 1190 | 3840 | 1120 | 7380 | 9710 | 2690 | 725 | 895 | 1390 | 2 6 | | 27 | 1080 | 1350 | 1500 | 1190 | 3900 | 1080 | 7810 | 10100 | 2020 | 730 | 820 | 1160 | 27 | | 2.8 | 1110 | 1560 | 1640 | 1140 | 3710 | 1220 | 7410 | 9670 | 1940 | 765 | 745 | 995 | 2.8 | | 29 | 1120 | 1620 | 1530 | 1050 | | 2110 | 6120 | 10400 | 1770 | 745 | 770 | 990 | 2.9 | | 30 | 1110 | 1720 | 1520 | 1150 | | 5570 | 6120 | 10600 | 2250 | 715 | 890 | 1000 | 3.0 | | 31 | 1100 | | 1460 | 1280 | | 6750 | | 11000 | | 730 | 825 | | 3 (| | MEAN | 1046 | 1181 | 1655 | 1359 | 6747 | 1795 | 6464 | 6675 | 4930 | 1266 | 793 | 1098 | MEAN | | MAX. | 1380 | 1720 | 1900 | 1920 | 11100 | 6750 | 10000 | 11000 | 10800 | 2400 | 920 | 1510 | MAX | | MIN. | 805 | 1000 | 1390 | 1050 | 1650 | 820 | 2590 | 3920 | 1770 | 715 | 700 | 830 | MIN | | AC.FT. | 64304 | 70255 | 101792 | 83544 | 374717 | 110370 | 384655 | 410420 | 293355 | 77871 | 48783 | 65316 | ACFT. | E - Estimated NR - No Record # - Otecharge measurement or observation at no flow made on this day # - E and # WATER YEAR SUMMARY MEAN MAXIMUM MINIMUM DISCHARGE 2917 GAGE HT MO DAY TIME 27.94 2 4 1900 DISCHARGE GAGE HT MO DAY TIME 12250 TOTAL ACRE FEET 2085000 | | LOCATIO | 4 | | | MAXII | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------|--------|------|---------|-----------|---------|-------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 5 | EC. T. | a.R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF | | LATITUDE | LONGITUDE | M D.B.8 M. | | M. | C.F. S. | GAGE HT. | DATE | Disconding. | ONLY | FROM | TO | GAGE | DATUM | | 37 38 10 | 121 12 54 | NE32 | 38 | 7E | 38400 | 38.43 | 4- 2-40 | MAR 33-DATE | MAR 33-DATE | 1960 | 1959 | 0.00 | USED | Station located 2.9 mi. above the mouth of the Stanislaus River. Records furn by City of San Francisco. # DAILY MEAN DISCHARGE IN SECOND FEET # STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE WATER YEAR STATION NO 803175 1963 | DAY | OCT | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |--------|------|-------|-------|------|--------|--------|--------|--------|------------|------|------|------|--------| | | | | 000 | 0 | 1.20 | | | | 00.112 | 3021 | 700 | 3017 | 021 | | | 32 | 172 | 77 | 108 | 3790 | 29 | 1680 | 1060 | 3580 | 113 | 31 | 38 | 1 | | 2 | 2.8 | 86 | 75 | 104 | 9270 * | 28 | 1440 | 1340 | 2860 | 59 | 30 | 36 | 5 | | 3 | 29 | 161 | 75 | 100 | 4300 | 28 | 1430 | 2710 | 2180 | 49 | 29 | 33 | 3 | | 4 | 31 | 168 | 75 | 100 | 3080 | 26 | 1100 | 2950 | 1180 | 48 | 33 | 35 | 4 | | 5 | 36 | 171 | 75 | 100 | 2740 | 25 | 134 | 3150 | 831 | 47 | 29 | 44 | 5 | | 6 | 34 | 171 | 76 | 100 | 1790 * | 179 | 1240 | 3640 | 298 | 47 | 32 | 40 | 6 | | 7 | 30 | 167 | 79 | 98 | 1740 | 90 | 4050 | 5090 | 858 | 46 | | | 7 | | 8 | 29 | 143 | 77 | 97 | 1900 | 31 | 4390 | 5210 | | | 30 | 43 | 8 | | 9 | | | | | | | | | 1530 | 43 | 31 | 48 | 9 | | 10 | 28 | 139 | 80 | 100 | 1860 | 25 | 3460 * | 6290 | 1560 | 38 | 35 | 43 | 10 | | 10 | 28 | 129 | 82 | 102 | 3780 | 130 | 2930 | 7130 * | 1820 | 37 | 34 | 45 | 10 | | - 11 | 32 | 127 | 87 | 98 | 3310 | 571 | 7740 * | 6880 | 2250 * | 33 | 32 | 71 | -11 | | 15 | 37 | 142 | 85 | 94 | 2830 | 502 | 6440 | 5730 | 2020 | 33 | 29 | 76 | 12 | | 13 | 145 | 139 | 86 | 87 | 2740 | 464 | 2520 | 3930 | 1030 | 33 | 28 | 76 | 13 | | 14 | 139 | 147 | 84 | 86 | 2620 | 388 | 2160 | 2750 | 982 | 30 | 31 | 73 | 14 | | 15 | 122 | 178 * | 100 | 68 | 2540 | 326 | 2930 | 1770 | 2820 | 30 | 34 | 73 | 15 | | 16 | 119 | 172 | 135 | 60 * | 2510 | 890 | 3880 | 1170 | 3070 | 31 * | 37 | 71 * | 16 | | 17 | 83 * | 157 | 128 | 58 | 2450 | 1520 | 2970 | 1300 | 3390 | 30 | 34 | 74 | 17 | | 18 | 95 | 173 | 296 * | 59 | 2090 | 492 * | 1920 | 2900 | 3800 | | | 98 | 18 | | 19 | | 177 | 483 | 60 | 1630 | | 1990 | | 1970 | 31 | 31 | | 19 | | 20 | 105 |
 | | | 76 | | 5200 | | 32 | 33 * | 94 | 50 | | | 96 | 193 | 473 | 51 | 1390 | 39 | 2800 | 5620 | 2100 | 33 | 31 | 89 | 1 | | 2 | 71 | 173 | 444 | 49 | 919 | 36 | 4380 | 6080 | 2140 | 30 | 34 | 88 | 21 | | 2.2 | 73 | 170 | 476 | 43 | 922 | 37 | 4250 | 6120 | 1750 | 30 | 34 | 91 | 2 2 | | 2.3 | 146 | 174 | 484 | 3.8 | 923 | 361 | 3650 | 6120 | 311 | 29 | 33 | 97 | | | 24 | 148 | 175 | 405 | 31 | 921 | 1000 | 2780 | 6070 | 181 | 29 | 33 | 95 | 2.4 | | 2.5 | 157 | 175 | 125 | 30 | 678 | 411 | 2760 | 6030 | 174 | 34 | 36 | 98 | 2.5 | | 2.6 | 164 | 177 | 107 | 29 | 76 | 60 | 2750 | 5370 | 111 | 31 | 38 | 98 | 2 6 | | 27 | 160 | 159 | 108 | 29 | 40 | 36 | 2350 | 4500 | 109 | 32 | 35 | 99 | 27 | | 28 | 158 | 106 | 455 | 29 | 31 | 3800 | 1780 | 4650 | | | | | 28 | | 29 | 152 | 88 | 567 | 30 | 21 | 2730 * | 1580 | 5100 | 384
525 | 31 | 32 | 98 | 29 | | 30 | | | 495 | 33 | | | | | | 30 | 36 | 96 | 30 | | 31 | 154 | 78 | | | | 1830 | 1200 | 4920 | 399 | 33 | 34 | 94 | 31 | | - | 158 | | 382 | 60 | | 1730 | | 4630 | | 28 | 36 | | 1, | | MEAN | 90.9 | 153 | 219 | 68.7 | 2245 | 577 | 2823 | 4368 | 1540 | 38.1 | 32.7 | 71.8 | MEAN | | MAX | 164 | 193 | 567 | 108 | 9270 | 3800 | 7740 | 7130 | 3800 | 113 | 38.0 | 99.0 | MAX | | MIN | 28.0 | 78.0 | 75.0 | 29.0 | 31.0 | 25.0 | 134 | 1060 | 109 | 28.0 | 28.0 | 33.0 | MIN | | AC.FT. | 5591 | 9098 | 13440 | 4227 | 124700 | 35480 | 168000 | 268600 | 91660 | 2340 | 2013 | 4272 | AC.FT. | E - Estimated NR - No Record # - Discharge measurement or observation of no flow made on this day # - E and # WATER YEAR SUMMARY MEAN MAXIMUM DISCHARGE GAGENT MO DAY TIME MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE 1007 11100 15.69 2 2 0800 22.0 1.3 3 10 1810 TOTAL ACRE-FEET 729400 | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|--------------------|-----------------------------------|-------------|---------|-----------|-------|------------------------------|------------------------------|------|-------|------------|-------| | I | LATITUDE | ATITUDE LONGITUDE 1/4 SEC. T. 8 R | | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF | | 1 | LATITUDE LONGITUDE | | M 0.8 8 M | C.F. S. | GAGE HT. | DATE | 0.00.111.02 | ONLY | FROM | TO | GAGE | DATUM | | - | 37 47 18 | 120 45 41 | SW 4 25 11E | 52000 | 30.05 | | JUN 28-DEC 39
APR 40-DATE | JUN 28-DEC 39
APR 40-DATE | | | 0.00 | LOCAL | Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. Drainage area, 1,020 sq. mi. Altitude of gage is approximately 70 feet (from U.S.G.S. topographic map). # DAILY MEAN DISCHARGE STANISLAUS RIVER AT RIVERBANK OFC IAN FER MAD ARE WATER YEAR STATION NO 803145 1963 TOTAL 759200 | DAY | OCT | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | VAO | |--------|--------|-------|-------|------|--------|--------|--------|--------|--------|--------|--------|------|--------| | t | 85 | 167 | 124 | 264 | 972 | 116 | 1780 | 1080 | 4160 | 299 | 86 | 99 | 1 | | 2 | 88 | 175 | 121 | 157 | 9030 • | 107 | 1540 | 882 | 3060 | 180 | 84 | 106 | 2 | | 3 | 88 | 136 | 121 | 148 | 5510 | 101 | 1480 | 2540 | 2800 | 143 | 86 | 97 | 3 | | 4 | 88 | 174 | 121 | 142 | 3050 | 97 | 1430 | 2750 | 1520 | 141 | 8.8 | 95 | 4 | | 5 | 87 | 184 | 123 | 141 | 2950 | 93 | 529 | 3130 | 1320 | 128 | 90 | 98 | 5 | | 6 | 94 | 186 | 123 | 136 | 2040 * | 91 | 267 | 3130 | 605 | 124 | 83 | 104 | 6 | | 7 | 91 | 188 | 124 | 135 | 1610 | 223 | 4010 | 4820 | 636 | 119 | 82 | 104 | 7 | | 8 | 88 | 183 | 125 | 132 | 1900 | 115 | 3790 | 5180 | 1590 | 121 | 82 | 110 | 8 | | 9 | 87 | 170 | 122 | 132 | 1780 | 96 | 4730 | 5750 | 1650 | 117 | 84 | 113 | 9 | | 10 | 91 | 168 | 126 | 136 | 3260 | 87 | 2280 | 7330 • | 1850 | 114 | 90 | 108 | 10 | | -11 | 93 | 159 | 127 | 134 | 3320 | 358 | 6340 + | 7380 | 2180 + | 109 E | | 113 | 10 | | +2 | 115 | 161 | 128 | 130 | 3060 | 469 | 7340 | 6560 | 2390 | 104 E | | 136 | 12 | | 13 | 161 | 168 | 129 | 125 | 2680 | 445 | 3340 | 4720 | 1300 E | 100 E | | 147 | 13 | | 14 | 194 | 169 | 129 | 122 | 2760 | 392 | 2030 | 3160 | 626 E | 96 E | | 152 | -4 | | 15 | 186 | 178 | 132 | 115 | 2530 | 312 | 2370 | 2230 | 2500 | 92 E | 79 | 142 | 15 | | 16 | 161 | 196 | 171 | 103 | 2480 | 378 | 3790 | 1480 | 3300 | 93 # | 81 | 140 | 16 | | 17 | 143 * | 196 | 191 | 99 | 2450 | 1490 | 3360 | 1320 | 2860 | 94 | 82 | 142 | 17 | | 18 | 123 | 188 | 173 * | 97 | 2250 | 771 | 1860 | 2230 | 4260 | 96 | 85 | 148 | 18 | | 19 | 129 | 199 | 452 | 96 | 1700 | 294 + | 1840 | 4880 | 2170 | 100 | 84 # | 165 | , 9 | | 30 | 132 | 206 | 565 | 94 | 1580 | 139 | 2130 | 5520 | 2170 | 96 | 8.2 | 161 | 2 0 | | 21 | 124 | 210 | 472 | 88 | 901 | 112 | 4090 | 6140 | 2210 | 97 | 8.2 | 163 | 2 1 | | 22 | 109 | 204 | 509 | 86 | 873 | 116 | 4160 | 6270 | 2050 | 89 | 83 | 161 | 2 2 | | 23 | 116 | 202 | 520 | 80 | 854 | 131 | 3910 | 6290 | 745 | 88 | 83 | 164 | 2.3 | | | 153 | 201 | 529 | 76 | 847 | 939 | 2790 | 6260 | 322 | 85 | 82 | 167 | 2.4 | | 2.5 | 161 | 204 | 273 | 73 | 816 | 555 | 2690 | 6210 | 300 | 8.2 | 91 | 163 | 2.5 | | 26 | 165 | 202 | 169 | 70 | 318 | 260 | 2680 | 5920 | 246 | 88 | 95 | 159 | 2 6 | | 27 | 169 | 209 | 151 | 69 | 167 | 135 | 2530 | 4870 | 195 | 83 | 97 | 162 | 2.7 | | 28 | 168 | 189 | 212 | 66 | 130 | 2000 | 1730 | 4610 | 289 | 86 | 95 | 162 | 2.8 | | 29 | 167 | 149 | 604 | 68 | | 3780 * | 1620 | 5210 | 544 | 85 | 91 | 166 | 2.9 | | 30 | 164 | 133 | 568 | 71 | | 2000 | 1190 | 5100 | 547 | 82 | 93 | 165 | 3.0 | | 31 | 165 | | 526 | 78 | | 1790 | | 4950 | | 85 | 94 | | 3 | | MEAN | 129 | 182 | 257 | 112 | 2208 | 580 | 2788 | 4449 | 1680 | 110 | 85+8 | 137 | MEAN | | MAX | 194 | 210 | 604 | 264 | 9030 | 3780 | 7340 | 7380 | 4260 | 299 | 97.0 | 167 | MAX | | MIN | 85 • 0 | 133 | 121 | 68.0 | 130 | 87.0 | 267 | 882 | 195 | 82 • 0 | 77 • 0 | 95.0 | MIN | | AC.FT. | 7904 | 10820 | 15790 | 6877 | 122600 | 35690 | 165900 | 273500 | 99960 | 6776 | 5276 | 8156 | AC.FT. | | | | | | | 1 | | | | .,,,, | 3.10 | 72.0 | 0170 | | E - Estimoted NR - No Record # - Discharge measurement or observation of no flow mode an this day # - E and # | WATER | YEAR | SUMMARY | |-------|------|---------| | | | | MAXIMUM GAGE HT MO DAY TIME 88.73 2 2 1340 MEAN DISCHARGE 1048 10100 | | LOCATION | ٧ | | | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-------------|---------------------------------------|----|--------|----------|-----------|----------|-------------|-------------|------|-------|---------|-------| | LATITUDE | 1 CHICITURE | ONGITUDE 1/4 SEC. T. 8 R. M O. B. 8 M | | 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 0018 | ZERO | REF | | LATITUDE | LUNGITUUE | | | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | | 34 44 31 | 120 56 21 | sw24 | 25 | 9E | 85800 | 103.18 | 12-23-55 | JUL 40-DATE | JUL 40-DATE | 1940 | | 0.00 | USCGS | Station located at Burneyville Bridge, immediately N of Riverbank. Drainage area 1,055 sq. mi. # STANISLAUS RIVER AT KOETITZ RANCH IN SECONO FEET WATER STATION NO B03115 1963 | DAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |------------------------------|--|-----------------------------------|--|-----------------------------------|---|---|--|--|--|---|--|-----------------------------------|---| | 2
3
4
5 | 263
236
220
211
210 | 245
246
246
225
243 | 205
195
187
183
182 | 665
470
367
327
306 | 149
1970
5240
5170 *
3490 * | 363
324
295
272
253 | 2120 E
1840 E
1710
1680
1410 | 1760
1570
1830 E
2540 E
2900 E | 5170
4380
3560
2700
1890 | 691 E
500 E
428 E
403 E
436 E | 209
210
242
258
283 | 258
270
239
216
234 | 2 3 4 5 | | 6
7
8
9 | 220
240
213
199
207 | 253
256
257
254
244 | 181
181
181
180
178 | 299
291
285
279
277 | 2860
2100
1980
2030
2240 | 243
246
312
250
226 | 809
1690
3590
4120 *
3820 | 3070 E
3530 E
4410 E
5050 E
5740 E | 1490
1050
1360
1780
1840 | 409 E
385 E
368 E
348 E
332 E | 241
215
222
216
219 | 233
262
282
305
254 | 6
7
8
9 | | 11
12
13
14 | 233
311
331
358
383 | 239
233
232
234
234 | 179
180
179
179
181 | 277
275
272
269
265 | 3400
3300
3000
3030
2810 | 218
443
526
516
466 | 3340
5190 *
5840 *
3610
2510 | 6410
6750
6640
5850 E
4300 E | 2000
2300
2080 #
1310 E
1430 | 298 E
276 E
279 E
288 E
288 E | 219
233
216
202
208 | 262
286
340
387
338 | 11
12
13
14 | | 16
17
18
19
20 | 377
315
254
229
222 | 239 *
254
257
250
256 | 196
238
254
239
400 | 259 *
246
239
235
233 | 2630
2570
2490
2200
1850 | 415
706
1280
749
451 | 3050
3690
3070
2310
2280 | 2780 E
2000 E
2300 E
3720 E
4860 # | 2650
2840
3240
3360
2240 | 257 #
284
300
289
273 | 219
203
204
219
210 * | 305 *
294
298
299
318 | 16
17
18
19
20 | | 21
22
23
24
25 | 219
213
205
205
227 | 263
265
262
256
255 | 509
494
526
538
523 | 230
224
218
212
208 | 1580
1210
1140
1100
1080 | 334
280
265
367
895 | 3060
4130
4310
3940
3220 |
5570
6010
6220
6240
6210 | 2250
2300
1880
969
758 | 281
262
252
226
213 | 196
202
239
215
239 | 339
336
376
324
304 | 2
2
2
2
2
2
2 | | 26
27
28
29
30 | 236
242
246
248
249
246 | 258
262
263
249
222 | 369
282 *
247
309
551
574 | 202
199
197
194
194 | 931
559
427 | 624
418
426
2420 E
2400 E
2250 E | 3120
3120
2710
2320
2080 | 6170
6000
5450
5130
5320
5340 | 669
568
489
606
759 | 199
200
236
233
235
222 | 233
230
225
220
233
226 | 297
304
312
316
343 | 26
27
28
29
30
31 | | MEAN
MAX
MIN
AC.FT. | 251
383
199
15410 | 248
265
222
14780 | 290
574
178
17850 | 271
665
194
16690 | 2233
5240
149
124000 | 620
2420
218
38150 | 2990
5840
809
177900 | 4570 E
6750
1570
281000E | 1997
5170
489
118800 | 313
691
199
19220 | 223
283
196
13700 | 298
387
216
17710 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - No Record # - Oischarge measurement or observation of no flow mode on this day # - E and # | MEAN | MAXIMUM | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | DISCHARGE | GAGE HT | MO | DAY | TIME | 138 | 27.60 | 2 | 1 | 0000 WATER YEAR SUMMARY TOTAL ACRE-FEET 855,210 | | LOCATION | N | MAXII | MUM DISCH | ARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|------------|---------------------------------|-------|-----------|------|-----------|-------------|----------------------|-------|----------------------|-------| | LATITUOE | LONGITUDE | I/4 SEC T.B.R | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOO | ZERO | REF | | LATITOOL | CONSTITUTE | M D.B. B.M C.F.S. GAGE HT. DATE | | | ONLY | FROM | то | GAGE | DATUM | | | | 37 41 57 | 121 10 08 | SW 2 3S 7E | | | | | MAR 50-DATE | 1950
1951
1951 | 1951 | 0.00
0.00
3.60 | USCGS | Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon. #### DAILY MEAN DISCHARGE SAN JOAQUIN RIVER MEAR VERNALIS IN SECONO FEET | STATION NO | WATER | |------------|-------| | 807020 | 1963 | | OAY | ост | NOV | OEC. | | | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |----------------------------------|--|--|--|--|---|--|---|--|--|--|--|--|----------------------------------| | 1
2
3
4
5 | 1160
1190
1200
1220
1260 | 1570
1570
1570
1570
1570
1550 | 2520
2480
2160
1970 *
2180 | 2190
2180 *
1940
2270
2270 | 1920
3830
9220
12100 * | 4390
3950
3620
3300
2720 * | 8730
7720
6120 *
5610
5190 | 8380
7540
6500
6750
6840 | 13000
12500
11600
10800
9410 | 3490
3130 *
2970
2370
2240 | 1020 E
1020 E
1000 E
1020 E
1100 E | 1210
1200 | 1
2
3
4
5 | | 6
7
8
9 | 1260
1330
1300 *
1140
1050 | 1470
1400
1420
1450
1470 | 2310
2480
2620
2570
2290 | 2000
1720 E
1670 E
1960
2090 | 11700 *
11000
8700
7500 E
7700 F | 2620
2450
2290
2180
2060 | 4120
3870
6260
8360
9860 | 6930
6800 *
6910
7190
7720 | 7810
6430
5810
6050
6370 * | 2130
2020
2360
2350
2210 | 1120 E
1080 E
1080 E
1080 E
1120 E | 1200
1190
1220
1270
1290 | 6
7
8
9 | | 11
12
13
14
15 | 11 10
1260
1650
1940
2070 | 1480
1490
1500 *
1510
1540 | 2120
2480
2450
2430
2290 | 2000
2090
2130
1910
1690 E | 9100 E
9700 E
8700 E
9700 #
11900 | 1930 E
1750 E
1860 E
1610 E
1460 | 9440
11200
12500
10700
8350 | 8650
10800
12200
11600
9790 | 6540
7780
7000
4550
3540 | 2410
2180
2210
2050
1900 | 1220 E
1280 E
1150 E
1100 E
1050 E | 1280
1240
1260
1340
1450 E | 11
12
(3
14
15 | | 16
17
18
19
20 | 2100
1970
1760
1630
1550 | 1570
1600
1600
1590
1550 | 2240
2130
1980
2360
2590 | 1630 E
1630 E
1640 E
1590 E
1590 E | 11200
9970
9280
8660 *
8650 | 1450
1790
2440
2150
1780 E | 9810 * 10600
8940
7810
7970 | 8150
6910
6050
6490
8310 | 4760
5510
4940
6060
6410 | 1760 E
1640 E
1580 E
1460 E
1350 E | 1080 E
1100 E
1100 | 1630 E
1780
1780
1800
1800 | 16
17
18
19
20 | | 21
22
23
24
25 | 1520
1480
1370
1300
1320 | 1580
1590
1610
1580
1720 | 2790
3010
3110
2890
2670 | 1530 E
1470 E
1470 E
1500 E
1470 E | 7550
6690
6350
5950
5420 | 1570
1420
1450
1560
1910 E | 9100
10300
10400
10400
9840 | 9490
10200
10900
11200
11900 | 8080
9010
8330
6350
5070 | 1320 E
1350 E
1300 E
1200 E
1080 E | 1060
1090 | 1840
1920
2060
1980
1920 | 2 1
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 1380
1430
1480
1520
1550
1560 | 1930
1890
2200
2310
2420 | 2590
2260
2430
2260
2400
2420 | 1500 E
1500 E
1410 E
1300 F
1440 E
1590 E | 5100
4930
4670 | 1930 * 1760
1790
3480
7680
8480 | 9600
9690
9550
8400
8030 | 12500
12700
12300
12000
12700
13100 | 3910
3360
2910
2740
3260 | 1080 E
1050 E
1080 E
1100 E
1080 E
1020 E | 1060 | 1860
1770
1630
1520
1470 | 26
27
28
29
30
31 | | MEAN
MAX
MIN.
AC.FT. | 1454
2100
1050
89380 | 1643
2420
1400
97790 | 2435
3110
1970
149700 | 1754
2270
1300 E
107800 | 8185
12100
1920
454600 | 2607
8480
1420
160300 | 8616
12500
3870
512700 | 9339
13100
6050
574200 | 6663
13000
2740
396500 | 1822
3490
1020 E
112000 | 1095
1280 E
1000 E
67360 | 1515
2060
1140
90150 | MEAN
MAX
MIN.
AC.FT. | - Estimated E - Estimated NR - No Record - Olecharge measurement or observation of no flow made on this day. - E and * WATER YEAR SUMMARY MEAN DISCHARGE MAXIMUM MINIMUM GAGE HT MO DAY TIME 23.80 5 31 1400 DISCHARGE GAGE HT MO DAY TIME 3885 13100 | TOTAL | | |-----------|--| | ACRE-FEET | | | 2812000 | | | | LOCATION | 1 | MAXIM | NUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|-------------------|--------|---------------------|---------|--------------------------------|---------------|---------------|------|------|-------| | | | 1/4 SEC. T. B. R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO | REF | | LATITUDE | LONGITUDE | M. O. B. & M | C.F.S. | .F.S. GAGE HT. DATE | | O S CHARGE | ONLY | FROM | TO | GAGE | DATUM | | 37 40 34 | 121 15 51 | | 79000 | 27.75 | 12-9-50 | JUL 22-DEC 23
JAN 24-FEB 25 | | | | 8.4 | USED | | 1 | | | , | | | JUN 25-DCT 28 | JUN 25-OCT 28 | 1050 | 1959 | | USCGS | Station located on left bank 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River 3.4 mi. NE of Vernalis. Drainage area is approx. 14,010 sq. mi. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawals and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. The records are furnished by the U.S.G.S. # DAILY MEAN DISCHARGE IN SECOND FEET SOUTH FORK KINGS RIVER BELOW EMPIRE WEIR #2 WATER YEAR 1963 STATION NO C01120 | DAY | ост | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SERT. | OAY | |--------|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|-------|--------| | 1 | 44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 53 | 42 | 322 | 1 | | 2 | 42 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 77 | 41 | 334 | 2 | | 3 | 43 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 77 | 41 | 328 | 3 | | 4 | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60 | 8 | 334 | 4 | | 5 | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 66 | 29 | 351 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 68 | 20 | 370 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 47 | 20 | 429 | 7 | | 8 | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33 | 35 | 443 | 8 | | 9 | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35 | 49 | 443 | 9 | | 10 | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | 52 | 443 | 10 | | 10 | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | 52 | 406 | - 11 | | 12 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | 50 | 391 | 12 | | 13 | 2 | 0.0 | 0.D | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | 50 | 381 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 50 | 370 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 50 | 324 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | 50 | 339 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | 61 | 356 | 17 | | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | 70 | 374 | 18 | | 19 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 16 | 67 | 352 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60 | 17 | 66 | 339 | 20 | | 2 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 103 | 17 | 66 | 338 | 21 | | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 127 | 17 | 66 | 338 | 2.2 | | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 138 | 17 | 67 | 198 | 2.3 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150 | 17 | 89 | 285 | 2.4 | | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147 | 17 | 96 | 280 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145 | 17 | 95 | 200 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83 | 30 | 103 | 100 | 2.7 | | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50 | 42 | 105 | 142 | 2.6 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 47 | 49 | 189 | 99 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 66 | 51 | 258 | 123 | 30 | | 31 | 0.0 | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 48 | 310 | | 3 1 | | MEAN | 8.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.4 | 34.5 | 75.7 | 318 | MEAN | | MAX. | 44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150 | 77 | 310 | 443 | MAX | | MIN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | 8 | 99 | MIN. | | AC,FT. | 543 | | | | | | | | 2227 | 2120 | 4655 | 18910 | AC.FT. | E - Estimated NR - No Record # - Diecharge measurement or observation of no flow made an this day # - E and # | WATER | TEAR | SUMMART | | |-------|------|---------|--| |
 | | | | MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME 39.5 TOTAL ACRE-FEET 28450 : | | LOCATION | | | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|---------------------|------------------|--------|-----------|-------|-----------|-------------|--------|-------|-------------|-------| | LATITUDE | LONGITUOE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZE RO
ON | REF | | LATITODE | LONGITUOE M. D.B.&M | M. D. B. & M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 10 | 119 50 | 20S 19E | | | | | | | | | | Station located 1.0 mi. SW of Stratford. So. Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furn, by Kings River Water Association. # DAILY MEAN DISCHARGE IN SECOND FEET CROSS CREEK BELOW LAKELAND CANAL #2 WATER YEAR STATION NO C02602 1963 | AX. 0.0 0.0 0.0 0.0 0.0 223 0.0 0.0 0.0 0.0 0.0 82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | AY | OCT. | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |---|-----|------|-----|------|-----|-------------|-----|-----|-----|------|------|-----|------|--------| | 3 | | | | | | | | | | | | | | 1 2 | | 1 | | | | | | | | | | | 0.0 | | | 3 | | 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 4 | | | | | | 0.0 | 0.0 | 0.0 | | 0.0 | | | | | 7 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 8 0.0 0.0 0.0 0.0 0.0 185 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 9 0.0 0.0 0.0 0.0 188 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | | | | | | | | 0.0 | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | 12 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 223 | 0.0 | 0.0 | | | | | | " | | 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 0.0 | | | | | | | | | | | 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | 0.0 | 15 | | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 50 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | /9 | 0.0 | 0.0 | | | 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 28 | | | | | 0.0 | | | | | | | | | | 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | | | | | | | | | | EAN 0.0 0.0 0.0 0.0 38 0.0 0.0 0.0 0.0 27 0.0 0.0 MAA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MA MAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | 0.0 | | | | | 0.0 | | 0.0 | | | 0.0 | | | AX 0.0 0.0 0.0 0.0 0.0 223 0.0 0.0 0.0 0.0 82 0.0 0.0 MA) IIN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | _ | 0.0 | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | - | | IIN. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | | | | | | | | | | | | | MEAN | | | AX. | | | | | | | | | | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
2132 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | AC.FT. | E - Estimated NR - Na Record # - Ovechorge measurement or observation at no flow made on this day. # - E and # WATER YEAR SUMMARY MINIMUM DISCHARGE GAGE HT MD DAY TIME MEAN MAXIMUM DISCHARGE GAGE HT MO DAY 5.4 TOTAL ACRE-FEET 3816 | | LOCATION | | | NUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-------------|-------------|------|-------|------------|-------| | LATITUOE | LONGITUOE | 1/4 SEC, T, B R. | | OF RECORD | | 015 CHARGE | GAGE HEIGHT | PER | 100 | ZERÔ
ON | REF | | LATITUDE | LONGITUDE | M D.B.B.M. | C.F.S. | GAGE HT. | OATE | 0.00.111.02 | ONLY | FROM | TO | GAGE | DATUM | | 36 12 42 | 119 34 05 | NE10 20s 22E | | | | 21-DATE | | | | | | Station located below Cross Creek Weir, 4 mi. E of Guernsey. Tributary to Tulare Lake area. At times the flow is a combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furn. by Corcora Irrigation District. ELK BAYOU NEAR TULARE IN SECOND FEET STATION NO C03130 1963 | DAY | ост | NOV | O E C. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | 327 | |--------|------|-------|--------|-------|-------|------|-------|------|---------|------|-----|------|--------|--------| | - | 0.0 | 0.0* | 0.0 | 0.0 | 60 * | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | NR | NR | 1 | | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 176 * | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | 2 | | | 3 | 0.0 | 0.0 | 0.0* | 0.0 | 174 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | NR | NR | 3 | | | 4 | 0.0 | 0 + 0 | 0.0 | 0.0* | 210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | 4 | 1 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 243 | 0.0* | 0.0 | 0.0 | 0 • 0 * | 0.0 | NR | NR | 5 | | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 223 | 0.0 | 0+0 | 0.0* | 0.0 | 0.0 | NR | NR | - 6 | | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 215 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | 7 | | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 223 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | 8 | ALC: U | | 9 | 0.0* | 0.0 | 0.0 | 0.0 | 224 | 0.0 | 30 | 0.0 | 0 • 0 | 0.0 | NR | NR | 9 | | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 235 | 0.0 | 9 • 8 | 0.0 | 0 • 0 | 0.0 | NR | NR | 10 | ı | | 11 | 0.0 | 0.0 | 0 • 0 | 0.0 | 209 | 0.0 | 4.7 | 0.0 | 0.0 | 0.0 | NR | NR | 11 | | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 76 | 0.0 | 3 • 1 | 0.0 | 0 • 0 | 0.0 | NR | NR | 12 | | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6 | 0.0 | 3 • 0 | 0.0 | 0.0 | 0.0 | NR | NR | 13 | | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 2 • 3 | 0.0 | 0.0 | 0.0 | 0 • 0 | 0.0 | NR | NR | +4 | | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 • 0 | 0.0 | 0.0 | 0.0 | NR | NR | 15 | | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | 16 | | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR a | NR | NR | 17 | | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 18 | All at | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 • 0 * | NR | NR | NR | 19 | 1 1 | | 2.0 | 0.0 | 0 • 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | NR | NR | NR | 5.0 | 8 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 2 1 | | | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 2.2 | 1 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 2.3 | | | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 24 | 74 | | 2.5 | 0.0 | 0.0 | 0.0 | 0 • 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 2.5 | 25 | | 2 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 • 0 | NR | NR | NR | 2 6 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0+0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 27 | | | 2.8 | 0.0 | 0.0 | 0.0* | 0 • 0 | 0+0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | 2.8 | 32 | | 29 | 0.0 | 0.0 | 0 + 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | N.U | 29 | 7.7 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | a 30 | 30 | | 31 | 0.0 | | 0 • 0 | 0.0 | | 0.0 | | 0.0 | | NR | NR | | 3 1 | | | MEAN | 0.0 | 0+0 | 0.0 | 0.0 | 81.4 | 0.0 | 1.7 | 0.0 | 0.0 | NR | NR | NR | MEAN | 1E1/ | | MAX | 0.0 | 0.0 | 0.0 | 0.0 | 243 | 0.0 | 30.0 | 0.0 | 0.0 | NR | NR | NR | MAX | WAL | | MIN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NR | NR | NR | MIN. | 84 | | AC,FT. | | | | | 4518 | | 100 | | | | | | AC.FT. | 1257
 E - Estimated NR - No Record # - Discharge measurement or observation of no flow mode on this day # - E and # a - See Note (a) below. WATER YEAR SUMMARY | | MEAN | |) | | MINIM | | | | | | | | | |---|-----------|-----------|---------|----|-------|------|---|-----------|---------|----|-----|------|--| | ı | DISCHARGE | DISCHARGE | GAGE HT | MD | DAY | TIME | 1 | DISCHARGE | GAGE NT | MO | DAY | TIME | | | | 6.4 | 261 | 2.35 | 2 | 5 | 2020 | - | 0.0 | | 10 | 1 | 0000 | | | TOTAL | | |-----------|--| | ACRE-FEET | | | 4619 | | 8 6 : | 1 | | LOCATION | N | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|---------|-------------|-------------|------|-------|---------|-------| | | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOO | ZERO | REF | | 1 | LATITUDE | LONGITODE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 36 08 37 | 119 19 48 | SW36 20S 24E | 261 | 2.35 | 2- 5-63 | OCT 58-DATE | MAR S7-DATE | 1959 | | 0.00 | LOCAL | Station located 1.8 mi. W of U.S. Highway 99, 5.8 mi. S of Tulare. Prior to Mar. 4, 1960, station located 700 feet W of U.S. Highway 99, 4.5 mi. S of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mi. E of Elk Bayou Ave. 3.6 mi. below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 ft. (from U.S.G.S. topographic (a) Work on control to install a gate created a condition, from 7-17-63 to 9-30-63, making it impossible to record low flows if such flow did occur. ### DAILY MEAN DISCHARGE FRIANT KERN CANAL DELIVERY TO PORTER SLOUGH IN SECONO FEET WATER YEAR STATION NO C03913 1963 | YAC | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG. | SEPT | OAY | |----------------------------------|--------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---|-----------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|---|----------------------------------| | 1
2
3
4
5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 14
10
10
10 | 20
20
20
20
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 20
20
20
20
20 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 3
0.0
0.0
0.0
0.0 | 20
20
20
17
15 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7
0.0
0.0
0.0
0.0 | 6
7
8
9 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
17
25 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6
10
10
10 | 15
15
15
15
15 | 0.0
0.0
0.0
0.0 | 0 • 0
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0 | 11
12
13
14
15 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 25
24
18
11 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7
10
11
12
14 | 10
10
15
20 | 15
15
12
10
5 | 0.0
0.0
0.0
0.0
0.0 | 0 • 0
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0 | 16
17
18
19
20 | | 2 1
2 2
2 3
2 4
2 5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 13
20
23
25
25 | 0 • 0
0 • 0
0 • 0
0 • 0
0 • 0 | 15
15
15
15 | 20
20
20
20
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6
9
8
11
16 | 0 • 0
0 • 0
0 • 0
0 • 0 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 25
25
25
0•0 | 0.0
0.0
0.0
0.0
0.0 | 22
22
21
22
22 | 20
20
20
23
25
22 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 18
18
19
20
20 | 0 • 0
0 • 0
0 • 0
0 • 0
0 • 0 | 26
27
28
29
30
31 | | EAN
IAX
IIN.
C.FT. | 0.0 | 4.2
25
0.0
248 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 6.5
25
0.0
359 | 0.0
0.0
0.0 | 8 • 1
22
0 • 0
484 | 13.2
25
0.0
809 | 10.8
20
0.0
643 | 0.0 | 5.3
20
0.0
327 | 3.6
20
0.0
212 | MEAN
MAX
MIN
AC.FT. | - Estimated H → E stimuted NR → No Record # → Discharge measurement or observation of no flow mode on this day. # → E and # MEAN DISCHARGE DISCHARGE MAXIMUM GAGE HT MO DAY TIME 4.3 MINIMUM DISCHARGE GAGE HT MO GAY TIME WATER YEAR SUMMARY TOTAL 3082 | | LOCATIO | V | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|--------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF | | LATITODE | LUNGITUDE | м 0.В.8 м | C.F.S. | GAGE HT. | OATE | 0.00.1111.00 | DNLY | FROM | TO | GAGE | DATUM | | 36 05 00 | 119 04 50 | SW20 21S 27E | | | | | | | | | | These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U.S.B.R. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approx. 4 mi. W of Porterville. Records furn. by U.S.B.R. #### DAILY MEAN DISCHARGE FRIANT KERN CANAL DELIVERY TO TULE RIVER IN SECONO FEET WATER STATION NO C03923 1963 | OAY | OCT. | NOV | OEC. | NAL | FE8 | MAR. | APR | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------|------|-----|------|-----|-----|------|-------|------------|------------|------|------|------------|--------| | 1 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 251 | 276 | 0.0 | 0.0 | 140 | 1 2 | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 260
265 | 276
276 | 0.0 | 0.0 | 140
140 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 267 | 276 | 0.0 | 0.0 | 140 | 4 | | s | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 273 | 276 | 0.0 | 0.0 | 140 | 5 | | | 0.0 | | | | | | | | | | 0.0 | | | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 276 | 276 | 0.0 | 0.0 | 157 | 6 7 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 276 | 276 | 0.0 | 0.0 | 183 | 8 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 276 | 276 | 0.0 | 10 | 190 | 9 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 67 | 276 | 276 | 0.0 | 15 | 177 | 10 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 200 | 276 | 276 | 0.0 | 26 | 170 | " } | | - 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 249 | 276 | 276 | 0.0 | 32 | 170 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 317 | 276 | 276 | 0.0 | 32 | 158 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 351 | 276 | 276 | 0.0 | 32 | 151 | 15 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 351 | 276 | 276 | 0.0 | 32 | 151 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 310 | 276 | 276 | 0.0 | 32 | 151 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 178 | 276 | 276 | 0.0 | 32 | 151 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 201 | 276 | 276 | 0.0 | 32 | 151 | 17 | | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 201 | 276 | 276 | 0.0 | 37 | 151 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 201 | 276 | 253 | 0.0 | 40 | 151 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 216 | 276 | 206 | 0.0 | 40 | 151 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 225 | 276 | 112 | 0.0 | 23 | 151 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 225 | 276 | 60 | 0.0 | 14 | 151 | 22 | | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 225 | 276 | 55 | 0.0 | 14 | 151 | 2.3 | | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 225 | 276 | 17 | 0.0 | 14 | 151 | 24 | | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 242 | 276 | 0.0 | 0.0 | 14 | 151 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 251 | 276 | 0.0 | 0.0 | 14 | 151 | 26 | | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 251 | 276 | 0.0 | 0.0 | 14 | 175 | 27 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 241 | 276 | 0.0 | 0.0 | 95 | 185 | 2.6 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 251 | 276 | 0.0 | 0.0 | 140 | 185 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 251 | 276 | 0.0 | 0.0 | 140 | 185 | 30 | | 31 | 0.0 | | 0.0 | 0.0 | | 0.0 | | 276 | | 0.0 | 140 | | 3 | | MEAN | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 174 | 274 | 189 | 0.0 | 32 | 158 | MEAN | | MAX. | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 351 | 276 | 276 | 0.0 | 140 | 190 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 251 | 0.0 | 0.0 | 0.0 | 140 | MIN. | | AC.FT. | 3.0 | 0.0 | 0.0 | 0.0 | 307 | 0.0 | 10372 | 16844 | 11248 | 0.0 | 2011 | 9420 | AC.FT. | | | | | | | | | | | | | 50.1 | ,,,,, | | E - Estimated NR - No Recard # - Discharge measurement or observation of no flow mode on this day # - E and # WATER YEAR SUMMARY MAXIMUM MEAN MAXIMUM MINIMUM DISCHARGE DISCHARGE GAGE HT MD DAY TIME DISCHARGE GAGE HT MO DAY TIME 69.4 TOTAL ACRE-FEET 50202 をを 2 | | LOCATIO | N | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|--------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | QOIS | ZERO | REF | |
LATITODE | LONGITUDE | м. 0.8 8 м | C.F.S. | GAGE HT. | DATE | Dio di lanoc | ONLY | FROM | то | GAGE | DATUM | | 36 04 25 | 119 05 15 | NW29 21S 27E | | | | | | | | | | These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U.S.B.R. Delivery islocated on the Tule River approximately 4 mi. W of Porterville. Record furnished by U.S.B.R. # DAILY MEAN DISCHARGE IN SECOND FEET NORTH FORK TULE RIVER AT SPRINGVILLE WATER YEAR 1963 STATION NO | YAC | OCT. | NOV | DEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | OAY | |-------|-------|-------|-------|-------|--------|------|------|-------|------|-------|-------|-------|------| | 1 | 0.6 | 0.5* | 0 • 3 | 1.4 | 2000 * | 25 | 88 * | 187 * | 47 | 9.9 | 0+8 | 0.4 | 1 | | 2 | 0 • 3 | 0.3 | 0 • 3 | 1.3 | 396 | 24 | 80 | 179 | 44 | 8.0 | 1+0 | 0 • 3 | 2 | | 3 | 0.4 | 0 • 3 | 0.3* | 1 • 1 | 153 | 24 | 73 | 185 | 41 | 7.3* | | 0.3 | 3 | | 4 | 0.9 | 0.3 | 0.9 | 0.7 | 92 | 2.2 | 74 | 173 | 40 | 7.7 | 0 • 5 | 0.44 | 4 | | 5 | 0.7 | 0.3 | 0.9 | 0+6 | 72 * | 18 | 76 | 151 | 36 * | 7.9 | 0+7* | 0.6 | 5 | | 6 | 0 • 3 | 0 • 2 | 0 • 6 | 0.5 | 60 | 18 * | 76 | 143 | 37 | 1.2 | 0+8 | 0.7 | 6 | | 7 | 0.3 | 0 • 2 | 0.9 | 0 • 5 | 50 | 1.7 | 287 | 135 | 37 | 6.1 | 0 • 7 | 0.6 | 7 | | 8 | 0 • 4 | 0.3 | 0.9 | 0.5 | 43 | 17 | 305 | 123 | 34 | 5 • 6 | 1.0 | 0.5 | 8 | | 9 | 0.9 | 0.6 | 0.9 | 0.5 | 42 | 20 | 203 | 170 | 31 | 5.2 | 1.0 | 0.5 | 9 | | 10 | 0 • 3 | 0.6 | 0•6 | 0.5 | 183 | 2.2 | 157 | 133 | 30 | 4 • 1 | 1.0 | 0.7 | 10 | | 11 | C • 3 | 0 • 5 | 0.4 | 0.5 | 104 | 20 | 123 | 130 | 32 | 2.7 | 0.6 | 0.5 | . 11 | | 12 | 0 + 3 | 0.5 | 0.5 | 0.5 | 83 | 20 | 110 | 113 | 40 | 2 . 3 | 0.5 | 0.5 | 12 | | 13 | 0.3 | 0.5 | 1.0 | 0.5 | /3 | 18 | 100 | 106 | 40 | 2 . 3 | 0 • 8 | 0 • 5 | 13 | | 14 | 0.6 | 0.5 | 1.0 | 0.5 | 75 | 17 | 148 | 100 | 33 | 1.6 | 0 • 8 | 0.6 | 14 | | 15 | 0 • 4 | 0 • 4 | 0 • 8 | 0.5 | 72 | 25 | 321 | 95 | 30 | 1.0 | 0.6 | 0.6 | 15 | | 16 | 0 • 4 | 0 • 4 | 1.3 | 0.5 | 60 | 27 | 214 | 91 * | 28 | 1.2 | 0.7 | 0.6 | 16 | | 17 | 0.4 | 0 • 4 | 1 - 1 | 0.5 | 54 | 4 3 | 1 75 | 89 | 23 | 0 • 8 | 0 • 4 | 0 • 8 | 17 | | 18 | 0 • 2 | 0 • 4 | 0.7 | 0.5 | 48 | 36 | 145 | 88 | 21 | 0.8 | 0.4 | 1.0 | 18 | | 19 | 0.5 | 0 • 6 | 0.5 | 0.5 | 45 | 31 | 131 | 86 | 19 | 1+1 | 0.4 | 0.9 | 19 | | 20 | 0 • 3 | 0 • 3 | 0.5* | 0.8 | 42 | 37 | 137 | 8 3 | 18 | 1.0 | 0 • 4 | 0.9 | 20 | | 21 | 0.3 | 0+3 | 0.9 | 1.0 | 41 | 46 | 169 | 80 | 18 | 0.9 | 0+6 | 1.0 | 21 | | 22 | 0.3 | 0 • 3 | 0.9 | 1.0 | 38 | 49 | 139 | 80 | 18 | 0.8 | 0.5 | 1.1 | 2.2 | | 23 | 0.3 | 0 • 3 | 0 • 8 | 1.1 | 35 | 56 | 136 | 78 | 16 | 0 • 8 | 0 • 4 | 1.0 | 2.3 | | 24 | 0.3 | 0.3 | 0.9 | 0.9* | 34 | 51 | 1 36 | 74 | 15 | 0.8 | 0.3 | 1.0 | 24 | | 25 | 0 • 4 | 0 • 3 | 1.0 | 0.7 | 32 | 48 | 136 | 68 | 13 | 0.9 | 0 • 4 | 0.8 | 2.5 | | 26 | 0.4 | 0.3 | 1.1 | 0.6 | 30 | 47 | 176 | 66 | 12 | 0.9 | 0 • 4 | 0.7 | 26 | | 27 | 0.2 | 0 • 3 | 1.2 | 0.6 | 29 | 48 | 146 | 62 | 1.1 | 0.9 | 0.4 | 0.7 | 27 | | 28 | 0.5 | 0.3 | 1.6 | 0.6 | 21 | 167 | 129 | 61 | 1.1 | 0.6 | 0.4 | 0.7 | 2.8 | | 29 | 0 • 4 | 0 • 3 | 1.5 | 0.7 | | 116 | 141 | 63 | 11 | 0.8 | 0.4 | 0.8 | 29 | | 30 | 0.5 | 0.3 | 1.5 | 127 | | 89 | 165 | 56 | 12 | 0.7 | 0.5 | 1.0 | 30 | | 31 | 0 • 6 | | 1.4 | 1770 | | 8.2 | | 49 | | 0.8 | 0.5 | | 3 1 | | EAN | 0.4 | 0 • 4 | 0.9 | 61.8 | 143 | 41.3 | 150 | 106 | 26.6 | 3.0 | 0.6 | 0.7 | MEAN | | AX. | 0.9 | 0.6 | 1.6 | 1770 | 2000 | 167 | 321 | 187 | 47.0 | 9.9 | 1.0 | 1.1 | MAX | | AIN. | 0.2 | 0.2 | 0.3 | 0.5 | 27.0 | 17.0 | 73.0 | 49.0 | | | | | MIN. | | C.FT. | | | | | | | | | 11.0 | 0.6 | 0 • 3 | 0 • 3 | | E = Estimoted NR = No Record # = Orscharge measurement or observation of no flow mode on this day. # - E and # MEAN 43.8 | 1 | | MAXIMU | М | | | |---|-----------|---------|----|-----|------| | 1 | DISCHARGE | GAGE HT | MO | DAY | TIME | | } | 4600 E | 10.29 | 1 | 31 | 1550 | | MINIMUM | DISCHARGE | GAGE HT | MO | OAY | TIME | O+2 | 3+93 | 10 | 2 | 1550 WATER YEAR SUMMARY TOTAL ACRE-FEET 31700 | | LOCATION MAXIMUM DISCHARGE | | | ARGE | PERIOD OF RECORD DATU | | | | OF GAGE | | | |----------|----------------------------|------------------|--------|-----------|-----------------------|--------------|-------------|------|---------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | NOD | ZERO
ON | REF | | LATITODE | LONGITUDE | M. O. B. & M | C.F.S. | GAGE HT. | DATE | 5.50.1141.02 | DNLY | FROM | TO | GAGE | OATUM | | 36 08 23 | 118 48 16 | SE35 2DS 29E | 4600E | 10.29 | 1-31-63 | FEB 57-DATE | FEB 57-DATE | 1957 | | 0.00 | LOCAL | Station located at State Highway 190 Bridge, 0.8 mi. NE of Springville. Drainage area is 97.9 sq. mi. Altitude of gage is approx. 990 ft. (from U.S.G.S. topographic map.) # DAILY MEAN DISCHARGE TULF RIVER BELOW PORTERVILLE IN SECONO FEET | STATION NO | WATER
YEAR | |------------|---------------| | C03169 | 1963 | | DAY | ост | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | ı | |--------|------|-----|------|-------|-------|-------|-------|-------|-------|------------|----------------|-------|---------|----| | (| 0.0 | 0.0 | 0.0 | 0.0 | 330 E | 0.0 | 120 | 237 | 256 | 0.0 | 0.0 | 135 | 1 | ı | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 132 * | 0.0 | 113 + | | 258 | 22 | 0.0 | 134 | 2 | ш | | 3 | 0.0 | 0.0 | 0.0* | 0.0 | 233 | 0.0 | 112 | 256 | 258 | 26 | 0.3 | 125 | 3 | ш | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 211 | 0.0 | 113 | 254 | 258 | 4.9 | 0.0 | 125 * | | ж | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 185 | 0.0* | 113 | 257 | 259 * | 5.0 | 0 • 0* | 126 | 5 | я | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 193 | 0.0 | 110 | 256 | 261 | 0.0 | 0.0 | 138 | 6 | а | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 201 | 0.0 | 125 | 256 | 261 | 0.0 | 0 • 8 | 163 | 7 | ш | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 205 | 0.0 | 114 | 256 | 258 | 0.0* | 127 | 170 | 8 | я | | 9 | 0.0* | 0.0 | 0.0 | 0.0 | 216 | 0.0 | 118 | 256 | 256 | 0.0 | 192 | 160 | 9 | ш | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 195 | 0.0 | 214 | 263 | 258 | 0.0 | 212 | 152 | 10 | я | | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 188 | 0.0 | 239 | 270 | 261 | 0.0 | 191 | 150 | 11 | а | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 183 | 0.0 | 290 | 265 | 258 | 0.0 | 192 | 137 | 12 | л | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 200 | 0.0 | 325 | 263 | 256 | 0.0 | 192 + | 133 | 13 | ш | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 192 * | 0.0 | 329 | 256 | 258 | 0.0 | 187 | 135 | 14 | ш | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 200 | 0.0 | 302 | 258 | 261 | 0.0 | 197 | 133 | 15 | л | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 227 | 0.0 | 169 | 256 | 263 | 0.0 | 200 | 132 | 16 | я | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 215 | 0.0 | 195 + | 252 | 263 | 0.0* | 193 | 129 | 17 | а | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 135 | 0.0* | 198 | 258 | 261 | 0.0 | 194 | 132 | 18 | а | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 196 | 258 | 239 | 1.1 | 202 | 133 | 19 | ш | | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 206 | 258 | 200 | 0.0 | 189 * | 136 | 2.0 | П | | 2 1 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 | 216 | 258 | 105 | 0.0 | 133 | 132 | 1.5 | я | | 2.2 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 214 | 256 | 53 | 0.0 | 125 | 132 | 2.2 | ш | | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65 | 214 | 256 | 47 | 0.0 | 124 | 132 | 2.3 | а | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 116 * | 211 | 254 | 14 | 0.0 | 119 | 137 | 2.4 | ш | | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 94 | 224 | 252 | 0.0 | 0.0 | 122 | 136 | 2.5 | я | | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 87 | 234 | 254 | 0.0 | 0.0 | 123 | 133 | 26 | я | | 2 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 78 | 233 | 254 | 0.0 | 0.0 | 121 | 157 | 2.7 | а | | 2.8 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 107 * | 230 | 256 | 0.0 | 0.0 | 110 | 164 | 2.8 | ж | | 29 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 94 * | 232 | 254 | 0.0 | 0.0 | 138 | 166 | 29 | ж | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 114 | 234 | 254 | 0.0 | 0.0 | 137 | 170 | 30 | ш | | 31 | 0.0 | 0,0 | 0.0 | 384 E | | 122 | 234 | 256 | 0.0 | 0.0 | 135 | 170 | 31 | я | | MEAN | 0.0 | 0.0 | 0.0 | 12.4 | 130 | 28.3 | 198 | 256 | 177 | 1.9 | 124 | 141 | MEAN | н | | MAX | 0.0 | 0.0 | 0.0 | 384 E | 330 E | 122 | 329 | 270 | 263 | 26.0 | 212 | 170 | MAX | п | | MIN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 110 | 237 | 0.0 | | | 125 | MIN. | ø | | AC,FT. | 0.0 | 0.0 | 0.0 | 762 | 7232 | 1740 | 11790 | 15740 | 10560 | 0.0
117 | 0 • 0
76 48 | 8404 | AC.FT. | а | | | | | | 102 | 1232 | 1740 | 11/90 | 13740 | 10200 | 117 | 7648 | 8404 | - w. I. | яŧ | E - Estimoted NR - No Record # - Discharge measurement or observation of no flow mode on this day # - E and # WATER YEAR SUMMARY MINIMUM DISCHARGE GAGE HT MO DAY TIME 0.0 1 1 0000 TOTAL 63980 2 | ١ | | LOCATION | N | MAXII | NUM DISCH | HARGE | PERIOD O | FRECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|---------|-------------|-------------|--------------|-------|---------|----------------| | | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO | REF | | ı | LATTIONS | LONGITODE | M. D. B. B. M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 36 04 40 | 119 06 22 | NW30 215 27E | 5170 | 8.17 | 5-19-57 | FEB 57-DATE | FE8 57-DATE | 1957
1959 | 1959 | 0.00 | LOCAL
LOCAL | Station located 330 ft. above Rockford Road Bridge, 5.1 mi. W of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approx. 400 ft. (from U.S.G.S. topographic map). Flows include C.V.P. releases from Friant-Kern Canal to Tule River. # DAILY MEAN DISCHARGE CAMPBELL-MORELANO DITCH ABOVE PORTERVILLE IN SECOND FEET WATER STATION NO C03970 1963 | YAC | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |------|-------|-------|--------|------|--------|------|--------|------|------|------|------|-------|--------| | 1 | 12 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0* | 26 | 22 * | 18 * | 13 | | | 3 | 3.5 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0 • D* | 0.0 | 30 | 23 | 20 | 12 • | 2 | | 4 | 1.5 | 0.0 | 0 • 0* | 12 | 0.0 | 0.0 | 0.0 | 0.0
 32 + | 23 | 20 | 12 | 3 | | 5 | 1.3 | 0.0 | 0.0 | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 33 | 20 | 21 | 12 | 4 | | 3 | 3 • 1 | 0.0 | 5.9 | 14 | 20 | 0.0 | 0.0 | 0.0 | 33 | 18 | 21 | 14 | 5 | | 6 7 | 5.4 | 0.0 | 15 | 14 | 31 | 0.0* | 0.0 | 0.0 | 33 | 17 | 21 | 14 | 6 | | | 7.8 | 0.0 | 16 | 13 | 32 | 0.0 | 0.0 | 0.0 | 33 | 17 | 24 | 14 | 7 | | 8 | 7.8 | 0.0 | 16 | 12 | 32 | 0.0 | 0.0 | 0.0 | 34 | 16 | 25 | 14 | 8 | | 9 | 9+3 | 0.0 | 18 | 11 | 27 | 0.0 | 0.0 | 0.0 | 34 | 17 | 25 | 13 | 9 | | 10 | 9 • 6 | 3.5 | 19 | 11 | 23 | 0+0 | 0.0 | 0+0 | 34 | 17 | 24 | 13 | 10 | | 11 | 11 | 10 | 19 | 12 | 23 | 0+0 | 0+0 | 0.0 | 33 | 17 | 24 | 13 | 11 | | 12 | 7.5 | 11 | 18 | 11 | 24 | 0.0 | 0.0 | 0.0 | 32 | 16 | 25 | 13 | 15 | | 13 | 5.6 | 12 | 16 | 11 | 24 | 0.0 | 0.0 | 15 | 32 | 16 | 25 | 11 | 13 | | 14 | 7.2 | 12 | 15 | 11 | 24 | 0.0 | 0.0 | 26 | 31 | 16 | 25 | 12 | 14 | | 15 | 15 | 13 | 14 | 10 | 20 | 0+0 | 0+0 | 26 | 31 | 16 | 25 | 15 | 15 | | 16 | 19 | 14 | 14 | 11 | 17 | 0.0 | 0.0 | 26 | 31 | 16 | 25 | 14 • | | | 17 | 14 | 15 | 14 | 10 * | 17 | 0.0 | 0.0* | 25 | 31 | 16 | 27 | 14 | 17 | | 18 | 12 | 15 | 14 | 11 | 18 | 0.0 | 0.0 | 24 | 32 | 16 | 34 | 15 | 18 | | 19 | 12 | 15 | 11 | 12 | 21 | 0.0* | 0.0 | 22 | 32 | 16 | 30 | 15 | 19 | | 20 | 11 | 17 | 10 * | 12 | 22 | 0.0 | 0.0 | 22 • | 27 | 16 | 24 | 15 | 20 | | 2 1 | 10 | 18 | 12 | 12 | 18 | 0.0 | 0.0 | 21 | 22 | 16 | 24 | 16 | 21 | | 2.5 | 8 • 4 | 18 | 12 | 12 | 8 • 6 | 0.0 | 0.0 | 20 + | 22 | 16 | 19 | 13 | 2.2 | | 2 3 | 5.4+ | 20 | 12 | 12 | 0.0 | 0.0 | 0.0 | 20 | 22 | 16 | 15 | 11 | 2.3 | | 2 4 | 5 - 1 | 20 | 13 | 12 | 0.0 | 0.0 | 0+0 | 20 | 22 | 16 | 15 | 16 | 2.4 | | 25 | 4 • 4 | 20 | 13 | 12 | 0.0 | 0.0 | 0.0 | 19 | 22 | 16 | 16 | 17 | 25 | | 2 6 | 3.9 | 19 | 12 | 13 | 0.0 | 0.0 | 0.0 | 20 | 21 | 16 | 16 | 18 | 2.6 | | 2.7 | 1.4 | 9.0 | 10 | 13 | 0.0 | 0.0 | 0.0 | 19 | 21 | 16 | 15 | 17 | 2.7 | | 5.8 | 0.0 | 0.0 | 10 | 13 | 0.0 | 0.0 | 0.0 | 18 | 21 | 16 | 15 | 17 | 2.6 | | 2.9 | 0.0 | 0.0 | 11 | 14 | | 0.0 | 0.0 | 18 | 21 | 16 | 14 | 18 | 29 | | 30 | 0.0 | 0.0 | 10 | 12 | | 0.0 | 0.0 | 17 | 21 | 15 | 13 | 19 * | 3.0 | | 31 | 0.0 | | 10 | 5.7 | | 0.0 | | 14 | | 16 | 13 | | 3 | | EAN | 6.9 | 8 • 7 | 11.6 | 11.7 | 14 • 3 | 0.0 | 0.0 | 12.6 | 28.3 | 17.0 | 21.2 | 14.3 | MEAN | | IAX | 19.0 | 20.0 | 19.0 | 14.0 | 32.0 | 0.0 | 0.0 | 26.0 | 34.0 | 23.0 | 34.0 | 19.0 | MAX | | AIN. | 0.0 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 | 0.0 | 0.0 | 21.0 | 15.0 | 13.0 | 11.0 | MIN | | CFT | 425 | 519 | 714 | 719 | 797 | | | 778 | 1684 | 1043 | 1305 | 853 | AC.FT. | | | | | | | | | | | 2001 | 3443 | 1303 | 0,7,3 | | - Estimated | MEAN) | | MAXIMU | | | |) f | MINIM | | |-----------|-----------|---------|----|-----|------|-----------|---------|----| | DISCHARGE | DISCHARGE | GAGE HT | MO | OAY | TIME | DISCHARGE | GAGE HT | MO | | 12.2 | 38.0 | 3 . 34 | 8 | 18 | 1130 | 0.0 | | 10 | WATER YEAR SUMMARY | | (| MINIM | | | |) | |---|-----------|---------|----|-----|------|---| | 1 | DISCHARGE | GAGE HT | MO | GAY | TIME | ٦ | | Н | 0.0 | | 10 | 27 | 2400 | J | TOTAL ACRE-FEET 8836 | | LOCATION | ų . | MAXII | NUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | - | |----------|-----------|------------------|----------|-----------|------|-------------|-------------|--------|--------|---------|-------| | | | 1/4 SEC. T, & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEI | RIOO | ZERO | REF | | LATITUDE | LONGITUDE | M. D. B. & M | C. F. S. | GAGE HT. | DATE | | ONLY | FROM | ТО | GAGE | DATUM | | 36 02 48 | 118 56 54 | NW 4 22S 28E | | | | AUG 42-DATE | | Det 62 | oct 62 | 0.00 | LOCAL | Station located 3.9 m. SE of Porterville approximately 2600ft, below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. PORTER SLOUGH AT PORTERVILLE IN SECOND FEET WATER STATION NO C03182 1963 | OAY | OCT. | NOV | OEC. | JAN | FE8 | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |--------|-------|------|-------|-------|-------|------|------|------|------|------|-------|--------------|--------| | | 0.0 | 0.0* | 0.0 | 0.0 | 142 * | 0.0 | 0.0* | 35 | 0.0 | 43 | 40 = | 39 | 1 | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 132 * | 0.0 | 0.0 | 36 * | 0.0 | 42 | 27 | 38 | 2 | | 3 | 0.0 | 0.0 | 0.0 * | 0.0* | 141 | 0.0 | 0.0 | 36 | 0.0 | 41 * | 23 | 39 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 137 | 0.0 | 0.0 | 33 | 0.0 | 43 | 25 | 37 4 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 144 | 0.0 | 0.0 | 33 | 0.0* | 43 | 24 | 30 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 143 | 0.0* | 0.0 | 34 | 0.0 | 42 | 24 | 29 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 143 | 0.0 | 0.0 | 34 | 0.0 | 42 | 23 | 28 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 144 | 0.0 | 0.0 | 35 | 3.9 | 48 | 20 | 28 | 8 | | 9 | 0.0* | 0.0 | 0.0 | 0.0 | 143 | 0.0 | 0.0 | 37 | 34 | 54 | 16 | 28 | 9 | | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 139 | 0.0 | 0.0 | 34 | 38 | 57 | 1 • 8 | 27 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 136 | 0.0 | 0.0 | 31 | 40 | 54 | 0.3 | 27 | - 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 137 | 0.0 | 0.0 | 3.0 | 39 | 53 | 0.0 | 27 | 15 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 142 | 0.0 | 0.0 | 31 | 31 | 53 | 0.0 | 17 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 144 | 0.0 | 0.0 | 32 | 35 | 54 | 0.0 | 1.6 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 145 | 0.0 | 0.0 | 21 | 48 | 54 | 0.0 | 0.3 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 145 | 0.0 | 0.0 | 1.2 | 46 | 54 | 3.2 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 * | 145 | 0.0 | 0.0* | 0.2 | 47 | 54 | 31 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 94 | 0.0* | 0.0 | 0.0 | 49 | 54 | 34 | 0.0 | 18 | | 19 | 0.0 | 0.0* | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 10 | 50 | 49 | 34 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 0.0 | 25 | 48 | 48 | 41 | 0.0 | 5.0 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.9 | 50 | 47 | 38 | 0.0 | 21 | | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 48 | 47 | 39 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 45 | 47 | 38 | 0.0 | 2.3 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 46 | 47 | 38 | 0.0 | 24 | | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 45 | 47 | 38 | 0.0 | 2.5 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 47 | 46 | 37 | 0.0 | 5.6 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45 | 46 | 37 | 0.0 | 27 | | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44 | 47 | 39 | 3.6 | 2.8 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | V.0 | 0.0 | 8.6 | 0.0 | 42 | 47 | 38 | 30 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 4.3 | | 0.0 | 38 | 0.0 | 42 | 47 | 38 | 36 | 3.0 | | 31 | 0.0 | 3.0 | 0.0 | 124 E | | 0.0 | ,, | 0.0 | -12 | 46 | 38 | 36 | 31 | | MEAN | 0.0 | 0.0 | 0.0 | 4+1 | 91.2 | 0.0 | 1.6 | 17.1 | 32.1 | 48.3 | 25.3 | 15.5 | MEAN | | MAX | 0.0 | 0.0 | 0.0 | 124 E | 145 | 0.0 | 38.0 | 37.0 | 50.0 | 57.0 | 41.0 | 39.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.0 | 0.0 | | MIN. | | AC.FT. | (/#(1 | 0.0 | 0.0 | 254 | 5064 | 0.0 | 92 | 1050 | 1910 | 2967 | 1558 | 0 • 0
923 | AC.FT. | E - Estimated NR - No Record # - Oiechorge measurement ar abservation of no flow made on this day # - E and # | MEAN | | UMIXAN | | | | 1 (| | MII | | | | | |-----------|-----------|---------|----|-----|------|-----|-----------|------|----|----|-----|------| | DISCHARGE | OISCHARGE | GAGE HT | MO | YAC | TIME | U | DISCHARGE | GAGE | HT | мо | DAY | TIME | | 19.1 | 224 € | 3.70 | 1 | 31 | 1900 | l | 0.0 | | | 10 | 1 | 0000 | WATER YEAR SUMMARY TOTAL ACRE-FEET 13820 | | LOCATION | V | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|------|-------|-------------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD | | OISCHARGE | GAGE HEIGHT | PER | 100 | ZE RO
ON | REF | | LATITUDE | LONGITUOE | M D.8.8M. | C.F.S. | GAGE HT. | OATE | O D O HANGE | ONLY | FROM | TO | GAGE | DATUM | | 36 03 29 | 118 59 08 | SE31 21S 28E | | | | JAN 42-DATE | JAN 42-DATE | 1957 | | 0.00 | LOCAL | Station located at "B" Lane Bridge, immediately E of Porterville. This is regulated diversion from Tule River. Altitude of gage is approx 465 ft. (from U.S.G.S. topographic map). # DAILY MEAN DISCHARGE PORTER SLOUGH DITCH AT PORTERVILLE STATION NO WATER YEAR C03984 1963 | | | PUNIER 3 | IN SECOND | | RVILL | | | | | | 7704 | 203 | | |----------------------------------|----------------------------------|-----------------------------------|---|--|----------------------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------|-------------------------------|--|----------------------------------|----------------------------------| | DAY | ост | NOV | DEC. | JAN | FEB | MAR. | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0*
0.0
0.0 | 0.0
0.0
0.0*
0.0
0.0 | 14
13
13
13
14 | 0.0
0.0
0.0
0.0 | 0.0
0.0*
0.0
0.0
0.0 | 10
13 *
10
11
12 | 0.0
0.0
0.0*
0.0 | 22 *
21
19
17
17 | 14 * 14 13 12 13 | 9.6
9.4*
8.2
6.2
5.3 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 14
14
15
15 | 0.0*
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 13
13
14
14
14 | 0.0
0.0
0.0
0.4 | 17
17
16
15 | 14
14
12
9•9
0•0 | 6.1
5.9
6.0
8.9 | 6
7
8
9 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0 • 0
0 • 0
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0 | 14 *
15
15 *
16
16 * | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 |
14
14
12 *
5.8
0.0 | 19
19
15
14
15 | 16
15
15
15
14 * | 0 • 0
0 • 0
0 • 0
0 • 0 | 10
10
2.5
0.0
0.0 | 11 12 13 14 15 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0*
0.0* | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0*
0.0
0.0
0.0 | 16
16
11
0.0
0.0 | 0.0
0.0
0.0*
0.0
0.0 | 0.0
0.0*
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 14
16
15
14 | 14
14
13 *
12
9.8 | 0 • 0
0 • 0
0 • 0
7 • 1
12 | 0.0*
0.0
0.0
0.0 | 16
17
18
19
20 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 14
14
12 *
13
17 | 7.8
8.0
8.0*
9.9 | 12
14
13
12
12 | 0.0
0.0
0.0
0.0 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0*
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
2.4 | 0.0
0.0
0.0
0.0
0.0 | 19
19
20
21
21 | 13
13
13
13
13 | 12
13
10
9.4
9.5
9.5 | 0.0
0.0
0.0
0.0
5.5* | 26
27
28
29
30
31 | | MEAN
MAX
MIN.
AC.FT. | 0.0
0.0 | 0.0 | 0.n
0.0
0.0 | 0.2
5.6
0.0
11 | 9•2
16•0
0•0
512 | 0.0
0.0
0.0 | 0.1
2.4
0.0
5 | 5.5
14.0
0.0
337 | 11.2
21.0
0.0
669 | 14.1
22.0
7.8
870 | 8 • 4
14 • 0
0 • 0
518 | 3.5
10.0
0.0
205 | MEAN
MAX
MIN
AC.FT. | E - Estimated NR - No Record # - Discharge measurement or observation at no flow mode on this day. # - E and # | MEAN | | MAXIMU | | | | П | | MII | | | | | |----------|-----------|---------|----|-----|------|---|-----------|------|----|----|-----|------| | ISCHARGE | DISCHARGE | GAGE HT | MO | YAC | TIME | Ш | DISCHARGE | GAGE | нТ | MO | OAY | TIME | | 4.3 | NR | i | | | | Ш | NR | | | | 1 | | WATER YEAR SUMMARY TOTAL 3127 | | LOCATION | N | MAXI | MUM DISCH | HARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | : | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|------|-------|---------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF | | LATITUDE | LONGITUDE | M.O.B & M | C.F.S. | GAGE HT. | DATE | DISCHAROL . | ONLY | FROM | TO | GAGE | MUTAO | | 36 04 06 | 119 01 06 | SE26 218 27E | | | | JAN 43-DATE | | 1943 | | 0.00 | LOCAL | Station located in Porterville 0.5 mi. W of Porterville Post Office, approximately 150 ft. below head. This is regulated diversion from Tule Raver via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. # DAILY MEAN DISCHARGE PORTER SLOUGH NEAR PORTERVILLE IN SECOND FEET WATER STATION NO C03187 1963 | OAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |---------|-------|--------------------|------|--------------------|------------------|------|--------------------|--------------------|----------------|--------------------|-------------------|----------------|--------| | 2 3 | 0.0 | 0.0*
0.0
0.0 | 0.0 | 0.0
0.0
0.0* | 73
76 •
98 | 0.0 | 0.0*
0.0
0.0 | 0.0
0.0*
0.0 | 0 • 0
0 • 0 | 2.5
1.8
4.0* | 7.4
0.0
0.0 | 10
10
11 | 2 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 0.0 | 0.0 | 5.9 | 0.0 | 13 * | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 95 * | 0.0 | 0+0 | 0.0 | 0.0* | 6.3 | 0+0* | 8 • 8 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 101 | 0.0* | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 7.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | 0.0 | 0 • 2 | 0.0 | 0.0 | 5.6 | 0.0 | 6.4 | 7 8 | | 8 | 0.0* | 0.0 | 0.0 | 0.0 | 108 | 0.0 | 0.0 | 0.0 | 0.0 | 9+1 | 0.0 | 6.3 | 9 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | 0.0 | 0.0 | 0.5 | 0.0 | 17 | 0.0 | 4.4 | 10 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | 0.0 | 0.0 | 1.1 | 0.0 | 20 | 0.0 | 3.5 | 10 | | ti I | 0.0 | 0.0 | 0.0 | 0.0 | 91 • | 0.0 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 2 . 8 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 0.0 | 0.8 | 19 | 0+0 | 2.7 | | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 97 • | 0.0 | 0.0 | 0.5* | 0 • 1 | 19 | 0.0 | 4.9 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 94 | 0.0 | 0 - 1 | 8.4 | 1.0 | 20 | 0.0 | 0.0 | 15 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 96 | 0.0 | 0.0 | 12 | 11 | 20 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 102 | 0.0 | 0.0 | 0.0 | 12 E | 19 | 0.0 | 0+0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 99 | 0.0 | 0.0* | 0.0 | 12 E | 19 | 0 • 2 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 61 | 0.0* | 0.0 | 0.0 | 12 E | 21 | 10 | 0.0* | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 11 * | 18 | 5 - 4 | 0.0 | | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | 0.0 | 0.0 | 11 | 11 | 17 | 7 • 3 | 0.0 | 5.0 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 13 | 19 | 6+1 | 0.0 | 21 | | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 2 • 6 | 0.0 | 0.0 | 0.0 | 15 | 18 | 5.9 | 0.0 | 5.5 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 20 | 6 • 4 | 0.0 | 2.3 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 18 | 7.4 | 0.0 | 2.4 | | 2.5 | 0 + 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 15 | 7 • 1 | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 13 | 6.9 | 0.0 | 5.6 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 . 8 | 12 | 7.1 | 0.0 | 27 | | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 • 2 | 11 | 9 • 2 | 0.0 | 2.8 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 3.0 | 12 | 9.7 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 2 • 3 | 11 | 9.9 | 0.0 | 30 | | 31 | 0.0 | | 0.0 | 28 E | | 0.0 | | 0.0 | | 11 | 10 | | 3 1 | | MEAN | 0.0 | 0.0 | 0.0 | 0.9 | 62.8 | 0.0 | 0.0 | 1.1 | 5.3 | 13.8 | 3.7 | 3.0 | MEAN | | MAX | 0.0 | 0.0 | 0.0 | 28.0E | 111 | 0.0 | 0 • 2 | 12.0 | 15.0 | 21.0 | 10.0 | 13.0 | MAX | | MIN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | MIN. | | AC, FT. | | | | 56 | 3486 | | 1 | 66 | 313 | 851 | 230 | 180 | AC.FT, | E - Estimated NR - No Record & - Oischarge measurement or observation of no flow made on this day. # - E and # | WATER YEAR SUMMA | |------------------| |------------------| | SCHARGE OISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME TO 1 1 1 1 1 1 1 1 1 1 | MEAN | 1 | | | MAXIMU | | | | i | | MINIM | | | | |--|---------|----|---------|----|---------|----|-----|------|---|-----------|---------|----|-----|------| | 7-2 153 6 3-67 2 9 1900 0-0 10 1000 | SCHARGE | 11 | DISCHAR | GE | GAGE HT | MO | DAY | TIME | 1 | DISCHARGE | GAGE HT | MO | DAY | TIME | | 102 1 1000 | 7+2 | Л | 153 | Ε | 3.67 | 2 | 9 | 1900 | | 0.0 | | 10 | 1 | 0000 | TOTAL ACRE-FEET 5183 | ĺ | | LOCATION | V | MAXI | MUM DISCH | HARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|---------|-------------|-------------|------|-------|---------|-------| | | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF | | | LATITUDE | LONGITODE | M. D B. B.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 36 04 00 | 710 03 08 | NE28 218 27E | 364 | 5.14 | 4- 3-58 | JAN 57-DATE | JAN 57-DATE | 1957 | | 0.00 | LOCAL | Station located at Newcomb Drive Bridge, 2.0 mi. W of Porterville. Tributary to Tulare Lake Basın via Tule River. Altitude of gage 1s approx. 425 ft. (from U.S.G.S. topographic map). # DAILY MEAN DISCHARGE VANDALIA DITCH NEAR PORTERVILLE WATER STATION NO C03965 1963 ### IN SECONO FEET | | | | IN SECONO | | | | | | | | | | | |-------|------|-----|-----------|------|------|------|------|------|------|------------|-------------|------|-------| | OAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 3.9 | 0.0 | 0.0 | 0.0* | 3.8 | 0.0* | 5.04 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0* | 0.0 | 4.0 | 3.4 | 5.0 | 0.0= | 2 | | 3 | 0.0 | 0.0 | 0.0* | 0.0* | 0.2 | 0.0 | 0.0 | 0.0 | 4.1* | 5.8 | 5.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 4.1 | 5.8 | 4.9 | 2.3 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3E | 0.0 | 0.0 | 0.0 | 4.1 | 6.0 | 5 • 2 | 4.3 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5E | 0.0* | 0.0 | 0.0 | 4.1 | 6.1 | 5.4 | 4.3 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 6.7 | 0.0 | 0.0 | 0.0 | 4.2 | 6.1 | 2.0 | 4.3 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 | 0.0 | 4.1 | 6.2 | 0 • 2 | 4.3 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 | 0.0 | 0.0 | 3.9 | 6.4 | 0 • 1 | 4.3 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 | 0.0 | 0.0 | 3.9 | 6.8 | 0.1 | 4.5 | 10 | | 31 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 | 0.0 | 3.8 | 7.1 | 0.1 | 4.6 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 | 0.0 | 0.0 | 3.4 | 7.2 | 0+0 | 4.6 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 6.7* | 0.0 | 0.0 | 0.0 | 3.3 | 7.2 | 0.0 | 4.4 | +3 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 | 0.0 | 0.0 | 3.0 | 7.2 | 0.0 | 4.1 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 | 2.5 | 3.1 | 7.1 | 0.0 | 4.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 7+1 | 0.0 | 0.0 | 3.9 | 3.1 | 7+1 | 0.0 | 4.0= | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0* | 7.0 | 0.0 | 0.0* | 3.9 | 3.1 | 7.2* | 0.0 | 3.9 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 | 3.9 | 3.3 | 7.4 | 0.0 | 4.0 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 | 0.0* | 0.0 | 3.9 | 3.5 | 7.3 | 0.0 | 4.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2 | 0.0 | 0.0 | 3.5 | 3.7 | 7.2 | 0.0 | 3.9 | 2 0 | | 2 1 | 0.0 | 0.0
 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 3.3 | 3,4 | 7.2 | 0.0 | 3.9 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 | 3.3* | 3.0 | 7.1 | 0.0 | 3.9 | 2.2 | | 23 | 0.0* | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 3.3 | 3.3 | 7.3 | 0.0 | 3.9 | 2.3 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 3.3 | 3.7 | 7.3 | 0.0 | 4.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 1.6* | 7.2 | 0.0 | 3.9 | 2.5 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 6.9 | 0.0 | 3.8 | 2 6 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 6.3 | 0.0 | 3.7 | 2.7 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 6.0 | 0.0 | 3.8 | 2.8 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 5.8 | 0.0 | 3.9 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 4.1 | 0.0 | 5.8 | 0.0 | 4.0* | 30 | | 31 | 0.0 | 0.0 | 0.0 | 8.7E | | 0.0 | ••• | 4.0 | 0.0 | 5.4 | 0.0 | 4.0* | 3 | | EAN | 0.0 | 0.0 | 0.0 | 0.3 | 4.1 | 0.0 | 0.0 | 2.0 | 3.0 | 6.4 | 1.1 | 3+6 | MEAN | | AAX. | 0.00 | 0.0 | 0.0 | 8.7E | 7.1 | 0.0 | 0.0 | 4.1 | 4.2 | 7.4 | 5.4 | 4.6 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | MIN | | CFT | 0.0 | 0.0 | 0.0 | 17 | 228 | 0.0 | 0.0 | 125 | 176 | 0.0
391 | 0 • 0
65 | 0.0 | AC.FT | | W. I. | | | | 1, | 220 | | | 123 | 1/6 | 391 | 62 | 215 | 1 | E - Estimated NR - No Record # - Discharge measurement or observation of no flow made on this day # - E and # WATER YEAR SUMMARY | MEAN | | MAXIMU | | | | | MINIM | | | | |-------|-----------------|---------|----|-----|------|-----------------|---------|----|-----|------| | 1 . 7 | OISCHARGE
NR | GAGE HT | MO | YA(| TIME | OISCHARGE
NR | GAGE HT | мо | DAY | TIME | TOTAL 1217 | | LOCATION | V | MAXI | MUM DISCH | ARGE | PERIOD O | FRECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | QOIS | 2ERO
ON | REF | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | DATUM | | 36 03 00 | 118 58 18 | NE 5 22S 28E | | | | 1948-DATE | | 1948 | | 0.00 | LOCAL | Station located 2.8 mi. SE of Porterville approximately 1000 ft, below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. POPLAR DITCH NEAR POPTERVILLE IN SECONO FEET WATER STATION NO C03960 1963 | OAY | ост | NOV | OEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |----------------------------------|----------------------------------|------------------------------------|---|---------------------------------|------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|------------------------------------|---------------------------------|-----------------------------------|---------------------------------| | 1
2
3
4
5 | 0.0
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0
0.0 | 3 • 3 F
3 • 4 F
3 • 3 #
3 • 3 F
3 • 2 F | 0.1
0.1
0.0*
0.0 | 48
72
76
75
75 | 0.0
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0 | 0.0
9.2
23 *
26
29 | 0.0
0.0
0.0
0.0 | 103
104
102
103
102 | 85
84
84
83
82 | 1
2
3
4
5 | | 6
7
8
9 | 0.0
0.0
0.0*
0.0
0.0 | 0.3
0.4
0.3
0.3
0.3 | 1.2F
0.5
0.5
0.3
0.3 | 0.0
0.0
0.0
0.0 | 75
76
76
77
76 | 0.0*
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
9.4
25 | 29 *
26
23
24
24 | 0.0
0.0
14
55 | 99
99
99
98
97 | 81
80
81
82
82 | 6
7
8
9 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.4
0.4
0.3
0.2
0.1 | 0.4
0.2
0.2
0.2
0.2 | 0.0
0.0
0.0
0.0 | 74
70
73
75 * | 7 • 3
26
32
32 * | 0.0
0.0
0.0
0.0 | 27
27
29 *
26
23 | 24
24
12
0.0
0.0 | 109 4
104 4
108
108 | 97
96
95
96
95 | 82
83
47
1.9 | 11
12
13
14
15 | | 16
17
16
19
20 | 0.0
0.0
0.0
0.0 | 0.1
0.0
0.0
0.0
0.0 | 0.7
0.2
0.1
0.0
0.0 | 0.0
0.0
0.0
0.0 | 75
76
37
0•2
0•0 | 39
38
36
31 * | 0.0
0.0*
0.0
0.0
0.0 | 23
23
23
24
24 | 0.0
0.0
9.8
36
46 | 105
106
107
105
103 | 94
94
94
95
95 | 0.6*
0.6
0.6
0.6 | 16
17
18
19
20 | | 2 1
2 2
2 3
2 4
2 5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
1.1
1.4
0.9
1.2 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 24
14
1.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 48
50
48
47
47 | 101
99
96
93
92 | 98
100
100
100
100 | 0.7
0.7
0.7
0.7
0.7 | 2 I
2 2
2 3
2 4
2 5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0
0.0 | 1.3
1.1
3.2E
3.2E
3.2E | 0.0
0.1
0.1
0.1
0.1
0.1 | 0.0
0.0
0.0
0.0
0.1 | 0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.1
0.2
0.0
0.0 | 46
45
42
22
0•0 | 94
95
97
98
101
103 | 100
98
86
85
85 | 0.8
0.8
3.2
15 | 26
27
28
29
30 | | MEAN
MAX
MIN.
AC.FT. | 0.0 | 0.7
3.2F
0.0
41 | 0.7
3.4F
0.0
43 | 0.6
19.0
0.0
38 | 45.8
77.0
0.0
2541 | 11.0
39.0
0.0
676 | 0.0 | 9.6
29.0
0.0
588 | 25.3
50.0
0.0
1507 | 74.1
109
0.0
4558 | 96.6
104
85.0
5939 | 36 • 0
85 • 0
0 • 6
2141 | MEAN
MAX
MIN.
AC.FT. | E - Estimated NR - No Record # - Otechorge measurement or observation of no flow made on this day. # - E and # | WATER | YFAR | SHMMARY | | |-------|------|---------|--| | MEAN | | MAXIMU | | | | 1 | | MINIM | | | | |---------|-----------|---------|----|-----|------|---|---------|---------|----|-----|------| | SCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | 0 | SCHARGE | GAGE HT | MO | DAY | TIME | | 25.0 | 114 | 3.42 | 7 | 10 | 2220 | | 0.0 | | 10 | 1 | 0000 | TOTAL 18070 | | LOCATIO | N | MAXII | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO | REF | | CATTOOL | LONGITODE | M 0.8 8 M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 03 18 | 119 00 54 | SW36 21S 27E | | | | APR 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 1.0 mm. S of Porterville approximately 4750 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. #### DAILY MEAN DISCHARGE #### HUBBS-MINOR DITCH AT PORTERVILLE IN SECONO FEET | STATION NO | #ATER
YEAR | |------------|---------------| | C03925 | 1963 | | DAY | OCT | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | YAO | |--------|-----|------|------|-----|------|-------|------|------|------|------|---------|------|---------| | 1 | NR | NR | NP | NR | NR | 0.0 | 0.0* | 0.0* | 12 | 12 * | 16 * | 6.6 | 2 | | 2 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 14 | 16 | 7.6* | 3 | | 3 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 0.0 | 13 • | 14 | 15 | 17 | 4 | | 4 | NR | NR | N₽ | NR | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 14 | 15 | 19 | 5 | | 5 | NR | NR | NP | NR. | 0.0 | 0.0 | 0.0 | 0.0 | 10 | 14 | 14 | 18 | | | 6 | NR | NR | NP | NR | NR | 0.0* | 0.0 | 0.0 | 6.3* | 14 | 11 | 16 | 6 7 | | 7 | NR | NR | NR | NR | NR | 0+0 | 0.0 | 0.0 | 2.7 | 14 | 5 • 6 | 13 | 6 | | 8 | NR | NR | NR | NR | NR | 0.0 | 0.0 | 0.0 | 2.8 | 13 | 8.1 | 9.2 | 9 | | 9 | NR | MR | NR | NR | NR. | 0.0 | 0.0 | 0.0 | 2.0 | 12 | 7 • 1 | 5.7 | (0) | | ID | NR | NR | N/P | NR | NR | 0.0 | 0.0 | 0.0 | 2.1 | 1 2 | 7.1 | 5.1 | 10 | | n l | NR | NR | NP | NR | 2.5* | 0.0 | 0.0 | 0,0 | 2.7 | 12 | 6.0 | 4.8 | -11 | | 12 | NR | NR | NP | NR | 10 | 3 € | 0.0 | 0.0 | 2.6 | 13 | 4 • 5 | 9.6 | 12 | | 13 | NR | NR | NR | NR. | 12 # | 5 ε | 0.0 | 0.0 | 2.8 | 13 | 4.8 | 15 | 13 | | 14 | NR | NR | N.P. | NR | 13 | 17 # | 0.0 | 0.5 | 2.3 | 13 | 6.6 | 14 | 15 | | 15 | NR | NR | NP | NR | 14 | 10 € | 0.0 | 4.0 | 8.7 | 14 | 2 . 8 * | 13 | ,, | | 16 | NR | NR | NP | NR | 14 | 10 € | 0.0 | 5.1* | 12 | 15 | 0.0 | 13 * | 16 | | 17 | NR | NR | NP | NR | 14 | 5 € | 0.0* | 5.7 | 14 | 15 | 2.5 | 13 | 8 | | 18 | NR | NR | NR | NR. | 5.8 | 5 F | 0.0 | 6.2 | 13 | 16 | 5 • 1 | 16 | 19 | | 19 | NR | NR | NP | NR | 0.0 | 6 # | 0.0 | 7.8 | 13 | 15 | 5.7 | 18 | 20 | | 20 | NR | NR | QΝ | NR | 0.0 | 0.5 | 0.0 | 14 | 13 | 14 | 4.7 | 17 | 10 | | 2+ | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 22 | 14 | 14 | 7 • 1 | 16 | 2 ! 2 2 | | 22 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 22 | 17 | 14 | 9.9 | 16 | 23 | | 2.5 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 22 | 20 | 14 | 10 | 17 | 24 | | 24 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 22 | 15 | 13 | 11 | 14 | 25 | | 25 | NR | NR | NP | NR | 0.0* | 0.0 | 0.0 | 22 | 8.6 | 14 | 11 | 13 | | | 26 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 17 | 13 | 14 | 9.6 | 13 | 26 | | 27 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 9.0 | 13 | 14 | 5.2 | 13 | 28 | | 28 | NR | NR | NP | NR | 0.0 | 0.0 | 0.0 | 8.0 | 13 | 14 | 3.3 | 16 | 29 | | 29 | NR | N.R. | NR | NR | | 0.0 | 0.0 | 8.0 | 13 | 14 | 6.5 | 15 | 30 | | 30 | NR | NR. | NP | NR | | 0.0 | 0.0 | 8.6 | 12 | 15 | 6 • 1 | 16
* | 31 | | 31 | NP | | aN | NR | | 0.0 | | 1.1* | | 16 | 6.7 | | - | | MEAN | NR | NR | NP | NR | NR | 2.0€ | 0.0 | 6.6 | 9.9 | 14 | 7.9 | 13 | MEAN | | MAX. | NR | NR | NP | NR | NR | 17 € | 0.0 | 22 | 20 | 16 | 16 | 19 | MIN. | | MIN | NR | NR. | NP | NR | NR | 0.0 | 0.0 | 0.0 | 2.0 | 12 | 0.0 | 4.8 | ACFT. | | AC.FT. | NR | NR | NP | NR | NR | 122 E | | 407 | 590 | 851 | 483 | 793 | MCFI. | F - Estimated E - Estimoted NR - No Record - Orecharge measurement or observation of no flow mode on this day E - E and # - See note (a) below | WATER YEAR SUMMAR | RΥ | SUMMA | R | YF | FR | WATE | |-------------------|----|-------|---|----|----|------| |-------------------|----|-------|---|----|----|------| | MEAN | 1 | MAXIMUM | | | | | | MINIMUM | | | | | | | |---------|---|-----------|---------|----|-----|------|---|-----------|---------|----|-----|------|--|--| | SCHARGE | Ì | DISCHARGE | GAGE HT | MO | OAY | TIME | 1 | DISCHARGE | GAGE HT | MO | DAY | TIME | | | | TOTAL | |-----------| | ACRE-FEET | | a 3415 | | | LOCATION | V | MAXI | MUM DISCH | ARGE | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|--------|-----------|------|-------------|---------------|--------|----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO
ON | REF | | LATITODE | LUNGITUUE | M 0.8 8 M | C.F.S. | GAGE HT. | OATE | o o o minoc | ONLY | FROM | TO | GAGE | DATUM | | 36 03 27 | 119 02 02 | NW35 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 1.1 mi. SW of Porterville, approximately 3400 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. (a) During periods of no record the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods. # DAILY MEAN DISCHARGE RHODES-FINE DITCH NEAR PORTERVILLE IN SECOND FEET WATER STATION NO. C03940 1963 | DAY | OCT | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | DAY | |---------|-----|-----|-----|-----|-------|-----|-------|------|-----------|-----------|-----|------|--------| | | NR | NR | NR | NR | NR | 0.0 | NR | 18 * | 7.7 | 12 * | NR | NR | | | 2 | NR | NR | NR | NR | NR | 0.0 | NR | 22 | 2 • 4 | 14 | NR | NR | 2 | | 3 | NR | NR | NP | NR | NR NR | 0.0 | NR | 19 | 8.7* | 19 | NR | NR | 3 | | 4 | MR | NR | NP | NR | NR NR | 0.0 | NR | 19 | 16 | 12 | NR | NR | 4 | | 5 | MR | NR | NR | NR | NR | 0.0 | NR | 16 | 18 | 12
7.0 | NR | NR | 5 | | 6 | NR | NP | NR | NR | NR. | NR | NR | 20 | 18 | 7.4 | NR | NR | 6 | | 7 | NR | NR | NP | NR | NR | NR | NR | 19 | 18 | 4 • 1 | NR | NR | 7 | | 8 | NR | NR | NP | NR | NR | NR | NR | 20 | 18 | 2.6 | NR | NR | 8 | | 9 | NR | NR | NP | NR | NR | NR | NR | 25 | 16 | 0.0 | NR | NR | 9 | | 0 | NR 28 | 16 | 0.0 | MR | NR | 10 | | 11 | NR | NR | ND | NR | NR | NR | NR | 27 | 19 | 0.0 | NR | NR | -11 | | 12 | NR | NR | NR | NR | 0.0 | NR | NR | 27 | 18 | 0.0 | NR | NR | 12 | | 1.3 | NR | NR | NP | NR | 0.0* | NR | NR | 27 | 20 | 0.0 | NR | NR | 13 | | 14 | NR | NR | N D | NR | 0.0 | NR | NR | 27 | 16 | 0.0 | NR | NR | 14 | | 15 | NR | NR | NΩ | NR | 0.0 | NR | NR | 26 | 16
7•2 | 0.0 | NR | NR | 15 | | 16 | NR | NR | ND | NR | 0.0 | NR | NR | 22 * | 8 • 2 | 0.0 | NR | NR | 16 | | 17 | NR | NR | NP | NR | 0.0 | NR | NR | 21 | 6.5 | 0.0 | NR | NR | 17 | | 18 | NR | NR | NP | NR | 0.0 | NR | 0.0 | 17 | 5.6 | 0.0 | NR | NR | 18 | | 19 | NR | NR | Nρ | NR | 0.0 | NR | 0.0 | 6.8 | 7.2 | 0.0 | NR | NR | 19 | | 20 | NR | NR | NP | NR | 0.0 | NR | 0.0 | 0.0 | 15 | 0.0 | NR | NR | 2 0 | | 21 | NR | NR | NP | NR | 0.0 | NR | 0.0 | 4.9 | 18 | 0.0 | NR | NR | 21 | | 2.2 | NR | NR | N P | NR | 0.0 | NR | 0.0 | 13 | 18 | 0.0 | NR | NR | 5.5 | | 2.3 | NR | NR | ND | NR | 0.0 | NR | 0.0 | 13 | 16 | 0.0 | NR | NR | 2.3 | | 24 | NR | NR | NP | NR | 0.0 | NR | 2 • 1 | 13 | 18 | 0.0 | NR | NR | 2 4 | | 2.5 | NR | NR | NR | NR | 0.0* | NR | 9.5 | 12 | 17 | 0.0* | NR | NR | 2.5 | | 26 | NR | NR | NP | NR | 0.0 | NR | 13 | 13 | 19 | 0.0 | NR | NR | 2 6 | | 2.7 | NR | NR | NP | NR | 0.0 | NR | 14 | 19 | 19 | 0.0 | NR | NR | 27 | | 2.8 | NR | NR | NP | NR | 0.0 | NR | 10 | 18 | 18 | 0.0 | NR | NR | 2.8 | | 29 | NR | NR | NR | NR | | NR | 15 | 16 | 17 | 0.0 | NR | NR | 29 | | 30 | NR | NR | NR | NR | | NR | 15 | 16 | 17 | 0.0 | NR | NR | 30 | | 31 | NR | | NR | NR | | NR | | 17 | | 0.0 | NR | | 3 1 | | MEAN | NR | NR | NP | NR | NR | NR | NR | 18 | 15 | 2.5 | NR | NR | MEAN | | MAX | NR | NR | NP | NR | NR | NR | NR | 2.8 | 20 | 19 | NR | NR | MAX. | | MIN. | NR | NR | NP | NR | NR | NR | NR | 28 | 20 | 19 | NR | NR | MIN. | | AC, FT. | NR | NR | NP | NR | NR | NR | NR | 1120 | 872 | 155 | NR | NR | AC.FT. | E - Estimoted E - Estimoteu MR - No Record & - Otechorge measurement or observation of no flow mode on this day # - E and # a - See note (a) below | WATER | YEAR | SUMMARY | | |-------|------|---------|--| |-------|------|---------|--| | | | | | | | | | | | | | | | _ | | |-------|----|-----------|---------|----|-----|------|---|-----------|------|----|----|-----|------|---|--| | EAN | М | MAXIMUM | | | | | | MINIMUM | | | | | | | | | HARGE | lÌ | DISCHARGE | GAGE HT | MO | CAY | TIME | l | DISCHARGE | GAGE | нТ | мо | DAY | TIME | | | TOTAL ACRE-FEET a 2303 MESS! WAX MIS LCFT | | LOCATION | V | MAXII | NUM DISCH | IARGE | PERIOD C | DATUM OF GAGE | | | | | |----------|-----------|------------------|--------|-----------|-------|-------------|---------------|--------|----|------|-------| | LATITUDE | LONGITUDE | 1/4 5EC. T. & R. | | OF RECORD | | 015 CHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | | LONGITUDE | M.O.B B M | C.F.5. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 03 26 | 119 04 13 | SE32 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 3.1 mi. SW of Porterville, approximately 3100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association. (a) During periods of "no record" the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods. M ### DAILY MEAN DISCHARGE IN SECOND FEET WOODS-CENTRAL DITCH NEAR PORTERVILLE WATER YEAR STATION NO C03948 1963 | ΑY | ост | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----------|------|------|------|------|------|-----|-----|-----|------|-------|-------|-------|--------| | 1 | NR | NR | No | NR | 45 E | NR | NR | NR | NR | 0.0* | 188 * | NR | 1 | | 5 | NR | NR | NP | NR | 80 | NR | NR | NR | NR | 4.5 | 188 | NR | 2 | | 3 | NR | NR | No | NR | 89 | NR | NR | NR | NR | 107 | 187 | NR | 3 | | 4 | NR | NR | NP | NR | 101 | NR | NR | NR | NR | 149 | 189 | NR | 4 | | 5 | NR | NR | NR | NR | 98 * | NR | NR | NR | NR | 150 * | 190 | NR | 5 | | 6 | NR | NR | NR | NR | 104 | NR | NR | NR | NR | 153 * | 190 | NR | 6 | | | NR | NR | 40 | NR | 107 | NR | NR | NR | NR | 155 | 195 | NR | 7 | | 8 | NR | NR | NP | NR | 108 | NR | NR | NR | NR | 155 * | 66 * | NR | 8 | | 9 | NR | NR | NP | NR | 108 | NR | NR | NR | NR | 147 | 0.0 | NR | 9 | | 0 | NR | NR | NR | NR | 100 | NR | NR | NR | NR | 137 | 0 • 0 | NR | 10 | | li . | NR | NR | NR | NR | 91 | NR | NR | NR | NR | 155 | 0.0 | NR | - 10 | | 2 | NR | NR | NR | NR | 88 | NR | NR | NR | NR | 155 * | 0.0 | NR | 12 | | 3 | NR | NR . | NP | NR | 90 | NR | NR | NR | NR | 149 | 0.0 | NR | 13 | | 4 | NR | NR | NR | NR | 86 * | NR | NR | NR | NR | 149 | 0.0 | NR | 14 | | 5 | NR | NR | ND | NR | 89 | NR | NR | NR | NR | 150 | 0.0* | NR | 15 | | 6 | NR | NR | NR | NR | 94 | NR | NR | NR | NR | 149 * | NR | NR | 16 | | | NR | NR | NP | NR | 95 | NR | NR | NR. | NR | 161 * | NR | NR | 17 | | 8 | NR | NR | NR | NR | 54 | NR | NR | NR | NR | 179 * | NR | NR | 18 | | 9 | NR | NR | NP | NR | 0.0 | NR | NR | NR | NR | 185 * | NR | NR | 19 | | 0 | NR | NR | NP | NR | 0.0 | NR | NR | NR | NR | 170 | NR | NR | 5.0 | | 1.5 | NR | NR | No | NR | 0.0 | NR | NR | NR | N.R. | 169 | NR | NR | 2 1 | | 2 | NR | NR | ay. | NR | 0.0 | NR | NR | NR | NP | 179 | NR | NR | 5.5 | | : 3 | NR | NR | NP | NR | 0.0 | NR | NR | NR | 0.0= | 179 | NR | NR | 2.3 | | 4 | NR | NR | NP | NR | 0.0 | NR | NR | NR | 0.0 | 178 | NR | NR | 2.4 | | : 5 | NR | NR | NΡ | NR | 0.0* | NR | NR | NR | 0.0 | 178 • | NR | NR | 2.5 | | 6 | NR | NR | NP | NR | NR | NR | NR | NR | 0.0 | 179 * | NR | NR | 2.6 | | 7 | NR | NR | No. | NR | NR | NR | NR | NR | 0.0 | 180 | NR | NR | 2.7 | | 8 '8 | NR | NR | NP | NR | NR | NR | NR | NR | 0.0 | 184 | NR | NR | 2.8 | | 9 | NR | NR | NP | NR | | NR | NR | NR | 0.0 | 183 | NR | NR | 2.9 | | 5 O | NR | NR | No | NR | | NR | NR | NR | 0.0 | 185 | NR | NR | 30 | | 51 | NR | | NP | 12 E | | NR | | NR | | 187 * | NR | | 3 + | | ΑΝ | NR | NR | No | NR | NR | NR | N/R | NR | NR | 154 | NR | NR | MEAN | | ΔX. | NR | NR | NP | NR | NR | NR | NR | NR | NR | 187 | NR | NR | MAX | | IN
FT. | N.R. | NR | No | NR | NR : | NR | NR | NR | NR | 0.0 | NR NR | NR | MIN | | FT. | NR | NR | NP | NR | NR | NR | NR | NR | NR | 9483 | NR | NR | AC.FT. | | | | | | | | | | | | | | | | | E | _ | FSI | imat | het | |---|---|-----|------|-----| NR - Na Record NR - Na Record \star - Dischorge measurement or abservation of no flow made on this day \pm a - See note (a) below | MEAN | | MAXIMU | М | | | |-----------|-----------|---------|----|-----|------| | OISCHARGE | DISCHARGE | GAGE HT | MO | DAY | TIME | | MINIMUM | | | | | | | | | | | | | | |-----------|---------|----|-----|------|--|--|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT | МО | OAY | TIME | | | |
| | | | | | WATER YEAR SUMMARY TOTAL ACRE-FEET a 15500 | | LOCATION | ٧ | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|------|-------------|-------------|---------------|----|------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO | REF | | LATITUDE | LONGITODE | M D.B.&M. | C.F.S. | GAGE HT. | DATE |] | ONLY | FROM | TO | GAGE | DATUM | | 36 04 18 | 119 05 48 | SE30 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 4.5 mi. W of Porterville, approximately 100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. (a) During periods of no record the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods. ### DAILY MEAN DISCHARGE KERN RIVER NEAR BAKERSFIELD IN SECOND FEET | STATION NO | WATER
YEAR | |------------|---------------| | C05150 | 1963 | | DAY | OCT | NOV | DEC. | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DAY | |--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|--------| | 1 | 363 | 254 | 183 | 191 | 493 | 4 36 | 609 | 620 | 780 | 2203 | 2120 | 1233 | 1 | | 2 | 378 | 254 | 183 | 192 | 429 | 440 | 603 | 664 | 714 | 2160 | 2061 | 1226 | 2 | | 3 | 378 | 215 | 197 | 190 | 38.6 | 441 | 618 | 629 | 718 | 2192 | 2021 | 1280 | 3 | | 4 | 386 | 216 | 220 | 195 | 384 | 439 | 668 | 669 | 735 | 2204 | 2005 | 1347 | 4 | | 5 | 362 | 218 | 216 | 184 | 376 | 421 | 677 | 710 | 773 | 2199 | 1995 | 1124 | 5 | | 6 | 337 | 213 | 210 | 195 | 381 | 437 | 684 | 740 | 831 | 2086 | 1936 | 975 | 6 | | 7 | 382 | 210 | 216 | 192 | 377 | 460 | 723 | 888 | 867 | 2042 | 1982 | 900 | 7 | | 8 | 388 | 205 | 201 | 193 | 379 | 432 | 687 | 953 | 940 | 2087 | 2002 | 849 | 6 | | 9 | 385 | 203 | 202 | 188 | 385 | 440 | 721 | 1119 | 941 | 2062 | 1982 | 934 | 9 | | 10 | 407 | 208 | 213 | 189 | 435 | 440 | 702 | 1011 | 970 | 2011 | 1950 | 1097 | 10 | | -11 | 415 | 210 | 211 | 192 | 456 | 472 | 662 | 925 | 940 | 1998 | 1945 | 1081 | 11 | | 12 | 465 | 206 | 219 | 194 | 453 | 513 | 644 | 882 | 761 | 1943 | 1885 | 1087 | 12 | | 13 | 454 | 208 | 186 | 174 | 472 | 515 | 624 | 846 | 753 | 2002 | 1942 | 1060 | 13 | | 14 | 428 | 210 | 191 | 153 | 463 | 533 | 641 | 801 | 869 | 2016 | 2011 | 1035 | 14 | | 15 | 408 | 219 | 198 | 184 | 454 | 656 | 737 | 774 | 970 | 2007 | 2105 | 1031 | 15 | | 16 | 417 | 210 | 211 | 188 | 454 | 634 | 770 | 781 | 1011 | 2026 | 2103 | 1028 | 16 | | 17 | 411 | 202 | 222 | 182 | 447 | 599 | 665 | 792 | 1232 | 2012 | 2053 | 1012 | 1.7 | | 1.8 | 417 | 204 | 218 | 175 | 457 | 573 | 625 | 803 | 1533 | 2044 | 2015 | 1036 | 18 | | 19 | 416 | 195 | 209 | 179 | 453 | 579 | 620 | 813 | 1630 | 2054 | 1992 | 1047 | 19 | | 20 | 415 | 194 | 211 | 178 | 458 | 578 | 635 | 809 | 1760 | 2015 | 1942 | 1149 | 2.0 | | 21 | 407 | 210 | 180 | 180 | 453 | 577 | 645 | 887 | 1896 | 2017 | 1981 | 1154 | 2 1 | | 2.2 | 380 | 216 | 189 | 187 | 445 | 587 | 624 | 1011 | 1927 | 2031 | 2029 | 1183 | 2 2 | | 2.3 | 341 | 210 | 191 | 186 | 451 | 573 | 624 | 1044 | 1748 | 2022 | 1977 | 1237 | 2 3 | | 24 | 339 | 203 | 189 | 177 | 456 | 574 | 624 | 1006 | 1959 | 2035 | 1808 | 1284 | 2 4 | | 2.5 | 3 3 6 | 196 | 176 | 176 | 450 | 552 | 651 | 1082 | 2118 | 2076 | 1669 | 1281 | 2.5 | | 2.6 | 299 | 195 | 136 | 177 | 449 | 555 | 647 | 1155 | 2157 | 2105 | 1762 | 1336 | 5.6 | | 27 | 289 | 198 | 133 | 170 | 447 | 613 | 625 | 1191 | 2143 | 2176 | 1742 | 1365 | 27 | | 2.8 | 268 | 200 | 161 | 178 | 445 | 681 | 624 | 1079 | 2150 | 2194 | 1738 | 1359 | 2.6 | | 29 | 250 | 201 | 165 | 186 | | 640 | 621 | 980 | 2277 | 2150 | 1648 | 1340 | 29 | | 30 | 248 | 193 | 179 | 308 | | 619 | 619 | 983 | 2262 | 2119 | 1655 | 1399 | 30 | | 3 1 | 237 | | 188 | 451 | | 608 | | 959 | | 2099 | 1526 | _ | 3 1 | | MEAN | 368 | 209 | 194 | 197 | 435 | 536 | 654 | 891 | 1346 | 2077 | 1922 | 1149 | MEAN | | MAX | 465 | 254 | 222 | 451 | 493 | 681 | 770 | 1191 | 2277 | 2204 | 2120 | 1399 | MAX | | MIN | 237 | 193 | 133 | 153 | 376 | 421 | 603 | 620 | 714 | 1943 | 1526 | 849 | MIN. | | AC.FT. | 22623 | 12448 | 11909 | 12067 | 24175 | 32959 | 38914 | 54756 | 80063 | 127710 | 118179 | 68368 | AC.FT. | E - Estimoted NR - No Record # - Diecharge measurement or observation of no flow mode on this day. # - E and # WATER YEAR SUMMARY MEAN MAXIMUM MINIMUM DISCHARGE GAGE HT MO DAY TIME DISCHARGE GAGE HT MO DAY TIME 832 TOTAL 604171 | Γ | | LOCATION | N | MAXI | NUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |---|-----------------------|-----------|------------------|-----------|-----------|----------|-----------|-------------|---------------|----|------|-------| | r | | | 1/4 SEC. T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | | LATITUDE | LONGITUDE | M D.B & M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 35 26 9 118 56 8 SW 2 | | SW 2 29S 28E | 36000 | 14.2 | 11-19-50 | 93-DATE | | | | | | Also known as "Kern River at First Point." Station located 5 mi. NE of Bakersfield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furn. by Kern County Land Company. Drainage area is 2,420 sq. mi. ### DAILY MEAN GAGE HEIGHT TULARE LAKE STATION NO WATER YEAR CO3110 1963 | | | | IN F | 133 | | | | | | | 003110 | 1 1 30 3 | ′ | |-----|-----|-------|------|-----|-----|-----|-------|-----|------|------|--------|----------|-----| | DAY | ост | NO V. | DEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT | OAY | DR | Y | | | | | | | | ' | - | ı | 1 | CREST | STAGES | | | | | | |------------------------------|------|------|-------|------|------|-------|--------|------|-------|------|------|-------| | E - Estimated | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | T:ME | STAGE | DATE | TIME | STAGE | | NR - No Record
NF No Flow | } | | | | | | | | | | | | | 145 140 F10M | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | LOCATION | 1 | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-------------------------------------|-----------|--------|----------------------|---------|-----------|-------------|---------------|------|------|-------| | | LONGITUDE 1/4 SEC. T. B.R OF RECORD | | | | | DISCHARGE | GAGE HEIGHT | PER | IIOD | ZERO | REF | | LATITUDE | LONGITUDE | M D.8 8 M | C.F.S. | C.F.S. GAGE HT. DATE | | | ONLY | FROM | TO | GAGE | DATUM | | 30 03 10 | 119 49 35 | | | 196.8 | 6-28-41 | | FEB 37-DATE | 1937 | | 0.00 | USCGS | Station located 2.2 mi. SW of Chatom Ranch, 6 mi. SW of Corcoran on south end of El Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 ft. U.S.G.S. datum. Records furn. by Tulare Lake Basin Water Storage District. ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER BELOW FRIANT STATION NO WATER YEAR B07885 1963 | DAY | ост | NOV | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|--------|--------|---------|---------|---------|---------|--------|---------|--------|---------|--------|--------|-----| | 1 | 2.18 | 2.05 | 2.08 | 1.95 | 1.85 | 2 • 05 | 2 • 04 | 1.93 | 2.38 | 2.45 | 2.45 | 2 • 36 | 1 | | 2 | 2.18 | 2.09 | 2 • 08 | 1.95 | 1.62 | 2.08 | 2.03 | 1.92 | 2.37 | 2.41 | 2 • 49 | 2 • 36 | 2 | | 3 | 2.19 | 2.10 | 2.08 | 1.95 | 1.60 | 2 • 10 | 2.03 | 1.91 | 2.37 | 2.38 | 2 • 48 | 2 • 35 | 3 | | 4 | 2.18 | 2 • 10 | 2 • 0 6 | 1.95 | 1.59 | 2.09 | 2.02 | 1.90 | 2.37 | 2.37 | 2.48 | 2 • 35 | 4 | | 5 | 2 • 17 | 2.10 | 2 • 0 2 | 1.94 | 1.70 | 2.09 | 2.02 | 1.89 | 2.37 | 2.37 | 2.43 | 2.32 | 5 | | 6 | 2 • 23 | 2 • 09 | 2.01 | 1.94 | 1.76 | 2.08 | 2 • 06 | 1.87 | 2.37 | 2 • 37 | 2.40 | 2.27 | 6 | | 7 | 2.29 | 2.10 | 2.01 | 1.94 | 1.90 | 2.07 | 2 • 14 | 1.85 | 2.37 | 2.37 | 2 • 39 | 2.25 | 7 | | 8 | 2.29 | 2 - 14 | 2 • 02 | 1.95 | 1.95 | 2.08 | 2.03 | 1.86 | 2.37 | 2.40 | 2.39 | 2.25 | 8 | | 9 | 2 • 29 | 2 • 12 | 2.03 | 1.95 | 2 • 0 4 | 2.09 | 1.86 | 1.89 | 2.37 | 2 • 44 | 2 • 38 | 2.18 | 9 | | 10 | 2 • 25 | 2 • 11 | 2 • 0 5 | 1.95 | 2 • 12 | 2.08 | 1.84 | 1.87 | 2.37 | 2.45 | 2.38 | 2.10 | 10 | | 11 | 2 • 20 | 2.11 | 2 • 05 | 1.95 | 1.93 | 2 + 1 1 | 1.83 | 1.87 | 2.29 | 2.44 | 2.38 | 2.10 | 11 | | 12 | 2.20 | 2.11 | 2.05 | 1.95 | 1.92 | 2.16 | 1.82 | 1.86 | 2.23 | 2.55 | 2.38 | 2.10 | 12 | | 13 | 2.21 | 2.11 | 2.05 | 1.96 | 2 • 00 | 2.16 | 1.82 | 1.85 | 2.19 | 2.54 | 2.38 | 2.10 | 13 | | 14 | 2.22 | 2.11 | 2.05 | 1.96 | 1.85 | 2 • 17 | 1.98 | 1 - 88 | 2.13 | 2.54 | 2 • 38 | 2 • 10 | 14 | | 15 | 2 • 16 | 2 • 11 | 2 • 0 6 | 1.96 | 1.70 | 2 • 19 | 1.99 | 1.99 | 2.15 | 2.54 | 2.38 | 2.10 | 15 | | 16 | 2.13 | 2.11 | 2.06 | 1.96 | 1.66 | 2.22 | 1.91 | 2 • 09 | 2 • 15 | 2.49 | 2.40 | 2.08 | 16 | | 17 | 2 • 12 | 2.11 | 2 • 02 | 1.96 | 1.65 | 2.21 | 1.87 | 2.17 | 3 • 26 | 2.45 | 2.45 | 2.06 | 17 | | 18 | 2.05 | 2.11 | 1.97 | 1.96 | 1.70 | 2 • 04 | 1.85 | 2 • 25 | 4.64 |
2 • 4 4 | 2.39 | 2.06 | 18 | | 19 | 1.99 | 2 • 11 | 1.97 | 1.96 | 1.80 | 2 • 05 | 1.88 | 2 • 3 2 | 5 - 40 | 2 • 44 | 2 • 40 | 2.06 | 19 | | 20 | 1.95 | 2.09 | 1.97 | 1.96 | 1.80 | 2 • 10 | 1.90 | 2 • 34 | 5.60 | 2 • 4 3 | 2 • 40 | 2.06 | 20 | | 21 | 1.95 | 2 • 06 | 1.9/ | 1.96 | 1.83 | 2 • 09 | 2.07 | 2.41 | 5.57 | 2.43 | 2.40 | 2.06 | 21 | | 22 | 1.97 | 2.06 | 1.97 | 1.99 | 1.90 | 2.10 | 1.96 | 2 • 4 3 | 5.03 | 2 • 4 3 | 2 • 40 | 2.06 | 22 | | 23 | 2.12 | 2.06 | 1.98 | 2.03 | 1.95 | 2.10 | 1.91 | 2.43 | 3.99 | 2.42 | 2 • 40 | 2.06 | 23 | | 24 | 2.19 | 2.06 | 1.98 | 2.03 | 2.02 | 2.10 | 1.89 | 2 • 4 3 | 2.98 | 2 • 36 | 2 • 39 | 2.06 | 24 | | 25 | 2 • 18 | 2 • 06 | 1.98 | 2.03 | 2.03 | 2 • 10 | 1.88 | 2 • 4 2 | 2.20 | 2 • 28 | 2 • 39 | 2.06 | 25 | | 26 | 2 • 04 | 2.06 | 1.99 | 2.03 | 2.04 | 2.11 | 2.21 | 2 • 4 2 | 2.45 | 2.28 | 2 . 38 | 2.05 | 26 | | 27 | 2.12 | 2.07 | 2.01 | 2 • 0 3 | 2.04 | 2.11 | 2 • 06 | 2 • 4 1 | 2.45 | 2 • 28 | 2.37 | 2.05 | 27 | | 28 | 2.13 | 2.07 | 2 • 0 2 | 2.03 | 2.05 | 2 • 36 | 1.98 | 2 • 42 | 2.46 | 2 • 34 | 2.37 | 2.07 | 28 | | 29 | 2 • 12 | 2.07 | 2 • 02 | 2.04 | | 1.96 | 1.97 | 2 • 42 | 2.45 | 2.37 | 2.37 | 2.10 | 29 | | 30 | 2.07 | 2.08 | 2.02 | 2.02 | | 1.87 | 1.95 | 2 • 42 | 2.45 | 2.39 | 2.36 | 2 • 11 | 30 | | 31 | 2.07 | | NR | 2.00 | | 1.93 | | NR | | 2.40 | 2 • 36 | | 31 | | | | | | | | CREST | STAGES | | | | | | |----------------------|---------|-------|-------|------|------|-------|--------|------|-------|------|------|-------| | - Estimated | OATE | .TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | | to Record
to Flow | 6-20-63 | 1300 | 5.73 | | | | | | | | | | | | LOCATION | J | MAXII | NUM DISCH | IARGE | PERIOD O | | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|----------|-------------|-------------|---------------|-----|--------|-------| | LATITUOE | LONGITUOE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | OOI | ZERO | REF | | LATTIOUE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 36 59 04 | 119 43 24 | SW7 11S 21E | 77,200 | 23.8 | 12/11/37 | OCT 07-DATE | OCT 07-DATE | 1938 | | 294.00 | USGS | | | | | | | | | | | | | | Station located 0.5 miles W of Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi. CHOWCHILLA RIVER NEAR RAYMOND STATION NO WATER YEAR B64200 1963 | DAY | ост. | NOV. | DEC. | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | BEPT. | DAY | |-----|------|------|------|-----|-------|-------|---------|---------|------|------|-----|-------|-----| | 1 | NR | NR | NR | NR | 78.19 | NR | 70.46 | 70.94 | NR | NR | NR | NR | 1 | | 2 | NR | NR | NR | NR | NR | NR | 70.37 | 70.83 | NR | NR | NR | NR | 2 | | 3 | NR | NR | NR | NR | NR | NR | 70.23 | 70.75 | NR | NR | NR | NR | 3 | | 4 | NR | NR | NR | NR | NR | NR | 70.20 | 70.65 | NR | NR | NR | NR | 4 | | 5 | NR | NR | NR | NR | NR | NR | 70 • 22 | 70.56 | NR | NR | NR | NR | 5 | | 6 | NR | NR | NR | NR | NR | NR | 70.24 | 69.93 | NR | NR | NR | NR | 6 | | 7 | NR | NR | NR | NR | NR | NR | 71.60 | 70.55 | NR | NR | NR | NR | 7 | | 8 | NR | NR | NR | NR | NR | NR | 72.58 | 70.52 | NR | NR | NR | NR | 8 | | 9 | NR | NR | NR | NR | NR | NR | 71.19 | 71.20 | NR | NR | N.R | . NR | 9 | | 10 | NR | NR | NR | NR | 72.23 | NR | 70.95 | 70.69 | NR | NR | NR | NR | 10 | | 11 | NR | NR | NR | NR | 70.98 | NR | 70.78 | 70.66 | NR | NR | NR | NR | 11 | | 12 | NR | NR | NR | NR | 70.42 | NR | 70.71 | 70.61 | NR | NR | NR | NR | 1.2 | | 13 | NR | NR | NR | NR | 71.18 | NR | 70.67 | 70.46 | NR | NR | NR | NR | 13 | | 14 | NR | NR | NR | NR | 71.15 | NR | 72.78 | 70.41 | NR | NR | 1/R | NR | 14 | | 15 | NR | NR | NR | NR | 70.41 | NR | 73.43 | 70.37 | NR | NR | NR | NR | 15 | | 16 | NR | NR | NR | NR | 70.24 | NR | 72.11 | 70.29 | NR | NR | NR | NR | 16 | | 17 | NR | NR | NR | NR | 70.09 | 70.13 | 71.55 | 70+23 | NR | NR | NR | NR | 17 | | 18 | NR | NR | NR | NR | 70.00 | 70.13 | 71.27 | 70 - 17 | NR | NR | NR | NR | 18 | | 19 | NR | NR | NR | NR | NR | NR | 71.55 | 70.12 | NR | NR | NR | NR | 19 | | 20 | NR | NR | NR | NR | NR | NR | 71.97 | 70.06 | NR | NR | NR | NR | 20 | | 21 | NR | NR | NR | NR | NR | NR | 73.33 | NR | NR | NR | NR | NR | 21 | | 22 | NR | NR | NR | NR | NR | NR | 12.43 | NR | NR | NR | NR | NR | 22 | | 23 | NR | NR | NR | NR | NR | NR | 72.02 | NR | NR | NR | NR | NR | 23 | | 24 | NR | NR | NR | NR | NR | 70.85 | 71.70 | NR | NR | NR | NR | NR | 24 | | 25 | NR | NR | NR | NR | NR | 70.07 | 71.49 | NR | NR | NR | NR | NR | 25 | | 26 | NR | NR | NR | NR | NR | 69.83 | 72.14 | NR | NR | NR | NR | NR | 26 | | 27 | NR | NR | NR | NR | NR | 69.68 | 71.82 | NR | NR | NR | NR | NR | 27 | | 28 | NR | NR | NR | NR | NR | 71.65 | NR | NR | NR | NR | NR | NR | 28 | | 29 | NR | NR | NR | NR | | 71.55 | 71.18 | NR | NR | NR | NR | NR | 29 | | 30 | NR | NR | NR | NR | | 70.79 | 71.03 | NR | NR | NR | NR | NR | 30 | | 31 | NR | | NR | NR | | 70.53 | 1 | NR | | NR | NR | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | No | Recard | | NF | - | No | Flow | | ı | | | | | | CREST | STAGES | | | | | | |---|-------------------------------|----------------------|-------|------------------------------|----------------------|-------|--------------------|--------------|--------------|------|------|-------| | ١ | DATE | TIME | STAGE | | | 1-31-63
2- 1-63
2-10-63 | 1850
0600
1125 | B3.9 | 2-13-63
3-28-63
4-7-63 | 1410
1045
2100 | | 4-14-63
4-21-63 | 1100
0100 | 78.6
75.1 | | | | | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|---------|-------------|-------------|---------------|-----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO
ON | REF | | CATTIONE | LONGITOBE | M.O.B.&M. | C.F.S. | GAGE HT. | OATE | 0.50 | ONLY | FROM | TO | GAGE | MUTAO | | 37 15 36 | 119 56 42 | SE 1 8S 22E | 8497E | 83.9 | 2- 1-63 | NOV 59-DATE | NOV 59-DATE | 1959 | | 0.00 | USCGS | Station located 6.0 mi. NW of Raymond on Raymond Road. Elevation of station is approximately 600 ft. USCGS datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights. ### DAILY MEAN GAGE HEIGHT IN FEET SAN JOAQUIN RIVER ABOVE SAND SLOUGH NEAR EL NIDO WATER STATION NO YEAR B07575 1963 | DAY | OCT. | NO V. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | OAY | |-----|------|-------|-----|--------|--------|------|-------|--------|------|------|-----|-------|-----| | 1 | NR | NR | NR | NR | NR | 0.65 | 01.88 | 2.32 | 0.99 | NF | NF | NF | 1 | | 2 | NR | NR | NR | NR | 4.69 | 0.61 | 01.52 | 2.11 | 0.87 | NF | NF | NF | 2 | | 3 | NR | NR | NR | NR | 5.39 | 0.58 | 01.65 | 2.08 | 0.60 | NF | NF | NF | 3 | | 4 | NR | NR | NR | NR | 4.41 | 0.61 | 02.10 | 2.01 | 0.45 | NF | NF | NF | 4 | | - 5 | NR | NR | NR | NR | 3.02 | 0.58 | 02.09 | 1.71 | NF | NF | NF | NF | 5 | | 6 | NR | NR | NR | NR | 2.21 | 0.54 | 01.93 | 1.42 | NF | NF | NF | NF | 6 | | 7 | NR | NR | NR | NR | 1.79 | 0.55 | 01.96 | 1.27 | NF | NF | NF | NF | 7 | | 8 | NR | NR | NR | 0.78 | 1.77 | 0.58 | 01.97 | 1.42 | NF | NF | NF | NF | 8 | | 9 | NR | NR | NR | 1.56 | 1.85 | 0.63 | 02.40 | 1.06 | NF | NF | NF | NF | 9 | | 10 | NR | NR | NR | 1.85 | 2 • 02 | 0.65 | 03.23 | 0.92 | NF | NF | NF | NF | 10 | | 11 | NR | NR | NR | 1.90 | 2 • 34 | 0.67 | 01.96 | 0.96 | NF | NF | NF | NF | 11 | | 12 | NR | NR | NR | 1.81 | 3.30 | 0.57 | 01.65 | 2 • 25 | NF | NF | NF | NF | 12 | | 13 | NR | NR | NR | 1.47 | 2.78 | 0.56 | 01.57 | 3.05 | NF | NF | NF | NF | 13 | | 14 | NR | NR | NR | 1.24 | 2.24 | 0.60 | 01.41 | 3.16 | NF | NF | NF | NF | 14 | | 15 | NR | NR | NR | 1 • 15 | 2.78 | 0.55 | 01.29 | 2.94 | NF | NF | NF | NF | 15 | | 16 | NR | NR | NR | 1.11 | 2.79 | 0.55 | 02.52 | 2.82 | NF | NF | NF | NF | 16 | | 17 | NR | NR | NR | 1.07 | 2.30 | 0.51 | 04.25 | 3.17 | NF | NF | NF | NF | 17 | | 18 | NR | NR | NR | 1.04 | 1.98 | 0.49 | 03.51 | 3.03 | NF | NF | NF | NF | 18 | | 19 | NR | NR | NR | 0.99 | 1 • 78 | 0.52 | 02.64 | 2.90 | NF | NF | NF | NF | 19 | | 20 | NR | NR | NR | 0.91 | 1.66 | 0.55 | 02.36 | 2 • 64 | NF | NF | NF | NF | 20 | | 21 | NR | NR | NR | 0.79 | 1.69 | 0.58 | 02.51 | 2.23 | NF | NF | NF | NF | 21 | | 22 | NR | NR | NR | 0.65 | 1 • 45 | 0.63 | 03.31 | 1.78 | NF | NF | NF | NF | 22 | | 23 | NR | NR | NR | 0.49 | 1 • 26 | 0.58 | 04.33 | 1.30 | NF | NF | NF | NF | 23 | | 24 | NR | NP | NR | NR | 1.13 | 0.57 | 03.90 | 1.06 | NF | NF | NF | NF | 24 | | 25 | NR | NR | NR | NR | 1.00 | 0.52 | 03.22 | 0.87 | NF | NF | NF | NF | 25 | | 26 | NR | NR | NR | NR | 0.84 | 0.50 | 02.80 | 0.65 | NF | NF | NF | NF | 26 | | 27 | NR | NR | NR | NR | 0.75 | 0.55 | 02.68 | 0.61 | NF | NF | NF | NF | 27 | | 28 | NR | NR | NR | NR | 0.71 | 0.63 | 03.35 | 0.72 | NF | NF | NF | NF | 28 | | 29 | NR | NR | NR | NR | | 0.61 | 03.11 | 0.84 | NF | NF | NF | NF | 29 | | 30 | NR | NR | NR | NR | | 2.67 | 02.61 | 0.92 | NF | NF | NF | NF | 30 | | 31 | NR | l | NR | NR | | 2.48 | | 0.90 | | NF | NF | | 31 | | Ε | - | Est | mated | |----|---|-----|--------| | NR | - | No | Record | | NF | _ | No | Flow | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|--------------------|--------------|-------|------|------|-------| | DATE | TIME |
STAGE | | 2- 2-63
2-12-63
3-30-63 | 1750
1310
1510 | | 4-10-63
4-17-63
4-23-63 | 0430
0950
1410 | 4.36
4.40
4.36 | 5-14-63
5-17-63 | 0820
1240 | 3.23 | | | | | | LOCATION | J | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|----------------------|-----------|---------|-------------|-------------|---------------|------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T, & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | 2ERO
ON | REF | | LASTIONE | LUNGITUUE | M. D. B. & M. | C.F.S. GAGE HT. DATE | | | ONLY | FROM | то | GAGE | DATUM | | | 37 06 36 | 120 35 24 | NE31 9S 13E | 2110 | 6.55 | 2/12/62 | OCT 61-DATE | OCT 61-DATE | 1961 | | 0.00 | USCGS | Station located 5 mi. NW of Santa Rita Bridge and 5 mi. W of El Nido. Flows sometimes affected by operation of control structures below station. During this period flows are not computed. Partial flow records and discharge measurement are available in the office of the San Joaquin Valley Branch of the Department of Water Resources. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights. TABLE B-63 ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER NEAR STEVINSON IN FEET STATION NO WATER YEAR B07400 1963 | DAY | OCT. | NOV | OEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|---------|--------|-------|---------|-------|-------|-------|-------|-------|------| | 1 | 60.97 | 60.70 | 60.74 | 60.82 | -63.25 | 62.18 | 65.34 | 65.85 | 62.10 | 61.31 | 61.17 | 61.12 | 1 | | 2 | 61.03 | 60.71 | 60.67 | 60.82 | 65.14 | 62.09 | 65.09 | 64.95 | 62.21 | 61.39 | 61.15 | 61+15 | 2 | | 3 | 60.99 | 60.72 | 60.64 | 60.82 | 67.87 | 61.99 | 64.59 | 64.45 | 62.25 | 61.56 | 61.10 | 61.15 | 3 | | 4 | 60.95 | 60.94 | 60.64 | 60.82 | 68.84 | 61.90 | 64 • 11 | 64.01 | 62.25 | 61.69 | 61.18 | 61.14 | 4 | | 5 | 61.16 | 61.14 | 60,63 | 60.78 | 67.99 | 61.85 | 63.44 | 63.95 | 62.17 | 61.85 | 61.24 | 61.14 | 5 | | 6 | 61.23 | 61.14 | 60,64 | 60.74 | 66+69 | 61.74 | 63.39 | 63.53 | 62.16 | 61.89 | 61.32 | 61.14 | 6 | | 7 | 61.17 | 60.99 | 60,63 | 61.29 | 65.43 | 61.64 | 64.08 | 63.19 | 62.26 | 61.89 | 61.40 | 61.13 | 7 | | 8 | 61.09 | 60.88 | 60.64 | 62.00 | 64.26 | 61.56 | 64.22 | 62.84 | 62.33 | 61.76 | 61.44 | 61.08 | 8 | | 9 | 60.99 | 60.77 | 60.64 | 62 • 11 | 63.41 | 61.49 | 64.12 | 62.61 | 62.45 | 61.71 | 61.43 | 61.02 | 9 | | 10 | 60.87 | 60.75 | 60,64 | 62.02 | 64.74 | 61.44 | 63.96 | 62.47 | 62.35 | 61.78 | 61.39 | 60.96 | 10 | | 11 | 60.88 | 60.78 | 60.64 | 61.83 | 65.88 | 61.38 | 64.21 | 62.44 | 62.46 | 61.70 | 61.32 | 60.95 | 11 | | 12 | 60.88 | 60.81 | 60.64 | 61.53 | 66.74 | 61.33 | 64.42 | 63.54 | 62.37 | 61.56 | 61.36 | 60.97 | 12 | | 13 | 60.94 | 60.83 | 60.64 | 61 • 65 | 67.16 | 61.29 | 64.38 | 63.65 | 62.49 | 61.43 | 61.39 | 61.03 | 13 | | 14 | 60.88 | 60.82 | 60.64 | 61.68 | 67.70 | 61.27 | 64.26 | 63.14 | 62.70 | 61.36 | 61.35 | 61.25 | 14 | | 15 | 60.81 | 60.81 | 60.66 | 61.64 | 68.54 | 61.27 | 64.17 | 63.06 | 62.70 | 61.42 | 61.37 | 61.48 | 15 | | 16 | 60.81 | 60.81 | 60.81 | 61.43 | 68.47 | 61.30 | 65.09 | 62.92 | 62.55 | 61.40 | 61.32 | 61.56 | 16 | | 17 | 60.79 | 60.80 | 60.88 | 61.24 | 67.44 | 61.29 | 65.90 | 62.71 | 62.54 | 61.26 | 61.25 | 61.55 | 17 | | 18 | 60.79 | 60.78 | 61.12 | 61.13 | 66.44 | 61.43 | 66.43 | 62.43 | 62.47 | 61.22 | 61.21 | 61.49 | 18 | | 19 | 60.78 | 60.70 | 61.19 | 61.05 | 65.63 | 61.58 | 66.30 | 62.21 | 62.21 | 61.18 | 61.17 | 61.71 | 19 ' | | 20 | 60.76 | 60.67 | 61.21 | 61.02 | 64.97 | 61.53 | 65.90 | 61.98 | 61.89 | 61.22 | 61.23 | 61.87 | 20 | | 21 | 60.75 | 60.71 | 61.21 | 61.00 | 64.51 | 61.46 | 65.87 | 61.89 | 61.67 | 61.26 | 61.18 | 62.12 | 21 | | 22 | 60.73 | 60.76 | 61.19 | 60.97 | 64.12 | 61.44 | 66.40 | 61.84 | 61.55 | 61.26 | 61.14 | 62.32 | 22 | | 23 | 60.72 | 60.75 | 61.14 | 60.95 | 63.39 | 61.42 | 67.26 | 61.79 | 61.51 | 61.14 | 61.09 | 62.36 | 23 | | 24 | 60.73 | 60.72 | 61.12 | 60.96 | 63.03 | 61.80 | 67.59 | 61.77 | 61.55 | 61.11 | 61.13 | 62.34 | 24 | | 25 | 60.74 | 60.69 | 61.10 | 61.10 | 62.81 | 62.11 | 67.38 | 61.86 | 61.72 | 61.12 | 61.22 | 61.96 | 25 | | 26 | 60.75 | 60.69 | 61.06 | 61.02 | 62.63 | 61.88 | 66.96 | 61.84 | 61.79 | 61.15 | 61.32 | 61.97 | 26 | | 27 | 60.75 | 60.72 | 60.95 | 60.94 | 62.44 | 61.92 | 66.60 | 61.92 | 61.74 | 61.18 | 61.44 | 61.67 | 27 | | 28 | 60.74 | 60.73 | 60.87 | 60.89 | 62.31 | 62.06 | 56.57 | 62.04 | 61.59 | 61.15 | 61.51 | 61.52 | 28 | | 29 | 60.73 | 60.73 | 60.86 | 60.91 | | 63.44 | 66 • 53 | 62.18 | 61.52 | 61.12 | 61.32 | 61.42 | 29 | | 30 | 60.71 | 60.75 | 60.83 | 61.02 | | 65.67 | 66.33 | 62.25 | 61.40 | 61.13 | 61.21 | 61.38 | 30 | | 31 | 60.71 | (| 60.81 | 61.52 | | 65.70 | | 62.24 | | 61.19 | | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | No | Record | | NF | | No | Flow | | | | | | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|---------|------|-------|------|------|-------| | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | OATE | TIME | STAGE | | 2- 4-63
2-16-63
3-30-63 | 1040
0000
2120 | 68.9
68.8
66.1 | 4-18-63
4-24-63
5- 1-63 | 1800
1600
0000 | 66.6
67.6
66.2 | 6-14-64 | 2400 | 62.8 | | | | | | LOCATION | 4 | | | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | DATUM | | OF GAGE | | |----------|----------------------------|----|---------|-----------|----------|-----------|-----------|-------------|-------------|-------|------|---------|-------| | LATITUDE | LONGITUDE 1/4 SEC. T. & R. | | T. & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LATITODE | TUDE LONGITUDE M.D.B.8.M. | | В.М. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | DATUM | | | 37 17 42 | 120 51 00 | 26 | 7S | 10E | 6060 | 73.04 | 2-17-62 | OCT 61-DATE | MAY 61-DATE | 1961 | | 0.00 | USCGS | Station located on bridge 2.3 miles south of Stevinson on Lander Avenue. 0-1 ### The first season of the - - 192 - - 252 Was and the second of seco | | | - | 45. | | -01 | - | ALL: | | Option | LME | | - | 52 | 74 | |--|---|----------|-----------|----------|-----|------------|-----------|------|---------|----------|--------
--|----|----| | | | - | - | ~ | - | 15-70 | | 100 | | | - | 98,39 | 4- | | | | | The same | ~~ | The same | - | | Section 1 | - | - | - ~ | | - | | | | | | - | ~~~ | - | 100 | | - | | 95.00 | | | | | | | | | - | - | 2000 | - | | 1 | | | - | - | | | - | | | | The same | ~~ | Total . | - | 4.7 | 776-27 | | - | 4.74 | Police | | | ~ | Name . | - | ~~ | 100 | | 1000 | | Aller . | 2000 | - | ~ | | - | | | | Times | - | - | | 4 | | | - | - | - | 40.00 | | | | | | | - | Name : | | | | | - | - | | | ~ | - | | | | - | ~ | × | | - = | - | | - | = | 3 | | - | | | | | Total | Magazine. | 100 | - | - Carolina | | 1000 | - | The same | 3 | - | - | - | ~ | - 10 | | | | - | | - | - | - man | Townson | - | - | | | | - | | The same | | 70-0 | - | | | | | - | | | | | - | | | | | | | | 100 | 100 | | | | | | | - | 2 | | | | | | | | | | | | | | | | | | The state of s | | | | | | | | - | | | | | | | | | _ | | | | | | | | | | | The state of s | | - | | | - | THE STATE OF | |-----|-----|--------------| | - | 300 | THE COLUMN | | 300 | 401 | 130~ | | ATT - | | |
ME | T-E | | 746 | |
ety: | | |-------|------|---|--------|-----|---|-------------|----------|----------|------| | | | |
 | - | | - | |
 | 12.3 | | | -075 | |
- | | | residence . | Sec. (6) | | | | | | - |
- | - | - | | | | | | | | | fra. | an Island | 25-5 | | - | - 10 F == | | | | |---|--|----|---|-----------|------|------|-----|-----------|--|----|----------------| | - | | -E | | 7 | | | - | | | | - | | | | 0 | _ ===================================== | | - | | DIL | ==== | | 70 | SATUR
SATUR | | | | | | | | = -= | - | - | | 33 | | ### DET 3- ### 34 _ * # E40 BAGE -E G-T ******** * *** ** *** *** *** - - | 20" | 20 | 4C | SEC | 980 | 755 | MED. | | 46.5 | »NE | _ | | 504 | | |-------|------------|-------------|---------|--------|-----------|---------|-----------|-----------|--------|--------|------------------|--------|------| | | 5.67 | THE | | SE | - | 5 76 | Par | - | 200 | | | - | | | 7 | 2 | Mary Street | -,25 | mu 266 | = | - E | 25 | and and | - | | | -60- | | | 9 | 4.05 | 4.35 | - pro | - On | = = | 5420 | 75 | 1 - | | - | 200 | 100 | | | | 4 97 | =_ ~- | m , 34 | | = , | == | 78-3- | 7 75 | 1000 | | 9 .000 | **** | | | * | 4-65" | = | | | 2_40 | Euro | 70, 13 | 4 | 200 | - | -3- | - | | | | | | | | | | | | | | | | | | 4 | 4.25 | = | 4,00 | Teats | - == | 2,00 | 75 | 0 | | 100 | | 100 | - | | - | 4. 34 | 5.75 | 4.37 | = | 7.35 | = == | P and | | Tagen. | - 9 | 1000 | | - | | 9 | 4.05 | 5.50 | 4,35 | = - | 3 | | The same | 2 | ALC: N | | - 30 | Appen | | | = | 4.35 | = 27 | 40.00 | n . = | 2,75 | 2- | *P_* | | 100 | 944 | | _ | | | 7.0 | 4-5 | =_30 | 4.5 | = | 2,000 | 3 | -8- | | | 1 | - 220 | | | | | | | | | | | | | | | | | | | 77 | 4.5 | 100 | 4.00 | = | | 5 00 | | 25 | | | 32 | | | | 77 | 88.4 | 400 | 4,74 | Earlin | 0.31 | = 70 | | April 100 | | ~ 20 | 200 | - | | | 13 | 0.5 | 4,36 | 2.5 | = | 0,=0 | 2 ~~ | | | - | - 3- | 1000 | -50 | | | 14 | 5.07 | 4 20 | E . SE | 20.00 | * .30 | 5,74 | 75 | 9.427 | 100 | | - | | | | 54. | 5.00 | Aug ST | = .73 | = = | B 3F | | | 000 | 200 | - | 16 | 5-36 | | == | = | 2 | = | D TE | | | | 1,000 | 700 | | | | 5.38 | 4.00 | 4,20 | = = | = = | 5- | | - 2- | 100 | | | -30 | | | | 5-3e | 4.5 | E STATE | = | 2 3E | 2,30 | E | | - 3- | | = 3 ₀ | 15-20 | | | 23 | 4.00 | 4,22 | 1,1 | 5-25 | = = | = = | TH with | 4.000 | 394 | 50.70 | - | wellto | | | 70 | 5.33 | 44 27 | 5.1- | = = =0 | = " = = = | To make | TE TE | +d_ | | | 1 300 | | | | | | | | | | | | | | | | | | | T: | 5.00 | 4-= | = - | = | α | = =a | TE | - Tree | 10.00 | - | - | | = | | === | = 30 | 4.5 | E | = _ == | 2 37 | = == | 200 | 100 | 1000 | 40,000 | - 300 | | = | | | 5.00 | 40- | E . " | = | C _ 700 | 3.9 | -2- | | - | 10,200 | - Y | | | | 7a | at a state | 400 | 5 | 2,00 | 2 38 | 2,0 | _38 | | | Time | | | - | | 76 | day they | - | = _ ~p | = = == | 0.79 | | | - 10 | - | | = 325 | | 1000 | | | | | | | | | | | | | | | | | 25 | 4- 4- | Manage 2017 | 5,75 | E 14 | 3 78 | = = = | | | 200 | ~ | 2 3m | | - | | 1000 | 4.000 | 40 == | 4.38 | 2,00 | 0.07 | 8,80 | = == | | | - | 2 252 | | - | | and a | 4. 34 | day - | 7.2= | I | = | ~~~ | TE TE | | ~ ~ | | | | 54.7 | | 70 | 4.05 | 4 38 | and the | 25,000 | | 3. 70 | THE . THE | | 2.50 | - 200 | 0.000 | _ = | - | | 27 | 4-07 | 4,50 | 44,36 | 8 | | 3-7 | TELP. | | - 7 | | 100 | | | | 77 | 4-25 | | To | = 0 | | 9- | | | | T | - | | | | | | | | | | CEEE | ET-IES | | | | | |---------------|---------|------|-------|-----|------|------|--------|-----|---|-----------|--| | - Est mated | 34 = | - ME | 2 44. | フムモ | - WE | 三小王 | - | 66- | |
- ee_ | | | भव निरम्पार्य | 2-21-21 | | | | = | - | | | - | | | | AC = DM | 5-1-62 | | 9.1 | | | | Trans. | - | | | | | | | ~2~ | | | | | | | | | | | | LICAT CN | | 90 mg | Mum 353 | -D=GE | = <u>=</u> ==02 3 | | 220 | JF 3-3 | E | |-------------|---------------------|-------------|------------|---------|-------|-------------------|--------|------|--------|-------| | 170.000.000 | *** | 4 551 7 4 4 | OF PERCOPE | | | 3153-4762 | 3-5- | 2000 | 70. | = | | -4 -41/2 | a al Philip and the | N CESAL | 2-3 | 54Œ | 37 | Jacob Miller | 716_ | | WE | 757 0 | | 77 7 % | 2 2 0 1 | ME_" 55 _42 | | | | | F -2 T | | | | SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE STATION NO | WATER | YEAR | 807375 | 1963 | DAY | ост | NOV | OEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|---------|-------|-----|-------|---------|---------|---------|-------|-------|-------|-------|-----| | 1 | 54.59 | 54.51 | 54.55 | NR | 56.79 | 56.68 | 58.68 | 59.26 | 57.10 | 55.45 | 55.15 | 55.10 | 1 | | 2 | 54.78 | 54.53 | 54.52 | NR | 57.82 | 56.55 | 58.56 | 58.57 | 57.06 | 55.46 | 55.06 | 55.12 | 2 | | 3 | 54.71 | 54.43 | 54.51 | NR | 59.88 | 56.42 | 58.18 | 58 • 05 | 57.11 | 55.56 | 55.09 | 55.17 | 3 | | 4 | 54.58 | 54.37 | 54.47 | NR | 61.36 | 56.28 | 57.83 | 57.69 | 57.15 | 55.71 | 55.25 | 55.22 | 4 | | 5 | 54.54 | 54.53 | 54.37 | NR | 61.28 | 56.19 | 57.37 | 57.43 | 57.24 | 55.80 | 55.37 | 55.27 | 5 | | 6 | 54.68 | 54.53 | 54.23 | NR | 60.20 | 56.08 | 57.21 | 57.23 | 56.65 | 55.84 | 55.42 | 55.29 | 6 | | 7 | 54.70 | 54.46 | 54.16 | NR | 59.20 | 55.95 | 57.57 | 56.88 | 56.40 | 55.84 | 55.20 | 55.42 | 7 | | 8 | 54.66 | 54 • 38 | 54.09 | NR | 58.22 | 55.86 | 57.82 | 56.66 | 56.35 | 55.84 | 55.07 | 55.28 | 8 | | 9 | 54.62 | 54.32 | NR | NR | 57.58 | 55.88 | 57.72 | 56.46 | 56.31 | 55.76 | 55.06 | 55.23 | 9 | | 10 | 54.38 | 54.41 | NR | NR | 58.27 | 55.96 | 57.61 | 56 • 46 | 56.29 | 55.71 | 55.28 | 54.98 | 10 | | 11 | 54.29 | 54.46 | NR | NR | 59.30 | 56.01 | 57.76 | 57.50 | 56.32 | 55.63 | 55.26 | 54.94 | 11 | | 12 | 54.29 | 54.57 | NR | NR | 60.10 | 56.02 | 57.94 | 58.11 | 56.25 | 55.56 | 55.27 | 55.04 | 12 | | 13 | 54.27 | 54.60 | NR | N.R | 60.68 | 55.93 | 57.92 | 58.26 | 56.26 | 55.36 | 55.46 | 55.18 | 13 | | 14 | 54.46 | 54.62 | NR | NR | 61.12 | 55.90 | 57.81 | 57.64 | 56.44 | 55.28 | 55.37 | 55.38 | 14 | | 15 | 54.38 | 54 • 61 | NR | NR | 61.74 | 55.95 | 57.64 | 57.07 | 56.55 | 55.38 | 55.26 | 55.57 | 15 | | 16 | 54.33 | 54.60 | NR | NR | 61.98 | 55.90 | 57.93 | 56.86 | 56.47 | 55.43 | 55.18 | 55.63 | 16 | | 17 | 54.27 | 54.60 | NR | NR | 61.52 | 55.79 | 58.70
| 56.69 | 56.39 | 55.31 | 55.12 | 55.59 | 17 | | 18 | 54.24 | 54.63 | NR | NR | 60.68 | 55.86 | 59.23 | 56.58 | 56.38 | 55.14 | 55.13 | 55.56 | 18 | | 19 | 54.28 | 54.60 | NR | NR | 59.84 | 55.95 | 59.38 | 56.90 | 56.52 | 55.10 | 55.13 | 55.67 | 19 | | 20 | 54.21 | 54.59 | NR | NR | 59.17 | 55.99 | 59.04 | 57.18 | 56.49 | 55.10 | 55.13 | 55.70 | 20 | | 21 | 54.17 | 54.59 | NR | NR | 58.69 | 55.85 | 58.94 | 57.38 | 56.17 | 55.13 | 55.17 | 55.74 | 21 | | 22 | 54.17 | 54.61 | NR | NR | 58.35 | 55.84 | 59.18 | 57.59 | 55.96 | 55.18 | 55.14 | 55.84 | 22 | | 23 | 54.18 | 54.63 | NR | NR | 57.89 | 55.99 | 59.92 | 57.65 | 55.75 | 55.09 | 55.00 | 55.82 | 23 | | 24 | 54.17 | 54.67 | NR | NR | 57.51 | 56.10 | 60.47 | 57.74 | 55.58 | 55.00 | 55.11 | 55.71 | 24 | | 25 | 54.22 | 54 - 70 | NR | NR | 57.32 | 56 • 33 | 60.52 | 57.17 | 55.57 | 55.02 | 55.26 | 55.59 | 25 | | 26 | 54.28 | 54.68 | NR | NR | 57.12 | 56.34 | 60 • 21 | 57.30 | 55.71 | 55.04 | 55.29 | 55.48 | 26 | | 27 | 54.40 | 54.62 | NR | NR | 56.95 | 56.34 | 59.88 | 56.83 | 55.70 | 55.06 | 55.33 | 55.36 | 27 | | 28 | 54.43 | 54.55 | NR | NR | 56.79 | 56.43 | 59.81 | 57.26 | 55.66 | 55.00 | 55.51 | 55.22 | 28 | | 29 | 54.43 | 54.57 | NR | NR | | 56.85 | 59.78 | 57.79 | 55.54 | 55.18 | 55.38 | 55.11 | 29 | | 30 | 54.54 | 54.57 | NR | NR | | 58.30 | 59.65 | 57.64 | 55.51 | 55.28 | 55.24 | 55.06 | 30 | | 31 | 54.53 | | NR | NR | | 59.02 | | 57.33 | | 55.27 | 55.23 | | 31 | | Ε | | Est | mated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | Νo | Flow | | | | | | | | CREST | STAGES | | | | | | |---|-------------------------------|----------------------|-------|-------------------------------|----------------------|-------|-------------------------------|----------------------|-------------------------|---------|------|-------| | | DATE | TIME | STAGE | | 2 | 2- 3-63
2- 4-63
2- 5-63 | 2400
2400
1200 | 61.53 | 2- 6-63
2-12-63
2-13-63 | 1200
2400
2400 | 60.43 | 2-14-63
2-15-63
2-16-63 | 2400
2400
0900 | 61.47
61.98
62.04 | 2-17-63 | 1200 | 61.55 | | | LUCATION | 1 | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|-------------|-------------|------|--------------|----------------|----------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | COIS | ZERO | REF. | | CATITODE | LONGITODE | M. D. 8. 8 M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 18 35 | 120 55 45 | | 5910 | 71.14 | 4- 6-58 | FEB 37-DATE | APR 37-DATE | 1944 | 1957
1959 | -3.73
-3.77 | USCGS
USCGS | | | | | | | | | , | 1959 | | 0.00 | USCGS | Station located 30 ft. below Fremont Ford Bridge, 4.5 mi. W of Stevinson, 6.7 mi. above the Merced River. During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for period 1944 to date. Records furn. by U.S.G.S. Drainage area is approx. 8,090 sq. mi. Flow records are published in U.S.G.S. report, "Surface Water Records of California." ### DAILY MEAN GAGE HEIGHT IN FEET MERCED RIVER BELOW SNELLING WATER STATION NO B05170 1963 | DAY | OCT. | NOV. | OEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|------|------|------|--------|--------|--------|---------|-------|-------|------|------|--------|-----| | 1 | 5.67 | 4.95 | 4.88 | 4.95 | 6.46 | 9.29 | 08.26 | 8.27 | 10.90 | 6.27 | 5.94 | 5.79 | 1 | | 2 | 5.11 | 4.92 | 4.89 | 4.96 | 5.74 | 7.09 | 08.25 | 8.28 | 10.92 | 6.31 | 5.94 | 5 - 84 | 2 | | 3 | 4.95 | 4.95 | 4.89 | 4.94 | 5.51 | 5.80 | 08.27 | 8.26 | 11.22 | 6.35 | 5.94 | 5.76 | 3 | | 4 | 4.90 | 5.01 | 4.94 | 4.92 | 5.44 | 5.69 | 08.24 | 8.25 | 10.97 | 6.43 | 5.95 | 5.75 | 4 | | 5 | 4.87 | 5.02 | 4.93 | 4.97 | 5.43 | 5.61 | 08.19 | 8.07 | 9.75 | 6.32 | 5.94 | 5.78 | 5 | | 6 | 4.89 | 5.02 | 4.93 | 5.06 | 7.55 | 5 • 58 | 08 • 43 | 7.59 | 9.73 | 5.94 | 5.87 | 5.81 | 6 | | 7 | 4.94 | 5.03 | 4.92 | 5.14 | 7.36 | 5.55 | 08.60 | 7.87 | 9.41 | 5.84 | 5.85 | 5.75 | 7 1 | | 8 | 4.93 | 5.02 | 4.90 | 5.14 | 9 • 21 | 5.62 | 08 • 43 | 9.24 | 8.67 | 5.87 | 5.94 | 5.73 | 8 | | 9 | 4.90 | 5.00 | 4.93 | 5.15 | 9.33 | 6.02 | 08 • 25 | 11.02 | 8.94 | 5.84 | 5.92 | 5.79 | 9 | | 10 | 4.87 | 5.00 | 4.9] | 5.15 | 9.46 | 5.07 | 07.82 | 12.33 | 8.52 | 5.83 | 5.93 | 5.74 | 10 | | 11 | 4.87 | 4.99 | 4.93 | 5.14 | 9.31 | 5.90 | 07.79 | 11.85 | 6.73 | 5.88 | 5.95 | 5.73 | 11 | | 12 | 4.88 | 4.97 | 4.94 | 5.14 | 9.31 | 5.79 | 07.82 | 11.45 | 6.54 | 5.89 | 5.95 | 5.69 | 12 | | 13 | 4.91 | 4.96 | 4.91 | 5.16 | 9.59 | 5.73 | 07.81 | 10.10 | 6.44 | 5.86 | 5.95 | 5 . 84 | 13 | | 14 | 5.01 | 4.93 | 4.95 | 5.14 | 9.38 | 5.74 | 08.14 | 9.20 | 6.43 | 5.86 | 5.97 | 5.78 | 14 | | 15 | 5.00 | 4.90 | 5.23 | 5.15 | 9.35 | 5 • 75 | 08.15 | 8.98 | 6.40 | 5.87 | 5.99 | 5.78 | 15 | | 16 | 5.06 | 4.90 | 5.45 | 5.17 | 9.32 | 5.74 | 08.09 | 9.11 | 7.82 | 5.88 | 5.95 | 5.79 | 16 | | 17 | 5.08 | 4.90 | 5,33 | 5.19 | 9.32 | 5.77 | 07.93 | 10.52 | 10.92 | 5.93 | 5.97 | 5.80 | 17 | | 2.8 | 5.06 | 4.91 | 5.21 | 5.20 | 9.30 | 5.81 | 08.22 | 11.51 | 10.85 | 6.02 | 5.96 | 5.90 | 18 | | 19 | 4.99 | 4.93 | 5.15 | 5.26 | 9.31 | 5.72 | 08.44 | 11.65 | 10.86 | 6.06 | 5.87 | 5 . 86 | 19 | | 20 | 5.03 | 4.92 | 5.14 | 5.30 | 9.30 | 5.64 | 08+35 | 11.82 | 10.26 | 6.03 | 5.85 | 5.75 | 20 | | 21 | 5.02 | 4.91 | 5.12 | 5 • 30 | 9.30 | 5.58 | 08.33 | 11.86 | 10.18 | 6.04 | 5.71 | 5.73 | 21 | | 22 | 5.00 | 4.91 | 5.11 | 5.30 | 9.30 | 5.55 | 08.21 | 11.92 | 9.18 | 6.06 | 5.83 | 5.74 | 22 | | 23 | 5.00 | 4.91 | 5.10 | 5 . 32 | 9.28 | 5.51 | 08.24 | 11.99 | 8.44 | 6.09 | 5.86 | 5.74 | 23 | | 24 | 4.97 | 4.91 | 5.10 | 5.32 | 9.28 | 5.51 | 00.88 | 11.91 | 8.18 | 6.11 | 5.89 | 5.76 | 24 | | 25 | 4.96 | 4.93 | 5.08 | 5.32 | 9.28 | 5.49 | 09.13 | 10.88 | 7.40 | 6.08 | 5.88 | 5 • 62 | 25 | | 26 | 4.97 | 4.93 | 5.03 | 5.34 | 9.28 | 5.51 | 09.47 | 10.81 | 6.89 | 6.08 | 5.84 | 5.58 | 26 | | 27 | 4.95 | 4.97 | 4.98 | 5.33 | 9.27 | 5.53 | 09.30 | 11.57 | 7.16 | 6.01 | 5.85 | 5.54 | 27 | | 28 | 4.94 | 4.92 | 4.95 | 5 • 32 | 9.28 | 6.61 | 09.09 | 11.80 | 7.45 | 5.99 | 5.76 | 5.55 | 28 | | 29 | 4.95 | 4.89 | 4.94 | 5.33 | | 8.70 | 08 • 74 | 11.08 | 7.31 | 5.99 | 5.75 | 5.51 | 29 | | 30 | 4.93 | 4.89 | 4.96 | 5.43 | | 8.51 | 08.61 | 10.93 | 6.58 | 6.03 | 5.78 | 5.51 | 30 | | 31 | 4.95 | | 4.96 | 5.97 | | 8.27 | | 10.75 | | 6.00 | 5.77 | | 31 | | Ε | - | Est | mated | |----|---|-----|--------| | NR | - | Nα | Record | | NF | - | Nο | Flow | | | | | | | | | | | | (| REST | STAGES | | | | | | |---|-------------------------------|----------------------|-------------------|-------------------------------|----------------------|----------------------|--------------------|--------------|-------------|------|------|-------| | Ì | DATE | TIME | STAGE | | | 2-10-63
3- 1-63
4-26-63 | 0300
1920
1640 | 9.9
9.3
9.6 | 5-10-63
5-23-63
6- 4-63 | 0510
1850
0210 | 12.5
12.0
11.4 | 6-10-63
6-17-63 | 1030
1130 | 9.7
11.4 | | | | | | LOCATION | V | MAXIM | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|------------------------------------|-------------|--------|-----------|---------|---------------------------------|-------------|------------|-------|---------|-------| | LATITUDE | LONGITUDE 1/4 SEC. T.&
M.O.B.&M | | | OF RECORD | | DISCHARGE GAGE HEIGHT PERIOD ZE | | ZERO
ON | REF | | | | CATTIONE | LONGITUDE | M.O.B.&M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 30 06 | 120 27 03 | NE17 5S 14E | 4910 | 12.51 | 5-10-63 | NOV 58-DATE | NOV 58-DATE | 1958 | | 0.00 | LOCAL | Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream. ### DAILY MEAN GAGE HEIGHT MERCED RIVER AT CRESSEY IN FEET STATION NO WATER YEAR 805155 1963 | DAY | OCT. | NOV. | OEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|--------|-------|-------|-------|-------|--------|---------|-------|-------|-----| | 1 | 11.32 | 10.82 | 10.43 | 10.49 | 12.03 | 14.94 | 13.78 | 13.98 | 17.03 | 11.13 | 10.29 | 10.40 | 1 | | 2 | 11.34 | 10.82 | 10.43 | 10.49 | 12.33 | 14.47 | 13.80 | 13.82 | 17.13 | 10.75 | 10.33 | 10.43 | 2 | | 3 | 11.23 | 10.83 | 10.43 | 10.50 | 11.38 | 11.90 | 13.80 | 13.78 | 17.34 | 10.82 | 10.35 | 10.42 | 3 | | 4 | 11.13 | 10.83 | 10.40 | 10.49 | 11.02 | 11.20 | 13.82 | 13.75 | 17.69 | 10.93 | 10.39 | 10.46 | 4 | | 5 | 11.05 | 10.83 | 10.43 | 10.48 | 10.84 | 10.83 | 13.72 | 13.72 | 16.07 | 10.98 | 10.46 | 10.46 | 9 | | 6 | 11.00 | 10.82 | 10.44 | 10.48 | 10.66 | 10.80 | 13.80 | 13.33 | 15.42 | 10.96E | 10.39 | 10.46 | 6 | | 7 | 10.97 | 10.81 | 10.44 | 10.49 | 13.61 | 10.76 | 14.21 | 12.70 | 15.44 | 10.74E | 10.29 | 10.41 | 1 | | 8 | 10.94 | 10.82 | 10.45 | 10.51 | 13.23 | 10.66 | 14.19 | 14.07 | 14.57 | 10.51 | 10.16 | 10.39 | 1 8 | | 9 | 10.94 | 10.83 | 10.54 | 10.50 | 14.86 | 10.64 | 13.84 | 15.36 | 13.87 | 10.33 | 10.17 | 10.40 | 9 | | 10 | 10.92 | 10.83 | 10.52 | 10.50E | 16.24 | 10.71 | 13.55 | 19.32 | 15.02 | 10.29 | 10.25 | 10.40 | 10 | | 11 | 10.94 | 10.84 | 10.47 | 10.50E | 15.42 | 10.89 | 13.31 | 18.97 | 12.76 | 10.30 | 10.35 | 10.42 | 11 | | 12 | 10.93 | 10.82 | 10.47 | 10.50E | 15.20 | 10.85 | 13.25 | 18.34 | 11.76 | 10.25 | 10.39 | 10.36 | 12 | | 13 | 10.94 | 10.82 | 10.46 | 10.49E | 16.00 | 10.73 | 13.24 | 17.11 | 11.45 | 10.23 | 10.23 | 10.49 | 13 | | 14 | 10.94 | 10.82 | 10.46 | 10.49E | 16.50 | 10.67 | 13.35 | 15.18 | 11.27 | 10 - 24 | 10.19 | 10.49 | 1. | | 15 | 10.94 | 10.83 | 10.46 | 10.48E | 15.37 | 10.69 | 13.73 | 14.81 | 11.10 | 10.29 | 10.20 | 10.56 | 1 | | 16 | 10.94 | 10.82 | 10.69 | 10.48E | 15.23 | 10.72 | 13.77 | 14.60 | 11.08 | 10.30 | 10.27 | 10.55 | 16 | | 17 | 10.92 | 10.79 | 10.86 | 10.47E | 15.16 | 10.80 | 13.71 | 15.35 | 15.22 | 10.26 | 10.32 |
10.61 | 17 | | 18 | 10.91 | 10.80 | 10.85 | 10.47 | 15.13 | 10.77 | 13.57 | 17.81 | 16.97 | 10.27 | 10.41 | 10.62 | 1 | | 19 | 10.89 | 10.80 | 10.77 | 10.48 | 15.09 | 10.75 | 13.81 | 18.22 | 17.04 | 10.16 | 10.41 | 10.69 | 1 | | 20 | 10.88 | 10.78 | 10.67 | 10.49 | 15.07 | 10.69 | 13.98 | 18.50 | 16.38 | 10.32 | 10.32 | 10.81 | 2 | | 21 | 10.87 | 10.79 | 10.62 | 10.49 | 15.05 | 10.65 | 14.42 | 18.66 | 16.06E | 10.37 | 10.28 | 10.84 | 2 | | 22 | 10.86 | 10.79 | 10.60 | 10.49 | 15.03 | 10.64 | 14.14 | 18.67 | 15.52E | 10.41 | 10.30 | 10.78 | 2 | | 23 | 10.85 | 10.45 | 10.58 | 10.49 | 15.00 | 10.65 | 13.98 | 18.83 | 15.04E | 10.45 | 10.33 | 10.76 | 2 | | 24 | 10.85 | 10.44 | 10.62 | 10.49 | 14.96 | 10.59 | 14.14 | 18.82 | 14.39E | 10.43 | 10.36 | 10.80 | 2 | | 25 | 10.86 | 10.44 | 10.56 | 10.44 | 14.95 | 10.54 | 14.68 | 17.99 | 13.80E | 10.37 | 10.44 | 10.81 | 2 | | 26 | 10.88 | 10.45 | 10.56 | 10.54 | 14.96 | 10.53 | 15.08 | 16.85 | 12.69E | 10.37 | 10.45 | 10.81 | 21 | | 27 | 10.87 | 10.47 | 10.54 | 10.63 | 14.96 | 10.54 | 15.20 | 17.64 | 11.83E | 10.40 | 10.54 | 10.75 | 2 | | 28 | 10.87 | 10.44 | 10.54 | 10.51 | 14.95 | 10.74 | 14.96 | 18.53 | 12.04 | 10.34 | 10.41 | 10.73 | 2 | | 29 | 11.02 | 10.43 | 10.53 | 10.48 | | 12.98 | 14.64 | 17.98 | 12.31 | 10.34 | 10.29 | 10.72 | 2 | | 30 | 10.83 | 10.43 | 10.54 | 10.47 | | 14.24 | 14.27 | 17.24 | 11.88 | 10.30 | 10.26 | 10.66 | 31 | | 31 | 10.84 | 1 | 10.51 | 10.78 | | 13.83 | | 17.01 | | 10.32 | 10.30 | | 3 | | Ε | - | Est | mated | |----|---|-----|--------| | NR | - | No | Record | | NF | ٠ | Νo | Flow | | | | | | | | | | | (| REST | STAGES | | | | | | |-------------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|---------|----------------------|----------------------|------|------|-------| | DATE | TIME | STAGE | | 2-10-63
2-14-63
3- 1-63 | 1520
0430
0910 | 17.8
17.8
15.0 | 4-26-63
5-10-63
5-26-63 | 2400
1430
0415 | 15.3
19.6
18.9 | 6- 4-63 | 0530
0320
0200 | 18.6
17.8
17.4 | | | | | | LOCATION | V | MAXIM | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|----------|------------------------------|--------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | don | ZERO
ON | REF. | | CATITODE | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 25 28 | 120 39 47 | SW 9 6S 12E | 34400 | 22.67 | 12- 4-50 | JUL 41-DEC 41
JUL 42-DATE | APR 41- DATE | 1950 | | 96.24 | USCGS | Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. ### DAILY MEAN GAGE HEIGHT MERCED RIVER NEAR LIVINGSTON IN FEET STATION NO WATER YEAR 805138 1963 | DAY | OCT. | NO V. | OEC. | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|------|--------|---------|-----------|--------|--------|-------|-------|-------|------|------|---------|-----| | 1 | 1.59 | 1.14 | 1.11 | 1.25E | 1.90 | 7.42 | 05.52 | 6.37 | 11.11 | 3.19 | 1.50 | 1.66 | 1 | | 2 | 1.57 | 1.11 | 1.12 | 1.24E | 3.67 | 7.24 | 05.39 | 5.89 | 11.34 | 2.57 | 1.47 | 1.57 | 2 | | 3 | 1.57 | 1.10 | 1.11 | 1 • 2 2 | 2 • 56 | 4.55 | 05.50 | 5.79 | 11.42 | 2.47 | 1.63 | 1.30 | 3 | | 4 | 1.59 | 1.15 | 1.08 | 1.22 | 2.00 | 3.23 | 05.64 | 5.64 | 12.02 | 2.51 | 1.82 | 1.29 | 4 | | 5 | 1.41 | 1.13 | 1.10 | 1 • 25E | 1.77 | 2.83 | 05.54 | 5.55 | 10.54 | 2.60 | 1.69 | 1.39 | 5 | | 6 | 1.34 | 1.13 | 1.12 | 1.25E | 1.60 | 2.55 | 05.58 | 5.21 | 8.80 | 2.61 | 1.62 | 1.49 | 6 | | 7 | 1.31 | 1.12 | 1.12 | 1.25E | 3.50 | 2 • 45 | 06.06 | 4.53 | 8.81 | 2.32 | 1.47 | 1.53 | 7 | | 8 | 1.28 | 1.09 | 1.11 | 1.25E | 4.28 | 2.30 | 06.17 | 5.17 | 7.83 | 2.23 | 1.58 | 1.42 | 8 | | 9 | 1.25 | 1.06 | 1.17 | 1.24E | 6.54 | 2 • 20 | 05.89 | 7.20 | 6.60 | 2.08 | 1.44 | 1.39 | 9 | | 10 | 1.26 | 1.07 | 1.22 | 1 • 24E | 8 • 45 | 2.15 | 05.66 | 12.62 | 7.67 | 1.77 | 1.58 | 1 • 25 | 10 | | 11 | 1.26 | 1.12 | 1.19 | 1.24E | 8.54 | 2.24 | 05.10 | 13.89 | 6.12 | 1.65 | 1.56 | 1.30 | 11 | | 12 | 1.26 | 1.07 | 1.18 | 1.24E | 7.62 | 2.29 | 05.02 | 13.16 | 4.30 | 1.60 | 1.62 | 1.22 | 12 | | 13 | 1.26 | 1.03 | 1.17 | 1 • 2 4 E | 8.30 | 2.11 | 05.00 | 11.89 | 3.77 | 1.56 | 1.44 | 1 • 4 9 | 13 | | 14 | 1.29 | 1.04 | 1.16 | 1.23E | 10.13 | 2.05 | 05.07 | 8.99 | 3.45 | 1.55 | 1.39 | 1.61 | 14 | | 15 | 1.28 | 1.07 | 1.22E | 1 • 23E | 8.12 | 2.07 | 05.44 | 7.87 | 3.33 | 1.61 | 1.34 | 1.54 | 15 | | 16 | 1.28 | 1.07 | 1.32E | 1.23E | 7.74 | 2.35 | 05.60 | 7.50 | 3.27 | 1.62 | 1.23 | 1.51 | 16 | | 17 | 1.25 | 1.08 | 1.44E | 1.23E | 7.61 | 2.51 | 05.50 | 7.79 | 5.95 | 1.53 | 1.31 | 1.55 | 17 | | 18 | 1.21 | 1.13 | 1.52E | 1.24 | 7.56 | 2.12 | 05.21 | 11.02 | 10.77 | 1.43 | 1.56 | 1.77 | 18 | | 19 | 1.23 | 1.07 | 1.48 | 1 • 25 | 7.53 | 2.08 | 05.69 | 12.40 | 10.91 | 1.44 | 1.59 | 1.77 | 19 | | 20 | 1.23 | 1.07 | 1.39 | 1.26 | 7.49 | 2.05 | 06.11 | 12.85 | 10.39 | 1.38 | 1.56 | 1.87 | 20 | | 21 | 1.21 | 1.07 | 1.39E | 1.26 | 7.52 | 2.10 | 06.37 | 13.15 | 9.45 | 1.65 | 1.34 | 1.89 | 21 | | 22 | 1.18 | 1.13 | 1.38E | 1.26 | 7.52 | 2.02 | 06.67 | 13.25 | 8.97 | 1.58 | 1.25 | 1.83 | 22 | | 23 | 1.18 | 1.07 | 1.37E | 1.25 | 7.49 | 2.07 | 06.09 | 13.46 | 7.34 | 1.54 | 1.29 | 1.70 | 23 | | 24 | 1.18 | 1.04 | 1.36E | 1.24 | 7.48 | 1.94 | 06.09 | 13.57 | 6.34 | 1.51 | 1.21 | 1.70 | 24 | | 25 | 1.19 | 1.11 | 1 • 35E | 1.23 | 7.46 | 1.88 | 07.00 | 12.92 | 5.78 | 1.50 | 1.57 | 1.70 | 25 | | 26 | 1.20 | 1 • 12 | 1.34E | 1.19 | 7.47 | 1.85 | 07.54 | 11.02 | 4.69 | 1.57 | 1.68 | 1.60 | 26 | | 27 | 1.20 | 1.09 | 1.33E | 1.37 | 7.46 | 1.87 | 07.95 | 11.52 | 3.79 | 1.61 | 1.50 | 1.48 | 27 | | 28 | 1.20 | 1.09 | 1.32E | 1.33 | 7.44 | 2.22 | 07.69 | 13.05 | 3.80 | 1.60 | 1.49 | 1.43 | 28 | | 29 | 1.17 | 1.10 | 1.31E | 1.28 | | 3.18 | 07.27 | 12.92 | 4.12 | 1.67 | 1.40 | 1.58 | 29 | | 30 | 1.15 | 1.10 | 1.31E | 1.25 | | 5.96 | 06.67 | 11.52 | 3.97 | 1.48 | 1.23 | 1.76 | 30 | | 31 | 1.17 | | 1.30E | 1.34 | | 5.81 | | 11.25 | | 1.48 | 1.43 | | 31 | E - Estimated NR - No Record NF - No Flow | | | | | (| CREST | STAGES | | | | | | |-------------------------------|----------------------|---------------------|-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|------|------|-------| | DATE | TIME | STAGE | | 2-10-63
2-14-63
4-21-63 | 2110
0945
2100 | 10.2
11.1
7.3 | 4-28-63
5-10-63
5-24-63 | 0800
2400
0630 | 14.3 | 5-29-63
6- 4-63
6-18-63 | 0550
1020
0850 | 13.3
12.2
11.2 | | | | | | LOCATIO | N | MAXII | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|--------------------------------|-------------|------|-------|------------|-------| | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF | | LATTION | LONGITUDE | M.O.8.8.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 23 18 | 120 47 35 | NW29 6S 11E | 11100 | 21.44 | | MAR 22-SEP 24
OCT 25-FEB 44 | | | DATE | 79.5 | USGS | Station located 4.5 mi. W of Livingston and 9.5 mi. upstream from mouth. Early discharge records, 1922-44, available in U.S.G.S. Water Supply Papers. Stage records from 1951-1960 were not published, available from D.W.R., State of California. Station reactivated April 1, 1962 for stage only. Drainage area, 1,259 sq. mi. ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER NEAR NEWMAN STATION NO WATER YEAR B07300 1963 | DAY | ост | NOV | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DA | |-----|-------|---------|---------|-------|---------|---------|---------|---------|-------|-------|-------|-------|----| | 1 | 48.88 | 48.78 | NR | 49.20 | 51.50 | 53.58 | 53.38 | 54 • 33 | 55.67 | 50.77 | NR | 49.32 | | | 2 | 48.90 | 48.77 | NR | 49.20 | 51.67 | 53.50 | 53.21 | 53.75 | 55.72 | 50.41 | NR | 49.44 | | | 3 | 48.93 | 48.72 | NR | 49.22 | 52.92 | 52.77 | 53.08 | 53.26 | 55.79 | 50.31 | NR | 49.38 | | | 4 | 48.91 | 46.65 | NR | 49.20 | 54.00 | 51.46 | 52.94 | 52.98 | 55.93 | 50.32 | NR | 49.39 | | | 5 | 48.82 | 48 • 68 | 48.58 | 49.18 | 54.31 | 50.95 | 52.61 | 52.74 | 55.91 | 50.39 | NR | 49.42 | | | 6 | 48.80 | 48.70 | 48.52 | 49.18 | 53.73 | 50+67 | 52.43 | 52.54 | 54.73 | 50.42 | NR | 49.44 | | | 7 | 48.87 | 48.73 | 48.49 | 49.38 | 52.86 | 50.46 | 52.83 | 52.13 | 54.22 | 50.39 | NR | 49.59 | | | 8 | 48.72 | 48.77 | 48.47 | 49.71 | 52.96 | 50.31 | 53.20 | 51.81 | 53.96 | 50.26 | 49.42 | 49.49 | | | 9 | 48.73 | 48.73 | 48.47 | 49.95 | 52.88 | 50.20 | 53.15 | 52+65 | 53.27 | 50.16 | 49.36 | 49.49 | | | 0 | 48.67 | 48.78 | 48.48 | 49.99 | 54.13 | 50.16 | 52.93 | 54.33 | 53.03 | 50.02 | 49.48 | 49.32 | | | 1 | 48.60 | 48.82 | 48 • 48 | 49.97 | 55.50 | 50.14 | 52.81 | 56.72 | 53.33 | 49.84 | 49.63 | 49.31 | | | Z | 48.63 | 48.86 | 48.71 | 49.89 | 55.53 | 50.17 | 52.94 | 57.02 | 51.89 | 49.78 | 49.58 | 49.31 | | | 3 | 48.68 | NR | 48.77 | 49.77 | 55.91 | 50.03 | 52.91 | 56.86 | 51.37 | 49.68 | 49.66 | 49.43 | | | 4 | 48.78 | NR | 48.72 | 49.75 | 56.80 | 49.81 | 52.84 | 55 • 68 | 51.21 | 49.59 | 49.50 | 49.62 | | | 5 | 48.79 | NR | 48.67 | 49.72 | 56 - 96 | 49.87 | 52.84 | 54.22 | 51.16 | 49.58 | 49.42 | 49.68 | | | 6 | 48.75 | N.R | 48.77 | 49.64 | 56.84 | 50.08 | 53.01 | 53.73 | 51.13 | 49.60 | 49.37 | 49.76 | | | 7 | 48.60 | NR | 49.08 | 49.55 | 56.67 | 50.17 | 53.29 | 53.44 | 51.20 | 49.54 | 49.33 | 49.71 | | | 6 | 48.48 | NR | 49.35 | 49.45 | 56.15 | 50.07 | 53.58 | 54.36 | 54.07 | 49.42 | 49.26 | 49.75 | | | 9 | 48.45 | NR | 49.56 | 49.37 | 55.60 | 50.02 | 53.81 | 55.82 | 55.01 | 49.39 | 49.38 | 49.73 | | | 0 | 48.40 | NR | 49.65 | 49.33 | 55.14 | 50.01 | 53.85 | 56.32 | 55.25 | 49.38 | 49.33
 49.78 | | | 1 | 48.39 | NR | 49.64 | 49.31 | 54 • 81 | 49.89 | 53.82 | 56.60 | 54.65 | 49.42 | 49.34 | 49.93 | | | 2 | 48.40 | NR | 49.58 | 49.30 | 54.59 | 49.92 | 54 • 16 | 56.79 | 54.35 | 49.55 | 49.27 | 50.01 | | | 3 | 48.49 | NR | 49.52 | 49.25 | 54.34 | 50.07 | 54.34 | 56.89 | 53.65 | 49.42 | 49.18 | 50.02 | 1 | | 4 | 48.53 | NR | 49.44 | 49.22 | 54.13 | 50 • 12 | 54.64 | 57.02 | 52.87 | 49.28 | 49.23 | 49.88 | | | 5 | 48.58 | NR | 49.39 | 49.19 | 54 • 00 | 50.19 | 54.96 | 56.99 | 52.33 | 49.32 | 49.39 | 49.83 | | | 6 | 48.70 | NR | 49.32 | 49.18 | 53.26 | 50.21 | 55.14 | 56.20 | 51.87 | 49.34 | 49.61 | 49.77 | | | 7 | 48.79 | NR | 49.29 | 49.15 | 53.75 | 50.18 | 55.22 | 55.61 | 51.17 | 49.43 | 49.49 | 49.63 | | | 8 | 48.86 | NR | 49.18 | 49.19 | 53.65 | 50.30 | 55.21 | 56.27 | 50.83 | NR | 49.58 | 49.58 | | | 9 | 48.84 | NR | 49.16 | 49.22 | | 50.58 | 55.04 | 56.85 | 50.90 | NR | 49.50 | 49.46 | | | 0 | 48.84 | NR | 49.13 | 49.31 | | 52.27 | 54.73 | 56.38 | 51.01 | NR | 49.35 | 49.54 | | | 1 | 48.82 | | 49.14 | 49.65 | | 53.54 | | 55.91 | | NR | 49.36 | | | | | | | | | - | CREST | STAGES | | | | | | |----------------------|-------------------------------|----------------------|-------|-------------------------------|----------------------|-------------------------|---------|------|-------|------|------|-------| | - Estimated | DATE | TIME | STAGE | DATE | TIME | STAGE | OATE | TIME | STAGE | OATE | TIME | STAGE | | No Record
Na Flow | 2- 5-63
2-11-63
2-14-63 | 0600
1000
2100 | 55.68 | 3-31-63
4-27-63
5-12-63 | 1400
1200
2000 | 53.62
55.25
57.04 | 5-24-64 | 1400 | 57.05 | | | | | m.u.b.om. C.F.S. GAGE HI. DATE UNIT PROMITED GAGE | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |--|----------|-----------|------------------|--------|-----------|---------|-------------|-------------|------|-------|----------------|-------------------------| | LATTIONE CONGTONE M.O.B.BM. C.F.S. GAGE HT. DATE ONLY FROM TO GAGE | | | 1/4 SEC. T. 8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 0018 | | REF | | 17 24 A 2 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A | LATITUDE | LONGITUDE | M.D.B.8M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | | DATUM | | 37 21 02 120 58 54 SW 3 75 5E 35000 15.50 3 7 50 11.4 12 51.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 | 37 21 02 | 120 58 34 | SW 3 7S 9E | 33000 | 18.50 | 3- 7-38 | APR 12-DATE | APR 12-DATE | 1912 | 1959 | 47.24
47.31 | USCGS
USCGS
USCGS | Station located at bridge on Hills Ferry Road, 300 ft. below the Merced River, 3.5 mi. NE of Newman. Records furn. by U.S.G.S. Drainage area is 9,990 sq. mi. Flow records are published in the U.S.G.S. report, "Surface Water Records of California." ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER AT CROWS LANGING BRIDGE STATION NO WATER YEAR 807250 1963 | DAY | ост. | NO V. | OEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------|-----| | 1 | 38.80 | 38.53 | 38.34 | 38.82 | 43.51 | 43.45 | 43.40 | 44.64 | 45.95 | 40.70 | 39.15 | 38.91 | 1 | | 2 | 38.78 | 38.47 | 38,33 | 38.82 | 42.06 | 43.37 | 43.17 | 44.03 | 45.85 | 40.32 | 39.04 | 39.11 | 2 | | 3 | 38.77 | 38.44 | 38.32 | 38.63 | 42.42 | 43.03 | 43.14 | 43.38 | 45.92 | 40.16 | 38.97 | 39.03 | 3 | | 4 | 38.77 | 38.36 | 38.29 | 38.86 | 43.32 | 41.77 | 43.05 | 43.01 | 45.97 | 40.10 | 39.04 | 38.97 | 4 | | 5 | 38.78 | 38.34 | 38.24 | 38.82 | 43.92 | 41.06 | 42.69 | 42.72 | 46.19 | 40.25 | 39.33 | 39.06 | 5 | | 6 | 38.68 | 38.36 | 38.20 | 38.83 | 43.67 | 40.71 | 42.45 | 42.57 | 45.29 | 40 - 17 | 39.30 | 39.12 | 6 | | 7 | 38.66 | 38.37 | 38.15 | 38.91 | 42.93 | 40.44 | 43.03 | 42.22 | 44.40 | 40.26 | 39 • 17 | 39.27 | 7 | | 8 | 38.60 | 38.39 | 38,13 | 39.24 | 42.73 | 40.23 | 43.39 | 41.79 | 44.09 | 40.16 | 39.07 | 39.27 | 8 | | 9 | 38.46 | 38.42 | 38,12 | 39.52 | 42.58 | 40.08 | 43.34 | 42.23 | 43.52 | 39.99 | 39.07 | 39.33 | 9 | | 10 | 38.44 | 38.42 | 38.12 | 39.64 | 43.57 | 39.99 | 43.10 | 43.26 | 43.05 | 39.76 | 39.12 | 39.13 | 10 | | 11 | 38.37 | 38.46 | 38,12 | 39.65 | 44.95 | 39.98 | 42.97 | 45.91 | 43.45 | 39.59 | 39.35 | 38.96 | 11 | | 12 | 38.53 | 38.51 | 38.21 | 39.57 | 45.31 | 39.96 | 43.04 | 46.99 | 42.40 | 39.49 | 39.30 | 38.99 | 12 | | 13 | 38.64 | 38.50 | 38.42 | 39.47 | 45.98 | 39.86 | 43.06 | 47.13 | 41.59 | 39.42 | 39.31 | 39.08 | 13 | | 14 | 38.62 | 38.52 | 38.38 | 39.43 | 47.00 | 39.63 | 43.07 | 46.40 | 41.23 | 39.39 | 39.25 | 39.27 | 14 | | 15 | 38.75 | 38.55 | 38.35 | 39.41 | 47.39 | 39.56 | 42.96 | 44.72 | 41.05 | 39.40 | 39.18 | 39.34 | 15 | | 16 | 38.74 | 38.54 | 38,42 | 39.35 | 47.19 | 39.85 | 43.06 | 43.87 | 41.00 | 39.40 | 39.11 | 39.40 | 16 | | 17 | 38.48 | 38.54 | 38,63 | 39.24 | 47.02 | 40.15 | 43.32 | 43.48 | 40.90 | 39.36 | 39.17 | 39.36 | 17 | | 18 | 38.31 | 38.57 | 38,90 | 39.15 | 46.48 | 39.95 | 43.61 | 43.84 | 42.86 | 39.24 | 39.08 | 39.37 | 18 | | 19 | 38+22 | 38.53 | 39.13 | 39.05 | 45.84 | 39.78 | 43.83 | 45.31 | 44.57 | 39.09 | 39.17 | 39.42 | 19 | | 20 | 38.17 | 38.49 | 39.27 | 38.97 | 45.27 | 39.77 | 44.00 | 46.10 | 45.01 | 39.04 | 39.01 | 39.44 | 20 | | 21 | 38.14 | 38.49 | 39.30 | 38.94 | 44.87 | 39.72 | 44.10 | 46.53 | 44.71 | 39.10 | 39.01 | 39.60 | 21 | | 22 | 38.13 | 38.44 | 39.24 | 38.92 | 44.60 | 39.77 | 44.28 | 46.89 | 44.28 | 39.25 | 39.00 | 39.66 | 22 | | 23 | 38.18 | 38.41 | 39.20 | 38.90 | 44.33 | 40.01 | 44.51 | 47.07 | 43.84 | 39.14 | 38.91 | 39.70 | 23 | | 24 | 38.23 | 38.40 | 39.14 | 38.86 | 44.09 | 40.07 | 44.73 | 47.23 | 43.06 | 38.98 | 38.86 | 39.57 | 24 | | 25 | 38.27 | 38.38 | 39.06 | 38.82 | 43.92 | 40.19 | 44.96 | 47.37 | 42.43 | 39.05 | 39.00 | 39.46 | 25 | | 26 | 38.36 | 38.39 | 38,99 | 38.79 | 43.80 | 40.14 | 45.31 | 46.97 | 41.96 | 39.05 | 39.13 | 39.43 | 26 | | 27 | 38.45 | 38.40 | 38.91 | 38.76 | 43.67 | 40.08 | 45.41 | 45.99 | 41.26 | 39.04 | 39.14 | 39.29 | 27 | | 28 | 38.56 | 38.36 | 38.86 | 38.76 | 43.54 | 40.29 | 45.46 | 46.19 | 40.74 | 39.01 | 39.12 | 39.26 | 28 | | 29 | 38.59 | 38.37 | 38.82 | 38.79 | | 40.77 | 45.34 | 46.99 | 40.74 | 39.09 | 39.18 | 39.11 | 29 | | 30 | 38.60 | 38.34 | 38.79 | 38.88 | | 41.59 | 45.10 | 46.95 | 40.84 | 39.12 | 39.02 | 39.11 | 30 | | 31 | 38.59 | | 38.79 | 39.46 | | 43.13 | | 46.27 | | 39.21 | 38.99 | | 31 | | F | _ | F - 1 | mated | |----|---|-------|--------| | | | | Record | | NF | - | No | Flow | | | | | | - | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|--------------------|--------------|--------------| | DATE | TIME | STAGE | | 2- 1-63
2- 5-63
2-15-63 | 0015
1240
0610 | 44.1 | 4- 1-63
4- 8-63
4-28-63 | 0300
0840
0430 | 43.5 | 5-25-63
5-13-63
5-30-63 | 1230
0850
0050 | 47.4
47.3
47.2 | 6- 5-63
6-20-63 | 1250
1310 | 46.3
45.2 | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|------------|------------------|--------|-----------|---------|-----------|-------------|--------------|-------|----------------------|----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | - | RIOD | ZERO
ON | REF | | CHITTOGE | 2011011000 | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 26 52 | 121 00 44 | NW 8 6S 9E | | 61.9 | 4- 7-58 | | 41-DATE | 1959
1959 | 1959 | 0.00
0.00
3.51 | USED
USGS
USED | Station located at Crows Landing Road Bridge, 4.3 mi. NE of Crows Landing. SAN JOAQUIN RIVER AT PATTERSON BRIDGE IN FEET STATION ND WATER YEAR B07200 1963 | OAY | OCT. | NO V. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|---------|-------|-------|---------|-------|-------|-------|-------|-------|-----| | 1 | 32.85 | 32.30 | 32.02 | 32.42 | 36.27 | 37.16 | 37.14 | 38.69 | 39.83 | 34.38 | 32.54 | 32.78 | 1 | | 2 | 32.79 | 32.25 | 32.00 | 32.42 | 36.02 | 37.07 | 36.95 | 38.09 | 39.66 | 34.04 | 32.51 | 32.83 | 2 | | 3 | 32.79 | 32.22 | 31.98 | 32.43 | 35.78 | 36.84 | 36.96 | 37.40 | 39.67 | 33.86 | 32.46 | 32.78 | 3 | | 4 | 32.87 | 32.16 | 31.99 | 32.44 | 36.67 | 35.79 | 36.89 | 36.91 | 39.67 | 33.83 | 32.54 | 32.66 | - 4 | | 5 | 32.82 | 32.12 | 31.97 | 32.42 | 37.52 | 34.93 | 36.51 | 36.63 | 39.83 | 33.90 | 32.81 | 32.86 | 5 | | 6 | 32.76 | 32.14 | 31.94 | 32 - 41 | 37.55 | 34.48 | 36.24 | 36.43 | 39.35 | 33.80 | 32.82 | 32.86 | 6 | | 7 | 32.68 | 32.15 | 31.85 | 32.44 | 36.89 | 34.20 | 36.76 | 36.14 | 38.33 | 33.88 | 32.70 | 32.99 | 7 | | 8 | 32.65 | 32.15 | 31.79 | 32.69 | 36.34 | 33.93 | 37.28 | 35.65 | 37.91 | 33.98 | 32.63 | 33.02 | 8 | | 9 | 32.51 | 32.17 | 31.74 | 32.98 | 36.23 | 33.77 | 37.26 | 35.75 | 37.47 | 33.66 | 32.62 | 33.10 | 9 | | 10 | 32.47 | 32.18 | 31.76 | 33.15 | 36.98 | 33.65 | 37.11 | 36.55 | 36.89 | 33.42 | 32.70 | 33.07 | 10 | | 11 | 32.49 | 32.22 | 31.81 | 33.17 | 38.31 | 33.64 | 36.92 | 38.81 | 37.15 | 33.21 | 33.00 | 32.87 | 11 | | 12 | 32.63 | 32.21 | 31.82 | 33,15 | 39.06 | 33.51 | 36.93 | 40.35 | 36.53 | 33.14 | 32.90 | 32.79 | 12 | | 13 | 32.80 | 32.25 | 32.05 | 33.05 | 39.48 | 33.29 | 36.99 | 40.75 | 35.49 | 33.03 | 32.80 | 33.04 | 13 | | 14 | 32.72 | 32.25 | 32.05 | 33.00 | 40.58 | 33.01 | 37.00 | 40.39 | 34.93 | 33.06 | 32.86 | 33.10 | 14 | | 15 | 32.91 | 32.28 | 32.02 | 32.98 | 41.17 | 32.84 | 36.91 | 38.90 | 34.69 | 33.01 | 32.80 | 33.18 | 15 | | 16 | 33.06 | 32.27 | 32.07 | 32.94 | 41.07 | 33.14 | 36.98 | 37.67 | 34.68 | 32.93 | 32.69 | 33.23 | 16 | | 17 | 32.58 | 32.27 | 32.19 | 32.86 | 40.89 | 33.71 | 37.17 | 37.13 | 34.51 | 32.97 | 32.62 | 33.11 | 17 | | 16 | 32.34 | 32.28 | 32.43 | 32.76 |
40.55 | 33.58 | 37.43 | 37.13 | 35.41 | 32.90 | 32.60 | 33.06 | 18 | | 19 | 32.21 | 32.26 | 32.65 | 32.66 | 39.93 | 33.40 | 37.69 | 38.45 | 37.66 | 32.82 | 32.59 | 33.19 | 19 | | 20 | 32.14 | 32.26 | 32.83 | 32.57 | 39.32 | 33.37 | 37.91 | 39.42 | 38,32 | 32.76 | 32.53 | 33.18 | 20 | | 21 | 32.07 | 32.24 | 32.89 | 32.55 | 38.82 | 33.29 | 38.07 | 39.94 | 38.33 | 32.69 | 32.43 | 33.28 | 21 | | 22 | 32.04 | 32.22 | 32.88 | 32.54 | 38.51 | 33.31 | 38.17 | 40.31 | 37.93 | 32.85 | 32.55 | 33.45 | 22 | | 23 | 32.03 | 32.15 | 32.83 | 32.53 | 38.22 | 33.65 | 38 • 41 | 40.57 | 37.62 | 32.84 | 32.53 | 33.47 | 23 | | 24 | 32.05 | 32.11 | 32.78 | 32.49 | 37.95 | 33.78 | 38.61 | 40.75 | 36.89 | 32.70 | 32.45 | 33.45 | 24 | | 25 | 32.09 | 32.13 | 32.70 | 32.45 | 37.73 | 33.83 | 38.83 | 40.89 | 36.14 | 32.50 | 32.53 | 33.28 | 25 | | 26 | 32.11 | 32.11 | 32.65 | 32.42 | 37.56 | 33.84 | 39.15 | 40.81 | 35.52 | 32.47 | 32.70 | 33.18 | 26 | | 27 | 32.19 | 32.11 | 32.59 | 32.38 | 37.42 | 33.78 | 39.31 | 40.03 | 34.92 | 32.43 | 32.63 | 33.09 | 27 | | 28 | 32.30 | 32.07 | 32.51 | 32.37 | 37.27 | 34.02 | 39.40 | 39.77 | 34.36 | 32.53 | 32.60 | 32.96 | 28 | | 29 | 32.32 | 32.03 | 32.46 | 32.39 | | 34.41 | 39.31 | 40.42 | 34.30 | 32.63 | 32.78 | 32.98 | 29 | | 30 | 32.33 | 32.03 | 32.43 | 32.48 | i | 35.09 | 39.12 | 40.69 | 34.45 | 32.56 | 32.73 | 33.01 | 30 | | 31 | 32.33 | | 32.42 | 32.79 | | 36.53 | | 40.21 | | 32.53 | 32.74 | | 31 | | | | | | | | CREST | STAGES | | | | | | |---------------|-------------------------------|----------------------|-------|------|----------------------|-------|-------------------------------|------|----------------------|---------|------|-------| | E ~ Estimated | DATE | TIME | STAGE | | | 2- 1-63
2- 6-63
2-15-63 | 1750
0000
1500 | 37.7 | | 2130
1130
1430 | 39.5 | 5-25-63
5-30-63
6- 1-63 | | 41.0
40.8
40.0 | 6- 5-63 | 1610 | 39.9 | | | LOCATION | V | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|------------|------------------|-----------|-----------|---------|-----------|-------------|----------------------|-------|------------|-----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORO | |) | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | | 2011011002 | M.D.B.8.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 29 52 | 121 04 52 | SW15 5\$ 8E | | 54.0 | 6-13-38 | | APR 38-DATE | 1938
1959
1959 | 1959 | 0.00 | USED
USCGS
USED | Station located at Patterson-Turlock Highway Bridge, 3.1 mi. NE of Patterson TABLE B-71 SAN JOAQUIN RIVER AT GRAYSON STATION NO WATER YEAR B07080 1963 | DAY | OCT. | NOV. | DEC | JAN | FE8 | MAR | APRIL | YAM | JUNE | JULY | AUG | SEPT | DAY | |-----|-------|---------|-------|-------|-------|---------|---------|---------|-------|-------|-------|--------------------|------| | 1 | 24.42 | 23.78 | 23.66 | 23.84 | 26.89 | 28 • 82 | 30.17 | 31.14 | 32.93 | 26.13 | 24.08 | 24.37 | 1 | | 2 | 24.28 | 23 • /1 | 23.62 | 23.84 | 28.05 | 28.63 | 29.19 | 30.35 | 32.72 | 25.83 | 24.02 | 24.30 | 2 | | 3 | 24.28 | 23.68 | 23.51 | 23.83 | 29.56 | 28.42 | 28.51 | 29.39 | 32.62 | 25.58 | 24.03 | 24.26 | 3 | | 4 | 24.42 | 23.63 | 23.49 | 23.90 | 31.00 | 27.53 | 28.47 | 28.76 | 32.53 | 25.45 | 24.06 | 24.05 | 4 | | 5 | 24.33 | 23.57 | 23.51 | 23.88 | 31.73 | 26.62 | 28.15 | 28.40 | 32.26 | 25.46 | 24.37 | 24.24 | 5 | | 6 | 24.36 | 23.59 | 23.50 | 23.83 | 31.98 | 26 • 14 | 27.76 | 28.14 | 31.58 | 25.42 | 24.47 | 24.25 | 6 | | 7 | 24.25 | 23.59 | 23.48 | 23.82 | 31.43 | 25.83 | 28.10 | 27.88 | 30.47 | 25.45 | 24.25 | 24.37 | 7 | | 8 | 24.30 | 23.61 | 23.48 | 23.94 | 29.27 | 25.58 | 28.77 | 27.40 | 29.82 | 25.65 | 24.22 | 24.43 | 8 | | 9 | 24.08 | 23.63 | 23.40 | 24.24 | 28.77 | 25.43 | 29.40 | 27.23 | 29.44 | 25.40 | 24.29 | 24.51 | 9 | | 10 | 24.02 | 23.63 | 23.29 | 24.43 | 29.24 | 25.32 | 29.82 | 27.79 | 29.02 | 25.08 | 24.38 | 24.60 | 10 | | | | | | | | | | | | - | | | | | 11 | 24.13 | 23.65 | 23+29 | 24.46 | 30.48 | 25.23 | 29.96 | 29.58 | 29.01 | 24.87 | 24.53 | 24.32 | 11 | | 12 | 24.20 | 23.65 | 23.39 | 24.47 | 31.21 | 24.98 | 30.63 | 31.70 | 29.41 | 24.73 | 24.53 | 24.18 | 12 | | 1,3 | 24.40 | 23.72 | 23.52 | 24.46 | 31.24 | 24.79 | 30.85 | 32.55 | 27.82 | 24.67 | 24.36 | 24.39 | 13 | | 14 | 24.37 | 23 • 12 | 23.60 | 24.38 | 32.48 | 24.51 | 29.69 | 32.41 | 26.78 | 24.62 | 24.31 | 24.55 | 14 | | 15 | 24.40 | 23./3 | 23.54 | 24.37 | 33.93 | 24.33 | 29.36 | 31 • 21 | 26.38 | 24.60 | 24.31 | 24.62 | 15 | | 16 | 24.67 | 23.12 | 23.59 | 24.36 | 33.41 | 24.48 | 30.72 | 29.83 | 26.33 | 24.45 | 24.17 | 25.11 | | | 17 | 24.30 | 23.71 | 23.60 | 24.29 | 32.83 | 25.07 | 30.44 | 29.12 | 26.21 | 24.46 | 24.06 | 25.27 | 16 | | 18 | 23.98 | 23.72 | 23.72 | 24.18 | 32.48 | 25.07 | 29.44 | 28.72 | 26.36 | 24.45 | 24.08 | | | | 19 | 23.84 | 23.70 | 24.05 | 24.07 | 32.02 | 24.81 | 29.68 | 29.66 | 28.82 | 24.26 | | 25 • 22
25 • 32 | 18 | | 20 | 23.75 | 23.69 | 24.25 | 24.01 | 31.63 | 24.73 | 30.11 | 30.92 | 29.76 | | 24.04 | | | | 20 | 23013 | 23009 | 24.27 | 24.01 | 31.03 | 24473 | 30.11 | 30.92 | 27.10 | 24.21 | 24.01 | 25.37 | 20 | | 21 | 23.65 | 23.69 | 24.35 | 23.97 | 30.82 | 24.64 | 30.72 | 31.57 | 30.68 | 24.28 | 23.88 | 25.44 | 21 | | 22 | 23.63 | 23.68 | 24.45 | 23.96 | 30.38 | 24.62 | 30.85 | 31.93 | 30.87 | 24.48 | 24.04 | 25.66 | 22 | | 23 | 23.59 | 23.62 | 24.42 | 23.96 | 30.12 | 24.93 | 30 • 85 | 32.27 | 30.15 | 24.46 | 24.08 | 25.68 | 23 | | 24 | 23.63 | 23.56 | 24.30 | 23.92 | 29.78 | 25.14 | 30.95 | 32.50 | 29.12 | 24.17 | 24.12 | 25.58 | 24 | | 25 | 23.53 | 23.58 | 24.18 | 23.90 | 29.45 | 25.19 | 31.04 | 32.56 | 28.30 | 24.01 | 24.16 | 25.47 | 25 | | 26 | 23.57 | 23.60 | 24.14 | 23.87 | 29.27 | 25.23 | 31.33 | 33.05 | 27.65 | 24.00 | 24.19 | 25.40 | . 26 | | 27 | 23.63 | 23.62 | 24.03 | 23.85 | 29.14 | 25.20 | 31.54 | 32.71 | 27.88 | 23.94 | 24.09 | 24.73 | 27 | | 28 | 23.73 | 23.60 | 23.99 | 23.81 | 28.97 | 25.51 | 31.60 | 32.27 | 27.17 | 23.98 | 24.03 | 24.50 | 28 | | 29 | 23.77 | 23.55 | 23.93 | 23.80 | 20177 | 25.99 | 31.28 | 32.76 | 26.05 | 24.08 | 24.26 | 24.57 | 29 | | 30 | 23.77 | 23.60 | 23.89 | 23.86 | | 27.96 | 31.18 | 33.36 | 26.14 | 24.07 | 24.28 | 24.53 | 30 | | 31 | 23.79 | 22.00 | 23.85 | 24.21 | | 29.40 | , | 33.24 | 20014 | 24.05 | 24.31 | 24.73 | 31 | | | | | | | | | | 33027 | | 2.00 | 24031 | | 31 | | Е | - | E 51 | mated | |----|---|------|--------| | NR | - | No | Record | | NF | • | No | Flow | | | | | | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|------------------------------|----------------------|-------------------------|---------|------|-------|------|------|-------| | DATE | TIME | STAGE | | 2- 1-63
2- 6-63
2-15-63 | 1200
1600
1300 | 32.03 | 4-1-63
4-13-63
5-13-63 | 1500
1100
1000 | 30.30
30.97
32.65 | 5-30-63 | 1900 | 33.48 | | | | | | LOCATION | 1 | | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|---------|------------|--------|-----------|---------|-------------|-------------|--------------|-------|----------------------|-----------------------| | ATITUE | LONGITURE | 1/4 SEC | C. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | COD | ZERO | REF | | LATITUDE | LONGITUDE | M. O. E | B. 8 M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 33 47 | 121 09 06 | NW25 4 | 4S 7E | 23900 | 45.15 | 3- 8-41 | JUL 28-DATE | JUL 28-DATE | 1960
1960 | 1959 | 0.00
0.00
3.81 | USED
USCGS
USED | Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn, by City of San Francisco. SAN JOAQUIN RIVER AT WEST STANISLAUS 1. D. INTAKE STATION NO WATER YEAR B07070 1963 TIME STAGE | DAY | ост | NOV | DEC | JAN | FE8 | MAR. | APRIL | MAY | JUNE | JULY | AUG | SEPT. | OAY | |-----|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|------| | 1 | 19.93 | 20.48 | 22.37 | 21.08 | 22.27 | 25.01 | 28.79 | 28.35 | 30.64 | 22.73 | 18.75 | 19.60 | 1 | | 2 | 19.77 | 20.43 | 22.08 | 21.17 | 25.43 | 24.43 | 26.50 | 27.16 | 30.47 | 22.59 | 18.76 | 19.68 | 2 | | 3 | 19.74 | 20.38 | 21.55 | 21.21 | 29.16 | 24.06 | 25.14 | 25.98 | 30.30 | 22.07 | 18.64 | 19.69 | 3 | | 4 | 19.86 | 20.36 | 21.43 | 21.88 | 30.54 | 23.45 | 24.76 | 25.40 | 30.07 | 21.09 | 18.86 | 19.61 | 4 | | 5 | 19.89 | 20.26 | 21.91 | 21.63 | 31.06 | 22.65 | 24.26 | 25.10 | 29.05 | 21.00 | 19.15 | 19.66 | 5 | | 6 | 19.86 | 20.11 | 22.10 | 21.20 | 31.22 | 22.44 | 23.37 | 24.86 | 27.56 | 20.75 | 19.16 | 19.72 | 6 | | 7 | 19.86 | 20.15 | 22.41 | 20.90 | 30.52 | 22.13 | 23.36 | 24.37 | 26.50 | 20.77 | 19.01 | 19.89 | 7 | | 8 | 19.86 | 20.32 | 22.58 | 20.92 | 27.62 | 21.73 | 25.07 | 23.50 | 25.80 | 21.65 | 18.93 | 19.97 | 8 | | 9 | 19.66 | 20.36 | 22.28 | 21.49 | 27.16 | 21.58 | 27.38 | 23.35 | 25.72 | 21.16 | 18.99 | 19.92 | 9 | | 10 | 19.55 | 20.40 | 21.76 | 21.52 | 27.57 | 21.43 | 28.18 | 23.73 | 25.98 | 21.45 | 19.35 | 19.95 | 10 | | 11 | 19.62 | 20.41 | 21.87 | 21.44 | 28.80 | 21.16 | 28.75 | 24.89 | 26.22 | 21.49 | 19.67 | 19.63 | 11 | | 12 | 19.85 | 20.39 | 22.38 | 21.67 | 28.76 | 20.81 | 29.77 | 27.63 | 27.59 | 21.29 | 19.73 | 19.47 | 12 | | 13 | 20.64 | 20.39 | 22.25 | 21.55 | 28.02 | 20.51 | 29.44 | 28.68 | 25.11 | 21.41 | 19.48 | 19.66 | 13 | | 14 | 21.04 | 20.45 | 22.14 | 21.17 | 30.00 | 19.88 | 27.48 | 28.22 | 22.61 | 20.88 | 19.42 | 19.89 | 14 | | 15 | 21.07 | 20.51 | 21.87 | 20.92 | 31.85 | 19.60 | 27.45 | 27.25 | 22.30 | 20.62 | 19.43 | 20.03 | 15 | | 16 | 21.15 | 20.55 | 21.75 | 20.85 | 30.34 | 19.86 | 29.79 | 26.73 | 22.96 | 20.30 | 19.29 | 20.55 | 16 | | 17 | 20.87 | 20.58 | 21.48 | 20.87 | 29.19 | 20.44 | 28.61 | 26.06 | 22.73 | 20.18 | 19.18 | 20.90 | 17 | | 18 | 20.59 | 20.52 | 21.44 | 20.85 | 28.74 | 20.39 | 26.65 | 25.16 | 21.94 |
19.99 | 19.31 | 20.87 | 18 | | 19 | 20.41 | 20.48 | 22.20 | 20.78 | 28.72 | 20.16 | 26.94 | 25.38 | 23.62 | 19.61 | 19.33 | 21.02 | 19 | | 20 | 20,35 | 20.47 | 22.37 | 20.75 | 28.71 | 20.02 | 27.73 | 26.33 | 26.09 | 19.33 | 19.28 | 21.01 | 20 | | 21 | 20.27 | 20.57 | 22.48 | 20.62 | 27.42 | 19.94 | 28.73 | 26.97 | 28.47 | 19.41 | 19.07 | 21.04 | 21 | | 22 | 20.20 | 20.52 | 22.77 | 20.51 | 27.03 | 19.94 | 28.76 | 27.27 | 28.88 | 19.45 | 19.27 | 21.22 | 22 | | 23 | 19.99 | 20.48 | 22,69 | 20.64 | 26.73 | 20.21 | 28 • 47 | 27.67 | 27.47 | 19.37 | 19.46 | 21.30 | 23 | | 24 | 20.00 | 20.44 | 22.22 | 20.60 | 26.17 | 20.44 | 28.48 | 28.13 | 26.02 | 18.77 | 19.49 | 21.18 | 24 | | 25 | 20.19 | 21.08 | 21.98 | 20.60 | 25.48 | 20.39 | 28 • 42 | 29.07 | 24.71 | 18.38 | 19.64 | 21.12 | 25 | | 26 | 20.27 | 21.12 | 21.91 | 20.63 | 25.35 | 20.38 | 28.55 | 29.59 | 23.31 | 18.81 | 19.70 | 20.97 | 26 | | 27 | 20.36 | 21.23 | 21.68 | 20.61 | 25.56 | 20.41 | 28.76 | 29.68 | 22.56 | 18.73 | 19.40 | 20.18 | 27 | | 28 | 20.44 | 21.78 | 22.01 | 20.43 | 25.33 | 20.76 | 28.42 | 29.46 | 21.87 | 18.87 | 19.12 | 19.90 | 28 | | 29 | 20.48 | 21.92 | 21.73 | 20.31 | | 23.28 | 27.44 | 29.92 | 21.74 | 18.98 | 19.23 | 19.97 | . 29 | | 30 | 20.45 | 22.22 | 21,62 | 20.62 | | 27.43 | 27.97 | 30.72 | 22.61 | 18.85 | 19.34 | 19.95 | 30 | | 31 | 20.46 | | 21.40 | 20.93 | | 28.43 | | 30.81 | | 18.44 | 19.45 | | 31 | | | | | | | | CREST | STAGES | | | | |--------------------------------|-------------------------------|----------------------|-------|-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|------| | E - Estimated | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | | NR - No Record
NF - No Flow | 2- 6-63
2-15-63
4- 1-63 | 1400
0410
1240 | 32.2 | 4-13-63
4-16-63
5-26-63 | 0410
1530
2400 | 30.1 | 5-31-63
6- 1-63
6-22-63 | 0720
0000
1310 | 30.8
30.7
29.0 | | | | LOCATION | V | MAXII | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|----------------------------------|---------|-----------|-------|------------|-------------|------|-------|--------------------|-----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R.
M. O. & & M. | C.F.S. | OF RECORD | DATE | OIS CHARGE | GAGE HEIGHT | FROM | 00 TO | ZERO
ON
GAGE | REF
DATUM | | 37 36 07 | 121 10 51 | SE10 4S 7E | G.F. 3. | OAGE III. | 0472 | | DEC 50-DATE | 1959 | 1959 | 0.00 | USED
USCGS
USED | Station located at intake gates for W.S.I.D. Canal, 2.6 mi. N of Grayson. TABLE B-73 TUOLUMNE RIVER AT LAGRANGE BRIDGE STATION ND WATER YEAR B04175 1963 | | | | | | | | APRIL | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|---------|-------|-------|----------|-------|-------|-------|-------|-------|-----| | DAY | ОСТ | NOV. | OEC | JAN | FEB | MAR | APRIL | MAT | JUNE | JULT | AUG. | JEF1. | UAT | | 1 | 67.55 | 69.19 | 70.23 | 69.25 | 71.70 | 69.14 | 70.24 | 71.10 | 73.38 | 70.59 | 67.35 | 67.38 | 1 1 | | 2 | 67.57 | 69.17 | 69.91 | 70.31 | 75.09 | 68.99 | 70 • 1 4 | 70.52 | 73.40 | 68.25 | 67.35 | 67.31 | 2 | | 3 | 67.24 | 69.15 | 70.56 | 70.18 | 75.10 | 68.98 | 69.90 | 70.46 | 73.17 | 67.98 | 67.35 | 67.30 | 3 | | 4 | 67.24 | 68.88 | 70.68 | 69.59 | 75.11 | 69.19 | 68 • 61 | 70.48 | 71.64 | 67.83 | 67.35 | 67.39 | 4 | | 5 | 67.22 | 68.95 | 70.90 | 69.26 | 75.02 | 69.31 | 67.34 | 70.33 | 70.26 | 67.85 | 67.35 | 67.18 | 5 | | 6 | 67.22 | 69.25 | 71.11 | 69.06 | 74.76 | 69.08 | 67.65 | 69.93 | 70.24 | 68.79 | 67.35 | 67.20 | 6 | | 7 | 67.21 | 69.23 | 71.09 | 69.77 | 71.57 | 69.10 | 70.50 | 68.73 | 70.25 | 69.45 | 67.35 | 67.19 | 7 | | 6 | 67.21 | 69.26 | 70.52 | 69.75 | 72.54 | 69.11 | 72.84 | 68.61 | 70.92 | 68.60 | 67.35 | 67.21 | 8 | | 9 | 67.33 | 69.30 | 70.25 | 69.47 | 72.75 | 69.08 | 72.67 | 68.61 | 71.53 | 70.23 | 67.34 | 67.27 | 9 | | 10 | 68.62 | 69.26 | 71.06 | 69.79 | 72.57 | 68.74 | 73.69 | 69.18 | 72.10 | 69.29 | 67.24 | 67.11 | 10 | | 11 | 69.23 | 69.21 | 70.80 | 69.85 | 71.49 | 68.96 | 74.24 | 71.46 | 73.32 | 70.10 | 67.38 | 67.18 | 11 | | 12 | 69.28 | 69.29 | 70.57 | 69.26 | 70.89 | 67.69 | 72 • 62 | 70.65 | 68.99 | 69.59 | 67.38 | 67.33 | 12 | | 1.3 | 69.24 | 69.41 | 70.20 | 68.91 | 72.90 | 67.38 | 70.91 | 69.70 | 68.38 | 68.46 | 67.38 | 67.32 | 13 | | 14 | 69.04 | 69.36 | 70.08 | 68.91 | 73.36 | 67.36 | 72.50 | 70.65 | 69.74 | 68.56 | 67.39 | 67.29 | 14 | | 15 | 68.75 | 69.45 | 69.74 | 68.95 | 71.46 | 67.27 | 74.38 | 71.80 | 70.22 | 68.36 | 67.40 | 67.28 | 15 | | 16 | 69.19 | 69.34 | 69.31 | 69.11 | 71.13 | 67.32 | 71.42 | 71.35 | 69.18 | 68.42 | 67.41 | 67.27 | 16 | | 17 | 69.17 | 69.30 | 70.34 | 69.12 | 71.08 | 67.31 | 70.34 | 70.70 | 68.36 | 67.58 | 67.41 | 67.25 | 17 | | 38 | 69.14 | 69.24 | 70.40 | 69.14 | 72.11 | 67.30 | 71.76 | 70.51 | 69.13 | 67.36 | 67.42 | 67.26 | 18 | | 19 | 69.18 | 69.48 | 70.42 | 69.02 | 71.54 | 67.26 | 72 • 36 | 70.56 | 72.20 | 67.35 | 67.54 | 67.30 | 19 | | 20 | 69.16 | 69.33 | 70.72 | 68.79 | 71.06 | 67.26 | 72.46 | 70.25 | 73.61 | 67.33 | 67.39 | 67.30 | 20 | | 21 | 68.78 | 69.34 | 70.85 | 68.88 | 71.27 | 67.28 | 72.09 | 70.10 | 73.60 | 67.32 | 67.39 | 67.34 | 21 | | 22 | 68.73 | 69.75 | 70.41 | 69.11 | 71.09 | 67.27 | 72.03 | 70.10 | 71.27 | 67.31 | 67.39 | 67.33 | 22 | | 23 | 69.22 | 70.05 | 69.96 | 68.80 | 70.37 | 67.25 | 72.01 | 70.55 | 71.13 | 67.32 | 67.38 | 67.42 | 23 | | 24 | 69.16 | 70.10 | 70.25 | 69.12 | 69.82 | 67.29 | 72.02 | 71.64 | 69.45 | 67.31 | 67.61 | 67.44 | 24 | | 25 | 69.22 | 69.70 | 69.71 | 69.11 | 70.40 | 67.30 | 72.06 | 72.19 | 68.72 | 67.31 | 67.30 | 67.43 | 25 | | 26 | 69.24 | 70.60 | 70.51 | 69.06 | 70.74 | 67.33 | 72.19 | 72.20 | 68.51 | 67.31 | 67.25 | 67.43 | 26 | | 27 | 69.24 | 70.61 | 70.06 | 68 • 34 | 70.40 | 68.37 | 70.97 | 72.52 | 68.50 | 67.33 | 67.27 | 67.41 | 27 | | 28 | 69.16 | 70.76 | 70.06 | 68.72 | 69.77 | 72.30 | 70.21 | 73.15 | 69.41 | 67.32 | 67.39 | 67.39 | 2.8 | | 29 | 69.11 | 71.00 | 69.87 | 69.12 | | 74.27 | 72.35 | 73.44 | 70.25 | 67.32 | 67.33 | 67.29 | 29 | | 30 | 69.25 | 70.92 | 69.21 | 68.98 | | 73.79 | 72.00 | 73.41 | 70.05 | 67.31 | 67.33 | 67.25 | 30 | | 31 | 69.25 | | 69.72 | 68.99 | | 73.80 | | 73.39 | - | 67.33 | 67.33 | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | No | Flow | | | | | | (| CREST | STAGES | | | | | | |-------------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|--------|----------------------|----------------------|------|------|-------| | DATE | TIME | STAGE | | 2- 3-63
2- 9-63
2-14-63 | 1030
1650
2000 | 75.3
73.4
75.0 | 2-18-63
3-29-63
3-30-63 | 2250
1930
2310 | 74.4
74.7
74.5 | | 0850
1430
2330 | 75.0
74.5
74.3 | | | | | | LOCATION | N | MAXIN | NUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|----------|-----------|------------------------------|------|-------|------------|-------| | | | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | IOD | 2ERO
ON | REF | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 39 59 | 120 27 40 | NW20 3S 14E | 48200 | 88.0 | 12- 8-50 | | OCT 36-SEP 60
OCT 61-Date | 1937 | | 0.00 | USGS | Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights. TABLE B-74 TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE IN FEET STATION NO WATER YEAR 804165 1963 | | | | IN | FEET | | _ | | | | | | | | |-----|--------|-------|-------|--------|-------|--------|--------|-------|-------|--------|---------|---------|-----| | DAY | OCT. | NO V. | OEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | | 1 | 8.28 | 9.92 | 11.02 | 10.06 | 11.16 | 9.94 | 11.33 | 11.69 | 13.74 | 10.60 | 8.26 | 8 • 38 | 1 | | 2 | 8.41 | 9.90 | 10.71 | 10.60 | 15.72 | 9.82 | 10.70 | 10.95 | 13.78 | 9.93 | 8 • 25 | 8.40 | 2 | | 3 | 8.52 | 9.90 | 10.91 | 10.92 | 15.92 | 9.74 | 10.46 | 10.89 | 13.67 | 8.90 | 8.23 | 8.37 | 3 | | 4 | 8.37 | 9.78 | 11.27 | 10.45 | 15.84 | 9.73 | 10.07 | 10.87 | 12.52 | 8.74 | 8.23 | 8.37 | 4 | | 5 | 8 . 32 | 9.58 | 11.45 | 10.15 | 15.81 | 10.04 | 8 • 68 | 10.76 | 10.80 | 8.72 | 8.27 | 8.41 | 5 | | 6 | 8.33 | 9.88 | 11.73 | 9.97 | 15.55 | 9.92 | 8.54 | 10.38 | 10.75 | 9.00 | 8 • 25 | 8.43 | 6 | | 7 | 8.32 | 9.88 | 11.75 | 10.08 | 12.14 | 9.77 | 10.23 | 9.44 | 10.73 | 10.31 | 8.24 | 8.40 | 7 | | 8 | 8.30 | 9.88 | 11.27 | 10.51 | 13.03 | 9.78 | 12.83 | 9.42 | 11.11 | 9.10 | 8.24 | 8.41 | 8 | | 9 | 8.30 | 9.92 | 10.99 | 10.23 | 13.26 | 9.77 | 13.21 | 9.40 | 11.87 | 10.51 | 8.26 | 8 • 41 | 9 | | 10 | 8.62 | 9.93 | 11.42 | 10.34 | 13.15 | 9.55 | 13.93 | 9.36 | 12.03 | 10.24 | 8 • 2 8 | 8.40 | 10 | | 11 | 9.81 | 9.89 | 11.51 | 10.58 | 12.32 | 9.55 | 14.83 | 11.57 | 14.03 | 10.28 | 8.30 | 8.44 | 11 | | 12 | 10.04 | 9.87 | 11.26 | 10.16 | 11.42 | 9.07 | 13.88 | 11.25 | 10.58 | 10.31 | 8.29 | 8.47 | 12 | | 13 | 9.97 | 10.00 | 11.04 | 9.93 | 12.77 | 8.49 | 11.11 | 10.38 | 9.30 | 9,58 | 8.25 | 8.51 | 13 | | 14 | 9.88 | 10.09 | 10.86 | 9.65 | 14.41 | 8.37 | 12.16 | 10.62 | 9.99 | 9.36 | 8.26 | 8.55 | 14 | | 15 | 9.64 | 10.09 | 10.52 | 9.68 | 12.11 | 8.33 | 15.05 | 11.95 | 10.66 | 9.19 | 8.30 | 8.55 | 15 | | 16 | 9.89 | 10.03 | 10.30 | 9.83 | 11.51 | 8.32 | 12.61 | 11.79 | 10.23 | 9.22 | 8.29 | 8.53 | 16 | | 17 | 9.91 | 10.01 | 10.65 | 9 . 82 | 11.54 | 8.31 | 10.71 | 11.15 | 9.24 | 8.87 | 8.28 | 8.51 | 17 | | 18 | 9.88 | 9.95 | 11.14 | 9.85 | 11.96 | 8.30 | 12.04 | 10.86 | 9.44 | 8.43 | 8.30 | 8.54 | 18 | | 19 | 9.92 | 10.00 | 11.09 | 9.84 | 12.67 | 8.27 | 12.38 | 10.90 | 11.75 | 8.29
 8.30 | 8.58 | 19 | | 20 | 9.92 | 10.03 | 11.32 | 9.65 | 11.45 | 8 • 25 | 12.86 | 10.74 | 14.28 | 8.26 | 8 • 31 | 8 • 5 8 | 20 | | 21 | 9.68 | 10.01 | 11.46 | 9.58 | 11.68 | 8 • 25 | 12.74 | 10.55 | 14.26 | 8.24 | 8.28 | 8.59 | 21 | | 22 | 9.56 | 10.00 | 11.21 | 9.83 | 11.59 | 8.26 | 12.32 | 10.53 | 12.11 | 8.25 | 8.33 | 8 • 61 | 22 | | 23 | 9.95 | 10.17 | 10.78 | 9 • 63 | 11.08 | 8.28 | 12.38 | 10.55 | 11.49 | 8.24 | 8.35 | 8.61 | 23 | | 24 | 9.89 | 10.84 | 10.88 | 9.81 | 10.48 | 8.26 | 12.36 | 12.05 | 10.52 | 8.26 | 8.34 | 8 • 60 | 24 | | 25 | 9.93 | 10.55 | 10.59 | 9.83 | 10.74 | 8.26 | 12.40 | 12.23 | 9.55 | 8.26 | 8.56 | 8 • 6 5 | 25 | | 26 | 9.97 | 10.92 | 10.76 | 9.82 | 11.26 | 8.26 | 12.52 | 12.51 | 9.46 | 8.26 | 8.38 | 8 • 6 7 | 26 | | 27 | 9.96 | 11.26 | 10.92 | 9.30 | 11.00 | 8.53 | 11.91 | 12.73 | 9.30 | R • 26 | 9.31 | 8 • 6 9 | 27 | | 28 | 9.91 | 11.35 | 10.70 | 9.49 | 10.76 | 11.56 | 10.74 | 13.31 | 9.65 | 8.25 | 8.32 | 8.68 | 28 | | 29 | 9.86 | 11.64 | 10.54 | 9.83 | | 14.70 | 12.01 | 13.82 | 10.66 | 8.25 | 8.36 | 8.69 | 29 | | 30 | 9.95 | 11.61 | 10.29 | 9.83 | | 14.38 | 12.78 | 13.78 | 10.56 | 8.23 | 8.38 | 8 • 67 | 30 | | 31 | 9.97 | | 10.19 | 9.69 | | 14.55 | | 13.77 | | 8.23 | 8.37 | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | Νo | Record | | NF | - | Na | Flow | | | | | | | | | | | (| CREST | STAGES | | | | | | |-------------------------------|----------------------|----------------------|-------------------------------|----------------------|-------|-------------------------------|------|----------------------|---------|------|-------| | DATE | TIME | STAGE | | 2- 2-63
2-14-63
2-19-63 | 2400
0230
0230 | 16.0
15.6
14.3 | 3-30-63
3-31-63
4-15-63 | 0120
1820
0140 | 14.8 | 4- 9-63
4-11-63
6-11-63 | 0100 | 14.4
15.1
15.5 | 6-20-63 | 1200 | 14.4 | | | LOCATION | V | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------------------|------------------|--------|-----------|----------|---|-------------|------|-------|---------|----------------| | | ATITUDE LI ONGITUDE L | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO | REF | | LATITUDE | LUNGITUDE | M. O. B. B. M. | C.F.S. | GAGE HT. | DATE | OTO ETTATIOE | ONLY | FROM | TO | GAGE | DATUM | | 37 38 08 | 120 37 03 | NW35 3S 12E | 49800 | 28.2 | 12- 8-50 | JUL 28-OCT 36
JAN 37-FEB 38
JUN 38-DATE | | | 1940 | 106.20 | USCGS
USCGS | Station located at highway bridge, 7.5 mi. E of Waterford. In order to machine process this station, the recorder datum was changed. 'To obtain true elevations add 100 feet to all of the above gage heights. ### DAILY MEAN GAGE HEIGHT TUOLUMNE RIVER AT HICKMAN BRIDGE STATION NO WATER YEAR 804150 1963 | | | | 114 | FEE | | | | | | | | | | |-----|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | DAY | ост | NOV. | DEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | | 1 | 72.33 | 73.92 | 75.27 | 74.23 | 74.68 | 73.66 | 75.56 | 75.46 | 77.25 | 74.01 | 71.57 | 71.57 | 1 | | 2 | 72.30 | 73.92 | 74.86 | 74.31 | 78.91 | 73.47 | 74.49 | 74.70 | 77.26 | 73.74 | 71.58 | 71.59 | 2 | | 3 | 72.44 | 73.91 | 74 . 86 | 75.05 | 79.30 | 73.32 | 74.24 | 74.66 | 77.16 | 72.28 | 71.56 | 71.55 | 3 | | 4 | 72.34 | 73.79 | 75.40 | 74.57 | 79.22 | 73.22 | 74.00 | 74.58 | 76.33 | 72.11 | 71.55 | 71.52 | 4 | | 5 | 72.31 | 73.57 | 75.46 | 74.19 | 79.19 | 79.76 | 72.42 | 74.49 | 74.47 | 72.05 | 71.58 | 71.52 | 5 | | 6 | 72.29 | 73.93 | 75.74 | 73.93 | 79.09 | 73.61 | 72.23 | 74.21 | 74.34 | 72.10 | 71.58 | 71.55 | 6 | | 7 | 72.29 | 73.94 | 75.87 | 73.90 | 76.15 | 73.39 | 73.59 | 73.01 | 74.31 | 73.70 | 71.53 | 71.54 | 7 | | 8 | 72.28 | 73.95 | 75,53 | 74.47 | 76.65 | 73.41 | 76.27 | 72.93 | 74.52 | 72.57 | 71.50 | 71.50 | 8 | | 9 | 72.28 | 73.96 | 75.15 | 74.26 | 76.90 | 73.41 | 76.98 | 72.90 | 75.42 | 73.73 | 71.52 | 71.51 | 9 | | 10 | 72.29 | 73.96 | 75.31 | 74.19 | 76.89 | 73.22 | 77.44 | 72.80 | 75.44 | 73.91 | 71.56 | 71.49 | 10 | | 11 | 73.44 | 73.93 | 75.66 | 74.53 | 76.26 | 73.08 | 78.36 | 74.89 | 77.29 | 73.54 | 71.56 | 71.51 | 11 | | 12 | 73.98 | 73.89 | 75.35 | 74.21 | 75.24 | 72.90 | 77.91 | 75.11 | 74.69 | 73.75 | 71.56 | 71.54 | 12 | | 13 | 73.95 | 74.03 | 75.22 | 73.92 | 76.02 | 72.14 | 75.01 | 74.13 | 72.71 | 73.05 | 71.54 | 71.58 | 13 | | 4 | 73.95 | 74.16 | 75.10 | 73.58 | 78.20 | 72.03 | 75.66 | 73.99 | 73.26 | 72.68 | 71.53 | 71.59 | 14 | | 15 | 73.65 | 74.15 | 74.65 | 73.60 | 76.01 | 71.92 | 78.52 | 75.58 | 74.24 | 72.50 | 71.55 | 71.60 | 15 | | 16 | 73.87 | 74.12 | 74.49 | 73.73 | 75.29 | 71.90 | 76.80 | 75.55 | 73.97 | 72.50 | 71.57 | 71.57 | 16 | | 17 | 73.89 | 74.04 | 74.50 | 73.76 | 75.34 | 71.89 | 74.51 | 74.90 | 72.64 | 72.31 | 71.56 | 71.55 | 17 | | 18 | 73.87 | 73.98 | 75.30 | 73.78 | 75.43 | 71.88 | 75.60 | 74.54 | 72.63 | 71.88 | 71.57 | 71.56 | 18 | | 19 | 73.91 | 74.02 | 75.16 | 73.81 | 76.65 | 71.87 | 75.85 | 74.58 | 74.89 | 71.72 | 71.56 | 71.61 | 19 | | 20 | 73.90 | 74.12 | 75.32 | 73.58 | 75.21 | 71.87 | 76.56 | 74.45 | 77.44 | 71.67 | 71.53 | 71.62 | 20 | | 21 | 73.68 | 74.07 | 75.49 | 73.45 | 75.43 | 71.86 | 76.59 | 74.19 | 77.58 | 71.63 | 71.53 | 71.62 | 21 | | 22 | 73.50 | 74.06 | 75.32 | 73.77 | 75.41 | 71.86 | 75.94 | 74.17 | 75.96 | 71.61 | 71.55 | 71.65 | 22 | | 23 | 73.93 | 74.02 | 74.95 | 73.55 | 74.93 | 71.87 | 76.09 | 74.13 | 75.08 | 71.59 | 71.57 | 71.61 | 23 | | 24 | 73.93 | 74.97 | 74.88 | 73.73 | 74.28 | 71.85 | 76.03 | 75.55 | 74.31 | 71.58 | 71.57 | 71.60 | 24 | | 25 | 73.94 | 74.69 | 74.82 | 73.76 | 74.34 | 71.84 | 76.06 | 75.71 | 72.99 | 71.62 | 71.69 | 71.60 | 25 | | 26 | 73.98 | 74.81 | 74.61 | 73.77 | 74.98 | 71.82 | 76.14 | 76.10 | 72.93 | 71.60 | 71.65 | 71.63 | 26 | | 27 | 73.97 | 75.33 | 75.17 | 73.32 | 74.75 | 71.83 | 75.82 | 76.23 | 72.65 | 71.59 | 71.55 | 71.65 | 27 | | 28 | 73.91 | 75.42 | 74.71 | 73.31 | 74.64 | 74.70 | 74.51 | 76.73 | 72.82 | 71.57 | 71.52 | 71.62 | 28 | | 29 | 73.85 | 75.69 | 74.65 | 73.79 | | 78.17 | 75.31 | 77.26 | 74.18 | 71.59 | 71.54 | 71.62 | 29 | | 30 | 73.97 | 75.71 | 74.49 | 73.83 | - | 78.05 | 76.56 | 77.25 | 74.15 | 71.57 | 71.57 | 71.61 | 30 | | 31 | 73.98 | | 74.10 | 73.66 | | 77.97 | | 77.25 | | 71.52 | 71.56 | | 31 | | | | | | | | CREST | STAGES | | | | | | |-------------|-------------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|---------|------|-------| | ted | DATE | TIME | STAGE | | scord
aw | 2- 2-63
2- 9-63
2-14-63 | 1950
2215
0630 | 79.4
77.5
79.0 | 2-19-63
3-30-63
3-31-63 | 0550
0350
2100 | 78.2
78.6
78.3 | 4- 9-63
4-11-63
4-15-63 | 1450
0340
0430 | 78.0
78.6
78.7 | 4-20-63 | 0210 | 77.7 | | | LOCATIO | V | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |--------------------|----------------|------------------|----------|-----------|---------------|---|--------------------------------|-----|-------|---------|-------| | | | 1/4 SEC. T, & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | LATITUDE LONGITUDE | M. D. B. B. M. | C.F.S. | GAGE HT. | DATE | 510 51 111102 | ONLY | FROM | то | GAGE | 0ATUM | | | 37 38 10 | 120 45 14 | NW34 3S 11E | 59000 | 96.2 | | JUL 32-OCT 36
JAN 37-MAR 37
JUL 37-FEB 38
JUL 38-DEC 38
MAR 39-DATE | JAN 37-MAR 37
JUL 37-FEB 38 | | | 0.00 | USCGS | Station located at Hickman-Waterford Road Bridge, immediately SE of Waterford. DRY CREEK NEAR MODESTO STATION NO WATER YEAR B04130 1963 | | | DRT CRE | EK NEAR M | FEET | | | | | | | 804130 | 1903 | , | |-----|-------|---------|-----------|-------|-------|-------|---------|-------|--------|-------|--------|---------|-----| | DAY | OCT. | NO V. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | | 1 | 68.32 | 67.74 | 67.51 | 67.45 | 71.34 | 67.86 | 68.43 | 68.39 | 68.70 | 69.45 | 68.40 | 68.55 | 1 | | 2 | 68.25 | 67.77 | 67.50 | 67.45 | 76.13 | 67.80 | 68 - 18 | 68.25 | 69.11 | 69.29 | 68.30 | 68.50 | 2 | | 3 | 68.30 | 67.72 | 67.48 | 67.47 | 70.77 | 67.82 | 68.05 | 68.40 | 69.48 | 68.97 | 68.33 | 68.45 | 3 | | 4 | 68.52 | 67.70 | 67.48 | 67.47 | 69.26 | 67.83 | 67.96 | 68.44 | 69.40 | 69.20 | 68.35 | 68.45 | 4 | | 5 | 68.65 | 67.66 | 67.47 | 67.46 | 68.65 | 67.81 | 67.88 | 68.22 | 69.30 | 69.30 | 68.40 | 68.61 | 5 | | 6 | 68.64 | 67.64 | 67.47 | 67.46 | 68.30 | 67.77 | 67.86E | 68.31 | 69.22 | 68.66 | 68.51 | 68.66 | 6 | | 7 | 68.68 | 67.62 | 67.47 | 67.47 | 68.07 | 67.71 | 67.96E | 68.30 | 69.31 | 68.60 | 68.47 | 68.61 | 7 | | 8 | 68.70 | 67.60 | 67.45 | 67.47 | 67.92 | 67.70 | 71.62E | 68.14 | 69.01 | 68.67 | 68.50 | 68.65 | 8 | | 9 | 68.54 | 67.61 | 67.44 | 67.46 | 67.90 | 67.77 | 70 • 42 | 68.38 | 68.73E | 68.56 | 68.50 | 68 • 66 | 9 | | 10 | 68.58 | 67.59 | 67.44 | 67.47 | 71.05 | 67.73 | 69.85 | 68.57 | 68.84E | 68.72 | 68.52 | 68.58 | 10 | | 11 | 68.59 | 67.62 | 67.44 | 67.47 | 73.85 | 67.75 | 69.42 | 68.56 | 68.84 | 68.60 | 68.41 | 68 • 46 | 11 | | 12 | 68.68 | 67.60 | 67.44 | 67.45 | 69.98 | 67.74 | 69.22 | 68.72 | 68.71 | 68.49 | 68.54 | 68.58 | 12 | | 13 | 69.47 | 67.58 | 67.43 | 67.44 | 71.64 | 67.74 | 69.07 | 68.69 | 68.64 | 68.49 | 68.36 | 68.59 | 13 | | 14 | 69.43 | 67.55 | 67.44 | 67.44 | 77.94 | 67.74 | 69.01 | 68.64 | 68.65 | 68.47 | 68.36 | 68.55 | 14 | | 15 | 69.22 | 67.59 | 67.46 | 67.45 | 71.78 | 67.71 | 71 • 44 | 68.68 | 68.78 | 68.80 | 68.33 | 68.67 | 15 | | 16 | 69.10 | 67.59 | 67.66 | 67.45 | 69.92 | 67.72 | 72.04 | 68.72 | 69.11 | 68.78 | 68.42 | 68.66 | 16 | | 17 | 68.24 | 67.55 | 68.08 | 67.44 | 69.26 | 67.79 | 70.43 | 68.73 | 68.93 | 68.63 | 68.36 | 68 • 72 | 17 | | 18 | 68.04 | 67.55 |
68.15 | 67.44 | 68.93 | 67.81 | 69.49 | 68.96 | 68.97 | 68.58 | 68.35 | 68.93 | 18 | | 19 | 67.93 | 67.55 | 67.83 | 67.44 | 68.71 | 67.74 | 69.03 | 68.77 | 68.95 | 68,60 | 68.30 | 68.94 | 19 | | 20 | 67.80 | 67.55 | 67.66 | 67.45 | 68.52 | 67.71 | 73.21 | 68.61 | 68.66 | 68.53 | 68.29 | 68.73 | 20 | | 21 | 67.73 | 67.55 | 67.59 | 67.49 | 68.37 | 67.70 | 72.06 | 68.60 | 68.58 | 68.61 | 68.33 | 68.67 | 21 | | 22 | 67.66 | 67.52 | 67.53 | 67.49 | 68.27 | 67.73 | 71 • 92 | 68.63 | 68.63 | 68.62 | 68.43 | 68.68 | 22 | | 23 | 67.63 | 67.50 | 67.49 | 67.48 | 68.16 | 68.14 | 70.43 | 68.98 | 68.92 | 68.53 | 68.29 | 68.64 | 23 | | 24 | 67.65 | 67.48 | 67.47 | 67.45 | 68.10 | 68.01 | 69.79 | 68.78 | 69.39 | 68.42 | 68.26 | 68 • 65 | 24 | | 25 | 67.67 | 67.47 | 67.46 | 67.45 | 68.04 | 67.82 | 69.49 | 68.64 | 69.53 | 68.33 | 68.35 | 68.69 | 25 | | 26 | 67.69 | 67.46 | 67.46 | 67.44 | 67.98 | 67.77 | 69 • 32 | 69.10 | 69.44 | 68.34 | 68.44 | 68.61 | 26 | | 27 | 67.73 | 67.50 | 67.46 | 67.44 | 67.93 | 67.81 | 69.51 | 68.98 | 69.38 | 68.41 | 68.61 | 68 • 43 | 27 | | 28 | 67.76 | 67.50 | 67.46 | 67.46 | 67.91 | 68.06 | 69.77 | 68.90 | 69.35 | 68.47 | 68.59 | 68.41 | 28 | | 29 | 67.75 | 67.51 | 67.45 | 67.52 | | 70.37 | 69.26 | 68.92 | 69.29 | 68.52 | 68.50 | 68.48 | 29 | | 30 | 67.71 | 67.51 | 67.45 | 67.51 | | 69.73 | 68.62 | 68.87 | 69.29 | 68.47 | 68.48 | 68.54 | 30 | | 31 | 67.63 | | 67.47 | 67.55 | | 68.85 | | 68.74 | | 68.34 | 68.45 | | 31 | | | | | | | | CREST | STAGES | | | | | | |--------------------------------|-------------------------------|------|----------------------|-------------------------------|------|----------------------|---------|------|-------|------|------|-------| | E - Estimoted | DATE | TIME | STAGE | OATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | | NR - No Record
NF - No Flow | 2- 2-63
2-10-63
2-14-63 | 2330 | 79.0
77.4
79.7 | 3-29-63
4-15-63
4-20-63 | 1150 | 71.7
73.5
75.7 | 4-22-63 | 0115 | 70.9 | | | | | Г | | LOCATION | v | MAXI | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |-----|----------|-----------|------------------|---------|-----------|----------|-------------|-------------|------|-------|---------|-------| | Γ. | LATITUOE | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | NOD | ZERO | REF. | | ۱ ا | | LONGITUDE | M. O, B. & M | C.F. S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 39 26 | 120 55 19 | SE24 3S 9E | 7710 | 88.04 | 12-23-55 | MAR 41-DATE | MAR 41-DATE | 1941 | | 0.00 | USCGS | Station located 0.1 mi. below Claus Road bridge, 4 mi. E. of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District. ### DAILY MEAN GAGE HEIGHT TUOLUMNE RIVER AT MODESTO R AT MODESTO STATION NO WATER YEAR B04120 1963 | DAY | ост. | NOV. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|---------|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 41.34 | 41.89 | 43.13 | 42.10 | 42.17 | 42.26 | 45.95 | 44.12 | 46.53 | 42.32 | 41.29 | 41.29 | 1 | | 2 | 41.34 | 41.87 | 42.41 | 41.94 | 47.50 | 41.95 | 42.59 | 43.02 | 46.62 | 42.54 | 41.29 | 41.32 | 2 | | 3 | 41.32 | 41.85 | 42.22 | 42.45 | 50.57 | 41.89 | 42.38 | 42.67 | 46.67 | 41.78 | 41.27 | 41.30 | 3 | | 4 | 41.37 | 41.85 | 42.56 | 42.42 | 50.51 | 41.84 | 42.26 | 42.61 | 46.10 | 41.66 | 41.30 | 41.27 | 4 | | 5 | 41.38 | 41.78 | 42.64 | 42.14 | 50-41 | 41.98 | 41.87 | 42.60 | 43.45 | 41.62 | 41.28 | 41.27 | 5 | | 6 | 41.35 | 41.74 | 42.95 | 41.98 | 50.36 | 41.99 | 41.54 | 42.49 | 42.57 | 41.53 | 41.28 | 41.29 | 6 | | 7 | 41.38 | 41.88 | 43.11 | 41.88 | 47.58 | 41.89 | 41.76 | 42.08 | 42.52 | 41.84 | 41.27 | 41.32 | 7 | | 8 | 41.38 | 41.91 | 43.11 | 42.13 | 44.63 | 41.87 | 43.51 | 41.80 | 42.50 | 42.04 | 41.28 | 41.33 | 8 | | 9 | 41.32 | 41.91 | 42.59 | 42 - 18 | 45.32 | 41.88 | 45.83 | 41.80 | 43.15 | 41.86 | 41.30 | 41.34 | 9 | | 10 | 41.35 | 41.92 | 42.37 | 42.05 | 46.10 | 41.86 | 45.94 | 41.80 | 43.48 | 42.37 | 41.28 | 41.32 | 10 | | 11 | 41.37 | 41.93 | 43.08 | 42.16 | 46.49 | 41.73 | 41.96 | 42.22 | 45.20 | 42.13 | 41.31 | 41.33 | 11 | | 12 | 41.86 | 41.91 | 42.85 | 42.21 | 43.14 | 41.78 | 48.61 | 43.30 | 45.06 | 42.32 | 41.29 | 41.33 | 12 | | 13 | 42 • 11 | 41.91 | 42.76 | 41.98 | 43.60 | 41.50 | 44.80 | 42.59 | 42.02 | 42.11 | 41.24 | 41.39 | 13 | | 14 | 42.19 | 41.96 | 42.48 | 41.82 | 49.50 | 41.34 | 43.22 | 42.19 | 41.79 | 41.82 | 41.25 | 41.35 | 14 | | 15 | 42.13 | 41.95 | 42.38 | 41.78 | 46.80 | 41.29 | 47.17 | 43.01 | 42.29 | 41.80 | 41.25 | 41.37 | 15 | | 16 | 42.08 | 41.97 | 42.27 | 41.80 | 43.67 | 41.28 | 48.67 | 43.77 | 42.41 | 41.71 | 41.31 | 41.39 | 16 | | 17 | 42.05 | 41.93 | 42.06 | 41.85 | 43.23 | 41.27 | 43./1 | 43.06 | 41.99 | 41.66 | 41.26 | 41.34 | 17 | | 18 | 42.02 | 41.92 | 42.54 | 41.85 | 43.09 | 41.29 | 42.99 | 42.61 | 41.73 | 41.53 | 41.27 | 41.38 | 18 | | 19 | 42.00 | 41.90 | 42.57 | 41.86 | 45.02 | 41.27 | 43.82 | 42.57 | 42.22 | 41.41 | 41.28 | 41.38 | 19 | | 20 | 42.01 | 41.96 | 42.51 | 41.84 | 43.48 | 41.26 | 46.15 | 42.56 | 45.18 | 41.36 | 41.25 | 41.36 | 20 | | 21 | 41.96 | 41.94 | 42.76 | 41.75 | 43.16 | 41.25 | 46.17 | 42.39 | 47.13 | 41.35 | 41.26 | 41.36 | 21 | | 22 | 41.83 | 41.94 | 42.95 | 41.77 | 43.30 | 41.24 | 44.89 | 42.33 | 46.17 | 41.35 | 41.28 | 41.36 | 22 | | 23 | 41.78 | 41.92 | 42.54 | 41.84 | 42.99 | 41.28 | 44.72 | 42.35 | 43.40 | 41.35 | 41.30 | 41.34 | 23 | | 24 | 41.93 | 42.30 | 42.26 | 41.77 | 42.48 | 41.28 | 44.57 | 42.90 | 43.11 | 41.30 | 41.28 | 41.33 | 24 | | 25 | 41.93 | 42.43 | 42 - 41 | 41.85 | 42.28 | 41.25 | 44.52 | 43.47 | 42.16 | 41.30 | 41.34 | 41.34 | 25 | | 26 | 41.90 | 42.26 | 42.14 | 41.85 | 42.57 | 41.23 | 44.63 | 44.32 | 41.97 | 41.32 | 41.36 | 41.34 | 26 | | 27 | 41.85 | 42.89 | 42.52 | 41.83 | 42.67 | 41.27 | 44.82 | 44.35 | 41.86 | 41.30 | 41.31 | 41.34 | 27 | | 28 | 41.85 | 42.89 | 42.31 | 41.63 | 42.55 | 41.55 | 43.09 | 44.97 | 41.79 | 41.31 | 41.28 | 41.34 | 28 | | 29 | 41.86 | 43.05 | 42.28 | 41.73 | | 45.89 | 42.69 | 46.23 | 42.17 | 41.34 | 41.26 | 41.33 | 29 | | 30 | 41.84 | 43.26 | 42.20 | 41.87 | | 48.26 | 45.28 | 46.58 | 42.43 | 41.35 | 41.31 | 41.36 | 30 | | 31 | 41.88 | | 41.96 | 41.86 | | 47.41 | | 46.53 | | 41.30 | 41.21 | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | No | Flow | | | | | | | | CREST | STAGES | | | | | | |---|-------------------------------|----------------------|-------|-------------------------------|----------------------|-------------------------|---------|------|-------|------|------|-------| | | DATE | TIME | STAGE | | 1 | 2- 2-63
2- 3-63
2- 4-63 | 2400
1000
1000 | 50.68 | 2- 5-63
2- 6-63
2-14-63 | 1200
1300
1800 | 50.46
50.40
51.21 | 4- 6-63 | 0300 | 49.74 | | | | | | LOCATIO | V | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|--|------------|--------|-----------|----------|------------------------------|------------------|-------------|-------|--------------------|---------------| | LATITUDE | TITUDE LONGITUDE 1/4 SEC. T. & R. M. D. 8. 8M. | | C.F.S. | OF RECORD | DATE | DISCHARGE | GAGE HEIGHT | PER
FROM | 100 | ZERO
ON
GAGE | REF.
DATUM | | 37 37 38 | 120 59 20 | SW33 3S 9E | 57000 | 69.19 | 12- 9-5D | JAN 95-DEC 96
MAR 40-DATE | 78- 84
91- 97 | 1940 | -10 | 0.00 | USCGS | | 1 | | 1 | | | | PMR 40-DATE | MAR 40-DATE | | | | | Station located at U.S. Highway 99 Bridge. Records furn. by U.S.G.S. Flow records are published by the U.S.G.S. report, "Surface Water Records of California." TUOLUMNE RIVER AT TUOLUMNE CITY IN FEET STATION NO WATER YEAR 804105 1963 | DAY | ост | NOV | DEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|---------|---------|---------|---------|---------|---------|---------|-------|-------|---------|-------|-----| | 1 | 24.02 | 25.90 | 28.68 | 26.36 | 25.60 | NR | 32.90 | 30.90 | 33.17 | 27.28 | 24.30 | 24.19 | 1 | | 2 | 23.93 | 25.87 | 29.92 | 26.36 | 30 - 17 | NR | 29.08 | 29.49 | 33.11 | 27.45 | 24.28 | 24.17 | 2 | | 3 | 23.97 | 25.83 | 30.57 | 26.78 | 35.08 | NR | 27.88 | 28.45 | 33.11 | 26.49 | 24.23 | 24.11 | 3 | | 4 | 24.01 | 25 • 78 | 30.50 | 27.53 | 35.56 | NR | 27.41 | 28.21 | 32.85 | 25.45 | 24.22 | 24.11 | 4 | | 5 | 24.06 | 25.67 | 29.85 | 26.96 | 35.68 | NR | 26.78 | 28.08 | 31.07 | 25.37 | 24.21 | 24.05 | 5 | | 6 | 24.09 | 25.40 | 29.57 | 26 • 38 | 35.72 | NR | 26.65 | 27.83 | 28.93 | 25.10 | 24.19 | 24.10 | 6 | | 7 | 24.05 | 25.64 | 28 • 85 | 26.01 | 34.67 | NR | 25.40 | 27.21 | 28.33 | 25.18 | 24.21 | 24.15 | 7 | | 8 | 24.10 | 25.82 | 29.00 | 26.10 | 30.95 | NR | 27.94 | 26.19 | 28.04 | 26.36 | 24.21 | 24.11 | 8 | | 9 | 24.04 | 25.86 | 28.42 | 26.20 | 31.23 | NR | 31.17 | 26.04 | 28.50 | 25.52 | 24.27 | 24.17 | 9 | | 10 | 24.00 | 25 • 87 | 27.83 | 25.48 | 31.72 | NR | 31.78 | 26.00 | 29.29 | 26.62 | 24.27 | 24.11 | 10 | | 11 | 24.02 | 25.87 | 29.33 | 26.50 | 32.64 | NR | 32.97 | 26 • 33 | 30.11 | 26.56 | 24.28 | 24.06 | 11 | | 12 | 24.60 | 25.84 | 28.66 | 26.81 | 31.04 | NR | 34 - 14 | 29.16 | 31.75 | 26.57 | 24.27 | 24.07 | 12 | | 13 | 25.98 | 25.79 | 28.29 | 26.42 | 29.93 | NR | 32.70 | 29.60 | 27.86 | 26.58 | 24.19 | 24.11 | 13 | | 14 | 26.51 | 25.89 | 27.89 | 25.92 | 33.62 | NR | 29.76 | 28.78 | 26.12 | 25.80 | 24.18 | 24.22 | 14 | | 15 | 26.45 | 26.03 | 27.70 | 25.53 | 34 • 62 | NR | 31.22 | 28.58 | 26.65 | 25.59 | 24.18 | 24.19 | 15 | | 16 | 26.29 | 26.08 | 27.50 | 25.46 | 31.68 | NR | 34.50 | 29.51 | 27.44 | 25.39 | 24.22 | 24.20 | 16 | | 17 | 26.05 | 26.10 | 27.00 | 25.59 | 30.47 | NR | 31.48 | 29.10 | 26.94 | 25.24 | 24 - 12 | 24.12 | 17 | | 18 | 25.98 | 25.99 | 27.15 | 25.62 | 30.08 | NR | 28.92 | 28.25 | 25.89 |
25.16 | 24.12 | 24.11 | 18 | | 19 | 25.89 | 25.90 | 27.99 | 25.63 | 30.93 | NR | 29.96 | 28.00 | 26.12 | 24.76 | 24.13 | 24.19 | 19 | | 20 | 25.87 | 25.91 | 27.91 | 25 • 63 | 30.71 | 24.19 | 31.17 | 28.21 | 29.47 | 24.59 | 24.11 | 24.21 | 20 | | 21 | 25.87 | 26.07 | 28 • 14 | 25.43 | 29.48 | 24.17 | 32.16 | 28.22 | 32.52 | 24.52 | 24.11 | 24.25 | 21 | | 22 | 25.68 | 26.02 | 28.46 | 25.28 | 29.46 | 24.19 | 31.66 | 28.22 | 36.66 | 24.48 | 24.12 | 24.24 | 22 | | 23 | 25.40 | 25.98 | 28+17 | 25.57 | 29.18 | 24.21 | 31.14 | 28.45 | 30.12 | 24.47 | 24.17 | 24.19 | 23 | | 24 | 25.53 | 26.10 | 27.55 | 25.40 | 28.37 | 24.25 | 31.01 | 28.89 | 29.14 | 24.39 | 24.18 | 24.11 | 24 | | 25 | 25.80 | 27.21 | 27.47 | 25.50 | 27.58 | 24.20 | 30.90 | 30 • 28 | 27.71 | 24.31 | 24.22 | 24.15 | 25 | | 26 | 25.83 | 27.00 | 27.18 | 25.57 | 27.87 | 24.15 | 29.99 | 31.03 | 26.48 | 24.32 | 24.27 | 24.14 | 26 | | 27 | 25.90 | 27.40 | 27.27 | 25.57 | NR | 24 • 13 | 31.18 | 31.31 | 26.18 | 24.32 | 24.27 | 24.11 | 27 | | 28 | 25.91 | 28.12 | 27.56 | 25.17 | NR | 24.48 | 30+24 | 31.46 | 25.92 | 24.32 | 24.15 | 24.12 | 28 | | 29 | 35.85 | 28.30 | 27.24 | 25.06 | | 24.83 | 28.90 | 32.31 | 26.26 | 24.48 | 24.16 | 24.13 | 29 | | 30 | 25.76 | 28.70 | 27.06 | 25.54 | | 33.21 | 30.53 | 33.14 | 27.34 | 24.36 | 24.20 | 24.10 | 30 | | 31 | 25.83 | | 26.68 | 25.72 | | 33.12 | | 33.21 | | 24.32 | 24.19 | | 31 | | Ε | - | Est | mated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | No | Flow | | | | | | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|----------------------|-------------------------|---------|------|-------|------|------|-------| | DATE | TIME | STAGE | | 2- 6-63
2-14-63
4- 1-63 | 1130
2350
1000 | 36.15 | 4-12-63
4-16-63
6-22-63 | 1400
0900
0900 | 34.30
34.83
32.96 | 7- 2-63 | 1450 | 28.03 | | | | | | LOCATIO | N | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|-------------------|-----------|----------|-----------|---------------|------|------|----------------------|-----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF | | LATITODE | LONGITODE | M, O, B, & M, | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 36 12 | 121 07 50 | NW 7 45 8E | | 46.65 | 12- 9-50 | 30-DATE | 30-DATE | 1960 | 1959 | 0.00
0.00
3.50 | USED
USCGS
USED | Station located at highway bridge, 3.35 mi. above mouth. Backwater at times affects the stage-discharge relationship. Records furn. by City of San Francisco. IN FEET ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE STATION NO WATER YEAR 807040 1963 | DAY | OCT. | NOV. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-----| | 1 | 15.07 | 15.67 | 17.39 | 16.37 | 16.67 | 19.86 | 23.79 | 23.44 | 26.63 | 18.22 | 14.42 | 14.81 | 1 | | 2 | 15.01 | 15.62 | 17.23 | 16.41 | 19.50 | 19.31 | 22.39 | 22.48 | 26.36 | 17.90 | 14.42 | 14.85 | 2 | | 3 | 14.97 | 15.57 | 16.6R | 16.25 | 24.22 | 18.90 | 20.82 | 21.40 | 25.85 | 17.59 | 14.39 | 14.84 | 3 | | 4 | 15.07 | 15.55 | 16.46 | 17.04 | 26.21 | 18.43 | 20.31 | 21.32 | 25.46 | 16.63 | 14.44 | 14.76 | 4 | | 5 | 15.16 | 15.48 | 16.84 | 16.80 | 26.27 | 17.70 | 19.83 | 21.29 | 24.40 | 16.47 | 14.59 | 14.80 | 5 | | 6 | 15.17 | 15.33 | 17.02 | 16.37 | 26.19 | 17.48 | 18.79 | 21.27 | 22.85 | 16.22 | 14.64 | 14.83 | 6 | | 7 | 15.19 | 15.32 | 16.63 | 16.06 | 25.65 | 17.17 | 18.66 | 21.04 | 21,67 | 16.11 | 14.53 | 14.92 | 7 | | 8 | 15.15 | 15.48 | 16.44 | 15.95 | 23.44 | 16.78 | 20.85 | 20.97 | 21.01 | 16.85 | 14.55 | 15.09 | 8 | | 9 | 14.85 | 15.54 | 16,60 | 16.47 | 22.58 | 16.62 | 23.08 | 21.18 | 21.11 | 16.66 | 14.57 | 15.08 | 9 | | 10 | 14.72 | 15.57 | 17.11 | 16.61 | 22.82 | 16.44 | 24.23 | 21.67 | 21.42 | 16.65 | 14.69 | 15.12 | 10 | | 11 | 14.78 | 15.60 | 17,23 | 16.46 | 24.07 | 16.20 | 24.14 | 22.69 | 21.62 | 16.93 | 14.89 | 14.87 | 11 | | 12 | 15.03 | 15.60 | 16,62 | 16.68 | 24.49 | 15.86 | 25 • 48 | 24.64 | 22.93 | 16.57 | 15.01 | 14.79 | 12 | | 13 | 15.76 | 15.59 | 16.72 | 16.66 | 23.81 | 15.75 | 26.18 | 25.67 | 21.52 | 16.67 | 14.75 | 14.94 | 13 | | 14 | 16.28 | 15.61 | 16.80 | 16.27 | 24.68 | 15.15 | 24.50 | 25.17 | 18.96 | 16.27 | 14.62 | 15.17 | 14 | | 15 | 16.37 | 15.69 | 17.09 | 15.98 | 26.55 | 14.87 | 23.03 | 23.79 | 17.95 | 16.03 | 14.61 | 15.26 | 15 | | 16 | 16.43 | 15.75 | 16.92 | 15.88 | 25.61 | 14.97 | 24.73 | 22.63 | 19.21 | 15.79 | 14.58 | 15.56 | 16 | | 17 | 16.20 | 15.79 | 16.65 | 15.88 | 24.54 | 15.57 | 24.84 | 21.66 | 19.75 | 15.66 | 14.55 | 15.99 | 17 | | 18 | 15.86 | 15.75 | 16.46 | 15.88 | 24.06 | 16.09 | 23.19 | 20.79 | 19.08 | 15.54 | 14.59 | 15.97 | 18 | | 19 | 15.67 | 15.70 | 17,18 | 15.82 | 23.82 | 15.67 | 22.50 | 21.15 | 20.41 | 15.30 | 14.55 | 16.04 | 19 | | 20 | 15.58 | 15.65 | 17,37 | 15.79 | 23.87 | 15.23 | 22.88 | 22.72 | 21.36 | 15.06 | 14.53 | 16.06 | 20 | | 21 | 15.50 | 15.76 | 17.55 | 15.66 | 22.77 | 15.07 | 23.97 | 23.62 | 23.35 | 15.02 | 14.36 | 16.10 | 21 | | 22 | 15.45 | 15.75 | 17.82 | 15.53 | 22.13 | 14.98 | 24.66 | 24.17 | 24.03 | 15.08 | 14.45 | 16.25 | 22 | | 23 | 15.24 | 15.72 | 17.88 | 15.60 | 21.79 | 15.13 | 24.63 | 24.63 | 23.07 | 14.98 | 14.64 | 16.40 | 23 | | 24 | 15.18 | 15.64 | 17.52 | 15.61 | 21.36 | 15.34 | 24.58 | 24.93 | 21.43 | 14.78 | 14.65 | 16.29 | 24 | | 25 | 15.38 | 16.15 | 17.22 | 15.57 | 20.74 | 15.60 | 24.21 | 25.56 | 20.16 | 14.52 | 14.77 | 16.24 | 25 | | 26 | 15.48 | 16.33 | 17.16 | 15.61 | 20.43 | 15.54 | 24.12 | 26.01 | 18.80 | 14.50 | 14.89 | 16.11 | 26 | | 27 | 15.55 | 16.31 | 16.75 | 15.61 | 20.41 | 15.38 | 24.24 | 26.21 | 18.06 | 14.46 | 14.72 | 15.58 | 27 | | 28 | 15.64 | 16.84 | 17.12 | 15.47 | 20.16 | 15.74 | 24.05 | 25.89 | 17.37 | 14.52 | 14.53 | 15.18 | 28 | | 29 | 15.67 | 16.99 | 16.82 | 15.27 | 1 | 17.90 | 23.06 | 25.82 | 17.15 | 14.59 | 14.60 | 15.19 | 29 | | 30 | 15.64 | 17.25 | 16.84 | 15.53 | | 22.59 | 22.99 | 26.40 | 17.98 | 14.52 | 14.66 | 15.22 | 30 | | 31 | 15.64 | | 16.74 | 15.84 | | 23.46 | | 26.69 | | 14.41 | 14.74 | | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | No | Flow | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|---------|------|-------|------|------|-------| | DATE | TIME | STAGE | | 2- 4-63
2-15-63
4-13-63 | 1850
0900
1100 | 26.7 | 5-13-63
5-27-63
5-31-63 | 1230
1115
1440 | 25.8
26.3
26.7 | 6- 1-63 | 0000 | 26.68 | | | | | | LOCATION MAXIMUM DISCHARGE | | | | PERIOD C | DATUM OF GAGE | | | | | | |----------|----------------------------|------------------|--------|-----------|----------|---------------|-------------|--------------|------|------|-----------------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO | REF. | | LATITODE | CONTROL | M. D. B. B. M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 38 28 | 121 13 37 | SW29 3S 7E | | 39.8 | 12-9-50 | JAN 50-MAR 52 | SEP 43-DATE | 1943
1959 | 1959 | 0.00 | USED
USCGS
USED | Station located at State Highway 132 Bridge, 13 mi. W of Modesto. STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE IN FEET STATION NO WATER YEAR B03175 1963 | DAY | OCT. | NO V. | OEC | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|---------|-------|-----| | 1 | 01.40 | 02.16 | 01.79 | 01.94 | 07.27 | 01.39 | 05.37 | 04.17 | 08.11 | 01.91 | 01.41 | 01.49 | 1 | | 2 | 01.36 | 01.85 | 01.79 | 01.91 | 14.05 | 01.37 | 04.94 | 04.62 | 07.15 | 01.67 | 01.39 | 01.46 | 2 | | 3 | 01.37 | 02.13 | 01.79 | 01.90 | 08.92 | 01.36 | 04.90 | 06.98 | 06.06 | 01.61 | 01.38 | 01.42 | 3 | | 4 | 01.40 | 02.14 | 01.79 | 01.90 | 07.41 | 01.35 | 04.18 | 07.35 | 04.38 | 01.60 | 01.44 | 01-45 | 4 | | 5 | 01.46 | 02.15 | 01.79 | 01.90 | 06.92 | 01.33 | 02.00 | 07.64 | 03.60 | 01.58 | 01.39 | 01.56 | 5 | | 6 | 01.44 | 02.15 | 01.80 | 01.90 | 05.46 | 01.81 | 03.83 | 08.29 | 02.40 | 01.58 | 01.43 | 01.52 | 6 | | 7 | 01.39 | 02.14 | 01.81 | 01.89 | 05.39 | 01.83 | 08.66 | 10.10 | 03.63 | 01.58 | 01.39 | 01.56 | 7 | | 8 | 01.37 | 02.07 | 01.80 | 01.89 | 05.66 | 01.41 | 09.00 | 10.26 | 05.00 | 01.54 | 01.41 | 01.61 | 8 | | 9 | 01.35 | 02.06 | 01.81 | 01.90 | 05.59 | 01.33 | 07.81 | 11.44 | 05.05 | 01.48 | 01.46 | 01.55 | 9 | | 10 | 01.36 | 02.02 | 01.82 | 01.90 | 08.35 | 01.66 | 06.86 | 12.34 | 05.47 | 01.46 | 01.45 | 01.57 | 10 | | 11 | 01.41 | 02.02 | 01.84 | 01.89 | 07.74 | 03.08 | 12.27 | 12.08 | 06.16 | 01.42 | 01.42 | 01.75 | 11 | | 12 | 01.49 | 02.07 | 01.83 | 01.88 | 07.07 | 02.89 | 10.91 | 10.85 | 05.77 | 01.42 | 01.38 | 01.78 | 12 | | 13 | 02.07 | 02.06 | 01.85 | 01.84 | 06.95 | 02.79 | 06.23 | 08.72 | 03.97 | 01.42 | 01.36 | 01.78 | 13 | | 14 | 02.05 | 02.08 | 01.84 | 01.84 | 06.78 | 02.57 | 05.72 | 07.15 | 03.73 | 01.39 | 01 • 41 | 01.77 | 14 | | 15 | 01.99 | 02.13 | 01.91 | 01.75 | 06.67 | 02.45 | 06.80 | 05.61 | 06.99 | 01.40 | 01.45 | 01.77 | 15 | | 16 | 01.98 | 02.12 | 02.03 | 01.71 | 06.63 | 03.67 | 08.17 | 04.55 | 07.34 | 01.41 | 01.48 | 01.76 | 16 | | 17 | 01.84 | 02.07 | 02.01 | 01.70 | 06.54 | 05.05 | 06.94 | 04.75 | 07.73 | 01.39 | 01.45 | 01.77 | 17 | | 18 | 01.89 | 02.12 | 02.47 | 01.70 | 05.98 | 02.89 | 05.43 | 07.25 | 08.26 | 01.41 | 01.41 | 01.88 | 18 | | 19 | 01.93 | 02.13 | 03.01 | 01.71 | 05.21 | 01.81 | 05.57 | 10.22 | 05.73 | 01.43 | 01.43 | 01.87 | 19 | | 20 | 01.89 | 02.17 | 03.03 | 01.64 | 04.75 | 01.55 | 06.74 | 10.66 | 05.95 | 01.44 | 01.41 | 01.84 | 20 | | 21 | 01.78 | 02.13 | 02.95 | 01.63 | 03.86 | 01.52
 08.90 | 11.15 | 06.03 | 01.40 | 01.45 | 01.84 | 21 | | 22 | 01.77 | 02.12 | 03.04 | 01.56 | 03.87 | 01.52 | 08.76 | 11.19 | 05.34 | 01.39 | 01.45 | 01.85 | 22 | | 23 | 02.06 | 02.13 | 03.06 | 01.49 | 03.87 | 02.38 | 08.02 | 11.18 | 02.40 | 01.38 | 01.43 | 01.88 | 23 | | 24 | 02.07 | 02.13 | 02.87 | 01.39 | 03.87 | 04.06 | 06.89 | 11.11 | 02.11 | 01.39 | 01.44 | 01.87 | 24 | | 25 | 02.09 | 02.13 | 02.00 | 01.38 | 03.29 | 02.72 | 06.88 | 11.07 | 02.10 | 01.45 | 01.47 | 01.87 | 25 | | 26 | 02.12 | 02.14 | 01.94 | 01.38 | 01.79 | 01.75 | 06.89 | 10.32 | 01.90 | 01.41 | 01.50 | 01.87 | 26 | | 27 | 02.10 | 02.09 | 01.94 | 01.37 | 01.52 | 01.54 | 06.30 | 09.32 | 01.89 | 01.42 | 01.45 | 01.87 | 27 | | 28 | 02.10 | 01.91 | 02.95 | 01.38 | 01.41 | 07.99 | 05.42 | 09.49 | 02.57 | 01.42 | 01.42 | 01.87 | 28 | | 29 | 02.08 | 01.84 | 03.27 | 01.38 | 0.041 | 06.98 | 05.10 | 10.00 | 02.89 | 01.39 | 01.46 | 01.86 | 29 | | 30 | 02.08 | 01.79 | 03.08 | 01.42 | | 05.65 | 04 • 42 | 09.78 | 02.61 | 01.43 | 01.46 | | 30 | | 31 | 02.10 | | 02.75 | 01.60 | | 05.46 | 34.42 | 09.43 | 02.01 | 01.37 | 01.46 | 01.86 | 31 | | | | | | | | CREST | STAGES | | | | | | |---------------|-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|---------|------|-------|------|------|-------| | E - Estimated | DATE | TIME | STAGE | | NF - No Flow | 2- 2-63
3-28-63
4- 8-63 | 0800
1550
0400 | 12.1 | 4-11-63
5- 6-63
5- 9-63 | 1630
2230
2140 | 12.5
10.3
12.5 | 5-22-63 | 1600 | 11.2 | | | | | [| | LOCATION | ٧ | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|-------|------------------------------|------------------------------|------|-------|---------|-------| | | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | | | LONGITOOL | M. O. 8. 8 M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 47 18 | 120 45 41 | SW 4 2S 11E | 52000 | 30.05 | | JUN 28-DEC 39
APR 40-DATE | JUN 28-DEC 39
APR 40-DATE | | | 0.00 | LOCAL | Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. ## DAILY MEAN GAGE HEIGHT STANISLAUS RIVER AT RIVERBANK STATION NO WATER YEAR 803145 1963 | DAY | ост. | NOV. | DEC. | JAN | FE8 | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|---------|-------|---------|-------|---------|-------|--------|--------|-------|---------|-----| | 1 | 73.07 | 73.81 | 73.48 | 74.38 | 76.05 | 73.27 | 78 - 19 | 76.95 | 81.97 | 74.24 | 72.87 | 72.94 | 1 | | 2 | 73.10 | 73.86 | 73.45 | 73.76 | 87.69 | 73.19 | 77.73 | 76.46 | 80.37 | 73.57 | 72.85 | 73.00 | 2 | | 3 | 73.11 | 73.56 | 73.44 | 73.69 | 83.90 | 73.14 | 77.61 | 79.64 | 79.93 | 73.31 | 72.88 | 72.91 | 3 | | 4 | 73.11 | 73.85 | 73.44 | 73.65 | 80.56 | 73.10 | 77.49 | 80.00 | 77.76 | 73.30 | 72.90 | 72.88 | 4 | | 5 | 73.11 | 73.91 | 73.45 | 73.63 | 80.33 | 73.07 | 75.09 | 80.63 | 77.33 | 73.19 | 72.92 | 72.90 | 5 | | 6 | 73.17 | 73.92 | 73.46 | 73.63 | 78.77 | 73.04 | 74.03 | 80.64 | 75.47 | 73.16 | 72.85 | 72.96 | 6 | | 7 | 73.15 | 73.94 | 73.46 | 73.60 | 78.04 | 73.98 | 81.51 | 83.04 | 75.56 | 73.12 | 72.85 | 72.94 | 7 | | 8 | 73.12 | 73.91 | 73.47 | 73.58 | 78.55 | 73.26 | 81.26 | 83.50 | 77.84 | 73.13 | 72.85 | 72.99 | 8 | | 9 | 73.11 | 73.82 | 73.44 | 73.57 | 78.34 | 73.09 | 82.53 | 84.19 | 77.95 | 73.10 | 72.88 | 73.00 | 9 | | 10 | 73.16 | 73.80 | 73.48 | 73.61 | 80.73 | 73.00 | 78.92 | 85.94 | 78.30 | 73.07 | 72.94 | 72.95 | 10 | | 11 | 73.18 | 73.74 | 73.49 | 73.61 | 80.86 | 74.57 | 84.39 | 85.98 | 78.83 | 73.04E | 72.93 | 72.99 | 11 | | 12 | 73.38 | 73.76 | 73.50 | 73.57 | 80.45 | 75.17 | 85.55 | 85.10 | 79.17 | 73.00E | 72.87 | 73 - 17 | 12 | | 13 | 73.75 | 73.81 | 73.50 | 73.53 | 79.84 | 75.09 | 80.57 | 82.90 | 77.21E | 72.96E | 72.83 | 73.25 | 13 | | 14 | 73.98 | 73.81 | 73.50 | 73.51 | 79.97 | 74.87 | 78.54 | 80.71 | 75.44E | 72.93E | 72.81 | 73.28 | 14 | | 15 | 73.93 | 73.88 | 73.52 | 73.46 | 79.58 | 74.51 | 79 • 11 | 79.17 | 79.35 | 72.89E | 72.85 | 73.20 | 15 | | 16 | 73.76 | 73.99 | 73.81 | 73.35 | 79.50 | 74.76 | 81.36 | 77.87 | 80.63 | 72.89E | 72.87 | 73.17 | 16 | | 17 | 73.63 | 73.99 | 73.95 | 73.31 | 79.44 | 77.84 | 80.72 | 77.54 | 79.92 | 72.90 | 72.87 | 73.18 | 17 | | 18 | 73.48 | 73.94 | 73.83 | 73.29 | 79 • 12 | 76.09 | 78.32 | 79.14 | 81.99 | 72.93 | 72.92 | 73.24 | 18 | | 19 | 73.52 | 74.01 | 75 - 14 | 73.30 | 78.20 | 74.38 | 78.29 | 83.05 | 78.82 | 72.96 | 72.91 | 73.36 | 19 | | 20 | 73.55 | 74.06 | 75.60 | 73.27 | 77.98 | 73.45 | 78.79 | 83.84 | 78.82 | 72.93 | 72.88 | 73.33 | 20 | | 21 | 73.48 | 74.08 | 75 . 31 | 73.22 | 76.51 | 73.22 | 81.85 | 84.55 | 78.87 | 72.95 | 72.87 | 73.35 | 21 | | 22 | 73.35 | 74.04 | 75.45 | 73.19 | 76.43 | 73.23 | 81.96 | 84.68 | 78,62 | 72.87 | 72.87 | 73.35 | 22 | | 23 | 73.40 | 74.03 | 75.48 | 73.13 | 76.38 | 73.35 | 81.63 | 84.70 | 75.80 | 72.86 | 72.87 | 73.37 | 23 | | 24 | 73.71 | 74.02 | 75.51 | 73.09 | 76.36 | 76.48 | 79.93 | 84.65 | 74.36 | 72.84 | 72.85 | 73.39 | 24 | | 25 | 73.76 | 74.04 | 74.41 | 73.06 | 76.27 | 75.38 | 79.78 | 84.58 | 74.25 | 72.81 | 72.93 | 73.36 | 25 | | 26 | 73.79 | 74.03 | 73.82 | 73.02 | 74.48 | 74.09 | 79.79 | 84.25 | 73.96 | 72.87 | 72.97 | 73.34 | 26 | | 27 | 73.82 | 74.07 | 73.70 | 73.02 | 73.67 | 73.31 | 79.54 | 82.97 | 73.67 | 72.83 | 72.97 | 73.36 | 27 | | 28 | 73.82 | 73.94 | 74.07 | 73.02 | 73.39 | 77.48 | 78 • 22 | 82.63 | 74.16 | 72.86 | 72.94 | 73.36 | 28 | | 29 | 73.81 | 73.67 | 75.76 | 73.01 | | 81.31 | 78.05 | 83.37 | 75.27 | 72.85 | 72.89 | 73.39 | 29 | | 30 | 73.79 | 73.54 | 75.65 | 73.05 | | 78.57 | 77.19 | 83.23 | 75.28 | 72.82 | 72.91 | 73.39 | 30 | | 31 | 73.80 | | 75.51 | 73.13 | | 78.22 | | 83.03 | | 72.86 | 72.91 | | 31 | | Ε | - | Est | imoted | |----|---|-----|--------| | NR | - | No | Record | | NF | - | Nο | Flow | | | | | | 1 | CREST | STAGES | | | | | | |-------------------------------|----------------------|----------------------|-------------------------------|----------------------|-------|-------------------------------|----------------------|----------------------|------|------|-------| | DATE | TIME | STAGE | | 2- 2-63
2-10-63
3-28-63 | 1500
1300
2315 | 88.8
81.9
84.1 | 4- 7-63
4- 8-63
4-12-63 | 1410
2330
0510 | 84.1 | 4-21-63
5-11-63
5-23-63 | 1400
1830
0530 | 82.1
86.1
84.7 | | | | | | LOCATION | N | MAXII | MUM DISCH | HARGE | PERIOD O | F RECORD | | | | | |--------------------|-----------|------------------|---------------------------|-----------|-----------|-------------|-------------|------|------|------|-------| | LATITUDE LONGITUDE | | 1/4 SEC. T. & R. | /4 SEC. T. & R. OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF. | | | LATITUDE | LONGITUDE | M.D.8.8M, | C.F.S. | GAGE HT. | DATE | DISTRICE | ONLY | FROM | TO | GAGE | DATUM | | 37 44 31 | 120 56 21 | SW24 2S 9E | 85800 | 103.18 | 12-23-55 | JUL 40-DATE | JUL 40-DATE | 1940 | | 0.00 | uscgs | Station located at Burneyville Bridge, immediately N of Riverbank. ### DAILY MEAN GAGE HEIGHT STANISLAUS RIVER AT RIPON STATION NO WATER YEAR B03125 1963 | DAY | ОСТ | NOV | OEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|---------|---------|---------|-------|-------|-------|-------|---------|-------|---------|---------|---------|-----| | 1 | 37.61 | 38 • 04 | 37.68 | 39.90 | 37.70 | 38.65 | 45.05 | 44.15 | 52.88 | 40.58 | 37.91 | 38.13 | 1 | | 2 | 37.57 | 38.07 | 37.61 | 38.71 | 68.04 | 38.46 | 44.65 | 43.39 | 50.96 | 39.70 | 37.94 | 38.22 | 2 | | 3 | 37.53 | 38 • 02 | 37.5/ | 38.21 | 54.01 | 38.32 | 44.14 | 45.33 | 49.44 | 39.29 | 38 • 04 | 38.06 | 3 | | 4 | 37.41 | 37.88 | 37.55 | 38.02 | 52.10 | 38.20 | 44.02 | 47.80 | 46.89 | 39.26 | 38 • 10 | 37.65 | 4 | | 5 | 37.59 | 38.07 | 37.55 | 37.92 | 49.06 | 38.11 | 42.44 | 48.55 | 45.04 | 39.36 | 38.12 | 37.07 | 5 | | 6 | 37.52 | 38 • 12 | 37.54 | 37.88 | 47.35 | 38.03 | 40.12 | 49.01 | 43.51 | 39.18 | 38.03 | 37.93 | 6 | | 7 | 37.63 | 38.13 | 37.55 | 37.84 | 65.25 | 38.26 | 44.86 | 50.34 | 42.18 | 39.09 | 37.93 | 38.07 | 7 | | 8 | 37.58 | 38 • 14 | 37.55 | 37.80 | 45.32 | 38.45 | 49.55 | 52.60 | 43.92 | 38.93 | 38.08 | 38.09 | 8 | | 9 | 37.51 | 38.09 | 37.55 | 37.77 | 45.39 | 38.07 | 51.37 | 53.37 | 45.04 | 38.81 | 37.92 | 38.25 | 9 | | 10 | 37.38 | 38.02 | 37.54 | 37.77 | 45.87 | 37.90 | 49.21 | 54.49 | 45.40 | 38.59 | 37.94 | 38.01 | 10 | | 11 | 37.57 | 37.99 | 37.55 | 37.76 | 49.61 | 38.06 | 49.58 | 55.63 | 45.94 | 38.42 | 38 • 12 | 37.97 | 11 | | 12 | 38.22 | 37.93 | 37.56 | 37.74 | 49.15 | 39.76 | 54.43 | 55.68 | 47.00 | 38.35 | 38 • 17 | 38.17 | 12 | | 13 | 38.30 | 37.94 | 37.56 | 37.72 | 48.27 | 39.87 | 54.28 | 54.80 | 45.73 | 38.35 | 38 • 11 | 38.48 | 13 | | 14 | 38.43 | 37.95 | 37.56 | 37.67 | 48.60 | 39.73 | 48.58 | 52.48 | 43.08 | 38.46 | 37.95 | 38.57 | 14 | | 15 | 38.72 | 37.93 | 37.58 | 37.64 | 47.81 | 39.38 | 45.82 | 49.19 | 44.39 | 38.48 | 37.92 | 38.43 | 15 | | 16 | 38.56 | 38.03 | 37.76 | 37.58 | 47.42 | 39.14 | 48.89 | 46.20 | 48.17 | 38.27 | 38.00 | 38.28 | 16 | | 17 | 38 • 28 | 38.12 | 38+23 | 37.48 | 47.29 | 41.68 | 50.23 | 44.71 | 48.16 | 38.33 | 37.86 | 38.15 | 17 | | 18 | 37.92 | 38.12 | 38 • 17 | 37.44 | 47.04 | 43.06 | 47.99 | 45 • 36 | 49.92 | 38 • 34 | 37.97 | 38.18 | 18 | | 19 | 37.77 | 38 • 10 | 38.33 | 37.41 | 45.92 | 41.47 | 46.11 | 49.44 | 49.14 | 38.36 | 37.91 | 38.36 | 19 | | 20 | 37.77 | 38 • 16 | 39 • 65 | 37.40 | 44.94 | 38.89 | 45.21 | 52.61 | 46.40 | 38.35 | 37.87 | 38.42 | 20 | | 21 | 37.74 | 38.20 | 40.03 | 37.38 | 43.76 | 38.38 | 48.92 | 53.64 | 46.58 | 38.38 | 37.83 | 38.44 | 21 | | 22 | 37.68 | 38.22 | 39.93 | 37.32 | 42.66 | 38.07 | 51.32 | 54.30 | 46.67 | 38.21 | 37.89 | 38.54 | 22 | | 23 | 37.59 | 38.17 | 40.13 | 37.28 | 42.46 | 38.00 | 51.49 | 54.67 | 44.82 | 38.16 | 38 • 03
| 38.49 | 23 | | 24 | 37.69 | 38.14 | 40.20 | 37.24 | 42.34 | 39.29 | 50.19 | 54.63 | 41.74 | 38.12 | 37.87 | 38.43 | 24 | | 25 | 37.88 | 38.16 | 39.93 | 37.19 | 42.26 | 41.48 | 48.59 | 54.63 | 40.97 | 38 • 03 | 37.97 | 38.33 | 25 | | 26 | 37.95 | 38.17 | 38 • 71 | 37.16 | 41.22 | 39.85 | 48.40 | 54.62 | 40.58 | 37.98 | 38.08 | 38.23 | 26 | | 27 | 38.00 | 38.22 | 38.24 | 37.13 | 39.50 | 38.58 | 48.37 | 54.05 | 40.07 | 37.91 | 38 • 02 | 38.23 | 27 | | 28 | 38.06 | 38 • 22 | 38.05 | 37.11 | 38.94 | 39.28 | 46.91 | 53.00 | 39.78 | 37.99 | 37.94 | 38 • 24 | 28 | | 29 | 38.06 | 38 • 04 | 39 • 17 | 37.10 | | 49.15 | 45.95 | 52.96 | 40+62 | 38+02 | 37.92 | 38 • 35 | 29 | | 30 | 38.06 | 37.81 | 40.42 | 37.13 | | 47.13 | 45.04 | 53.38 | 41.15 | 38.02 | 38.06 | 38.46 | 30 | | 31 | 38.03 | | 40.34 | 37.19 | | 45.32 | | 53+28 | | 37.91 | 37.94 | | 31 | E - Estimated NR - No Record NF - No Flow | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|-------------------------------|-------|--------------------|--------------|----------------|------|------|-------| | DATE | TIME | STAGE | | 2- 3-63
3-29-63
4- 8-63 | 1100
1500
2200 | 50.57 | 4-13-63
4-17-63
5-11-63 | 0100
0400
22 0 0 | | 5-25-63
6-19-63 | 0100
0030 | 54.64
51.40 | | | | | | LOCATIO | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|--------------|------------------|--------|-----------|----------|-------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | | 1 2014011002 | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 43 5 | 121 06 35 | SE29 2S 8E | 62500 | 63.25 | 12-24-55 | APR 40-DATE | APR 40-DATE | 1940 | | 0.00 | USGS | Station located 15 ft. below the Southern Pacific Railroad Bridge, 1.0 mi. SE of Ripon. Records furn. by U.S.G.S. Flow records are published in U.S.G.S. report, "Surface Water Records of California." ### DAILY MEAN GAGE HEIGHT STANISLAUS RIVER AT KOETITZ RANCH STATION NO WATER YEAR 803115 1963 IN FEET | DAY | OCT. | NOV. | OEC. | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|---------|-------|-------|---------|-------|---------|----------|--------|--------|----------|---------|----------|-----| | 1 | 28.63 | 28.49 | 28.20 | 30.48 | 27.71 | 29.28 | 36 • 00E | 34.81 | 43.19 | 31.41E | 28.23 | 28.35 | 1 | | 2 | 28.42 | 28.51 | 28.10 | 29.44 | 34.86 | 29.02 | 35 • 12E | 34.18 | 41.63 | 30.41E | 28.22 | 28.43 | 2 | | 3 | 28.30 | 28.50 | 26.04 | 28.82 | 43.24 | 28.83 | 34.71 | 34.94E | 39.91 | 29.99E | 28.48 | 28 • 20 | 3 | | 4 | 28.22 | 28.34 | 28.01 | 28.55 | 42.95 | 28.67 | 34.57 | 37.00E | 37.83 | 29.83E | 28.59 | 28 • 01 | 4 | | 5 | 28 • 22 | 28.48 | 28.01 | 28 • 41 | 39.42 | 28.53 | 33 • 57 | 37.92E | 35.65 | 30.03E | 28.77 | 28 • 1 4 | 5 | | 6 | 28.29 | 28.56 | 28.00 | 28.34 | 37.93 | 28.46 | 31.22 | 38.32E | 34.38 | 29.85E | 28.44 | 28 • 12 | 6 | | 7 | 28.46 | 28.58 | 27.99 | 28.29 | 35.89 | 28.49 | 34 • 13 | 39.39E | 32.84 | 29.69E | 28.23 | 28 • 33 | 7 | | 8 | 28.24 | 28.59 | 27.99 | 28 • 24 | 35.58 | 28.99 | 39.54 | 41.29E | 34.02 | 29.57E | 28.28 | 28.47 | 8 | | 9 | 28.12 | 28.57 | 27.99 | 28.20 | 35.78 | 28.54 | 40.66 | 42.56E | 35.52 | 29.43E | 28.23 | 28.63 | 9 | | 10 | 28.19 | 28.49 | 27.98 | 28.19 | 36.37 | 28.35 | 40.09 | 43.84E | 35.76 | 29.31E | 28.24 | 28.24 | 10 | | 11 | 28.40 | 28.45 | 27.99 | 28 • 19 | 39.41 | 28.30 | 39.10 | 45.05 | 36.28 | 29.07E | 28.24 | 28.30 | 11 | | 12 | 28.97 | 28.40 | 27.99 | 28 • 17 | 39.21 | 29.84 | 43.18 | 45.62 | 37.22 | 28.91E | 28.34 | 28 • 46 | 12 | | 13 | 29.12 | 28.39 | 27.98 | 28.15 | 38.50 | 30.34 | 44.62 | 45.40 | 36.63E | 28 • 92E | 28.20 | 28.82 | 13 | | 14 | 29.30 | 28.41 | 27.99 | 28.13 | 38.59 | 30.28 | 40.00 | 43.95E | 34.10E | 28.97E | 28.06 | 29.13 | 14 | | 15 | 29.46 | 28.41 | 28.00 | 28.10 | 38.04 | 30.01 | 37.34 | 40.90E | 34.42 | 28.96E | 28.12 | 28.79 | 15 | | 16 | 29.42 | 28.45 | 28.13 | 28.05 | 37.58 | 29.72 | 38 • 69 | 37.36E | 38.17 | 28.72E | 28.20 | 28.56 | 16 | | 17 | 29.01 | 28.56 | 28.49 | 27.96 | 37.43 | 31.16 | 40.20 | 35.20E | 38.66 | 28.92 | 28.05 | 28.49 | 17 | | 7.6 | 28.57 | 28.58 | 28.61 | 27.90 | 37.24 | 33 • 65 | 38.68 | 36.04E | 39.62 | 29.03 | 28.06 | 28.52 | 18 | | 19 | 28.37 | 28.54 | 28.49 | 27.87 | 36.43 | 31.49 | 36 • 69 | 39.56E | 39.88 | 28.94 | 28.18 | 28.54 | 19 | | 20 | 28.31 | 28.59 | 29.61 | 27.85 | 35.39 | 29.91 | 36 • 60 | 41.94E | 37.04 | 28.82 | 28.09 | 28.68 | 20 | | 21 | 28.29 | 28.64 | 30.25 | 27.83 | 34.52 | 29.16 | 38.57 | 43.37 | 37.05 | 28.86 | 27.96 | 28.83 | 21 | | 22 | 28.24 | 28.66 | 30.17 | 27.78 | 33.22 | 28.75 | 41.05 | 44.25 | 37.17 | 28.72 | 28.01 | 28.81 | 22 | | 23 | 28.17 | 28.64 | 30.35 | 27.73 | 32.99 | 28.61 | 41.41 | 44.67 | 35.91 | 28.64 | 28.30 | 29.09 | 23 | | 24 | 28.17 | 28.59 | 30.43 | 27.68 | 32.84 | 29.21 | 40.59 | 44.77 | 32.71 | 28.42 | 28.09 | 28.75 | 24 | | 25 | 28.35 | 28.58 | 30.34 | 27.64 | 32.76 | 31.96 | 38.92 | 44.77 | 31.79 | 28.30 | 28.28 | 28.62 | 25 | | 26 | 28.42 | 28.61 | 29.42 | 27.60 | 32.15 | 30.67 | 38.65 | 44.75 | 31.36 | 28.19 | 28.22 | 28.57 | 26 | | 27 | 28.47 | 28.65 | 28.83 | 27.57 | 30.40 | 29.50 | 38 • 62 | 44.50 | 30.83 | 28.18 | 28 • 19 | 28.63 | 27 | | 28 | 28.50 | 28.65 | 28.57 | 27.55 | 29.67 | 29.50 | 37.56 | 43.53 | 30.39 | 28.47 | 28.13 | 28.70 | 28 | | 29 | 28.52 | 28.54 | 29.00 | 27.53 | | 36.84E | 36.50 | 42.96 | 31.01 | 28.44 | 28.09 | 28.74 | 29 | | 30 | 28.52 | 28.33 | 30.50 | 27.53 | | 36.86E | 35.80 | 43.39 | 31.75 | 28.45 | 28.18 | 28.92 | 30 | | 31 | 28,50 | | 30.61 | 27.56 | | 36.41E | | 43.48 | | 28.34 | 28.12 | | 31 | E - Estimoted NR - No Record NF - No Flow | | | | | | | CREST | STAGES | | | | | | |--------|---------|--------------|-------|--------------------|------|-------|---------|------|-------|------|------|-------| | moted | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATÉ | TIME | STAGE | | Record | 2- 3-63 | 2400 | 44.2 | 4-17-63 | 0700 | 40.4 | 5-24-63 | 2400 | 44.9 | | | | | Flow | 4-10-63 | 0200
1040 | 41.8 | 4-23-63
5-12-63 | 1930 | 41.5 | 6- 1-63 | 0000 | 43.1 | | | | | | 4-13-63 | 1040 | 45.0 | 5-12-63 | 1600 | 45.8 | | | | | | | | 1 | | LOCATION | N | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM OF GAGE | | | |---|----------|------------------------------------|---------------|-----------|-----------|-------|-----------|-------------|----------------------|---------------|----------------------|-----------------------| | I | LATITUDE | ATITUDE LONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PEF | | ZERO
ON | REF | | ı | | | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 41 57 | 121 10 08 | SW 2 3S 7E | | | | | MAR 50-DATE | 1950
1951
1951 | 1951 | 0.00
0.00
3.60 | USED
USCGS
USED | Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon. ### DAILY MEAN GAGE HEIGHT STANISLAUS RIVER NEAR MOUTH STATION NO WATER YEAR 803105 1963 | DAY | ост | NOV | DEC. | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT. | DAY | |-----|-------|-------|-------|--------|--------|--------|---------|-------|-------|-------|-------|-------|------| | 1 | NR | 16.63 | 16.65 | 18.23 | 16.01 | 18.80E | 23.76 | 23.14 | 28.22 | 19.05 | 15.44 | 15.63 | 1 | | 2 | 16.54 | 16.63 | 16.59 | 17.63 | 19.69 | 10.32 | 23.07 | 22.34 | 27.57 | 18.09 | 15.37 | 15.88 | 2 3 | | 2 | 16.36 | 16.66 | 16.45 | 17.06 | 26.91 | 17.94 | 22.21 | 22.13 | 26.47 | 17.59 | 15.62 | 15.60 | | | 4 | 16.28 | 16.56 | 16.36 | 16.86 | 28.10 | 17.63 | 21.96 | 23.77 | 25.53 | 17.32 | 16.09 | 15.56 | 4 | | 5 | 16.30 | 16.53 | 16.33 | 16.73 | 26.81 | 17.17 | 21.44 | 24.25 | 23.91 | 17.28 | 15.93 | 15.69 | 5 | | 6 | 16.46 | 16.38 | 16.33 | 16.61 | 26.18 | 16.99 | 19.58 | 24.61 | 22.56 | 17.48 | 15.83 | 15.33 | 6 | | 7 | 16.84 | 16.48 | 16.36 | 16.49 | 25.18 | 16.86 | 20.22 | 24.85 | 21.10 | 17.35 | 15.72 | 15.46 | 7 | | 8 | 16.52 | 16.48 | 16.44 | 16.49 | 23.70 | 17.08 | 24.70 | 26.01 | 21.13 | 17.29 | 15.68 | 15.89 | 8 | | 9 | 16.16 | 16.51 | 16.47 | 16.48 | 23.28 | 16.96 | 25 • 64 | 26.57 | 22.21 | 17.12 | 15.60 | 16.08 | 9 | | 10 | 16.21 | 16.55 | 16.43 | 16.54 | 23.43 | 16.64 | 26.26 | 27.07 | 22.42 | 16.90 | 15.76 | 15.69 | 10 | | 11 | 16.60 | 16.52 | 16.32 | *16.46 | 25.44 | 16.34 | 25.25 | 28.00 | 22.89 | 16.70 | 15.74 | 15.71 | 11 | | 12 | 16.90 | 16.42 | 16.36 | 16.48 | 25.78 | 16.87 | 27.43 | 28.93 | 23.78 | 16.52 | 15.70 | 15.99 | 12 | | 13 | 17.42 | 16.40 | 16.42 | 16.44 | 25.26 | 17.67 | 28.70 | 29.08 | 23.31 | 16.38 | 15.44 | 16.45 | 13 | | 14 | 17.46 | 16.32 | 16.44 | 16.38 | 25.41 | 17.76 | 26.53 | 28.03 | 21.42 | 16.43 | 15.25 | 16.73 | 14 | | 15 | 17.58 | 16.34 | 16.39 | 16.33 | 26.32 | 17.65 | 24 • 32 | 25.94 | 20.60 | 16.51 | 15.11 | 16.56 | 15 | | 16 | 17.64 | 16.38 | 16.42 | 16.28 | 25.75 | 17.55 | 25.25 | 23.90 | 23.33 | 16.35 | 15.10 | 16.29 | 16 | | 17 | 17.28 | 16.47 | 16.48 | 16.22 | 25.04 | 18.23 | 26.28 | 22.51 | 24.03 | 16.07 | 15.34 | 16.21 | 17 | | 18 | 16.89 | 16.52 | 16.67 | 16.18 | 24.67 | 20.51 | 25.24 | 22.18 | 24.19 | 16.04 | 15.47 | 16.21 | 18 | | 19 | 16.65 | 16.53 | 16.69 | 16.14 | 24.22 | 19.25 | 23.79 | 23.97 | 24.93 | 16.12 | 15.58 | 16.10 | 19 | | 20 | 16.50 | 16.52 | 17.22 | 16.12 | 23.79 | 18.05 | 23.77 | 26.15 | 23.30 | 16.09 | 15.70 | 16.22 | 20 | | 21 | 16.50 | 16.65 | 17.90 | 16.09 | 22.96 | 17.20 | 24.84 | 27.05 | 23.80 | 16.09 | 15.30 | 16.44 | 21 | | 22 | 16.46 | 16.69 | 18.03 | 16.06 | 21.88 | 16.73 | 26.44 | 27.74 | 24.21 | 16.06 | 15.32 | 16.41 | 22 | | 23 | 16.36 | 16.69 | 18.17 | 16.02 | 21.52 | 16.74 | 26.71 | 28.22 | 23.47 | 15.84 | 15.57 | 16.78 | 23 | | 24 | 16.31 | 16.67 | 18.20 | 15.99 | 21.21E | 16.81 | 26.50 | 28.39 | 21.11 | 15.79 | 15.55 | 16.58 | 24
| | 25 | 16.45 | 16.67 | 18.21 | 15.96 | 20.87E | 18.80 | 25.57 | 28.61 | 19.79 | 15.67 | 15.72 | 16.35 | 25 | | 26 | 16.54 | 16.67 | 17.71 | 15.92 | 20.40E | 18.15 | 25.33 | 28.77 | 18.90 | 15.56 | 15.48 | 16.39 | 26 | | 27 | 16.58 | 16.69 | 17.10 | 15.89 | 19.55E | 17.24 | 25.34 | 28.79 | 18.42 | 15.44 | 15.64 | 16.23 | 27 | | 28 | 16.62 | 16.73 | 16.89 | 15.87 | 19.11E | 17.25 | 24.94 | 28.14 | 17.93 | 15.43 | 15.30 | 16.17 | 28 | | 29 | 16.64 | 16.77 | 16.87 | 15.86 | | 22.05 | 23.92 | 27.73 | 18.19 | 15.67 | 15.39 | 16.45 | 29 | | 30 | 16.64 | 16.73 | 17.90 | 15.88 | | 24.58 | 23.48 | 28.11 | 19.03 | 15.48 | 15.68 | 16.37 | . 30 | | 31 | 16.64 | | 18.26 | 15.91 | | 23.83 | | 28.34 | | 15.37 | 15.61 | | 31 | | Ε | - | Est | mated | |----|---|-----|--------| | NR | - | No | Record | | NF | - | No | Flow | | | | | | (| CREST | STAGES | | | | | | |-------------------------------|----------------------|-------------------------|---------|----------------------|-------------------------|---------|----------------------|-------------------------|------|------|-------| | DATE | TIME | STAGE | | 2- 4-63
2-15-63
4-10-63 | 0850
1030
0610 | 28.30
26.44
26.71 | 4-17-63 | 1610
0800
0800 | 28.93
26.42
26.29 | 5-27-63 | 0450
1000
1950 | 29.22
28.88
28.35 | | | | | | LOCATION | N | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | | | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|--------------|------|------|----------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | - | | ON | REF. | | | | M. D. B. & M | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | OATON | | 37 40 02 | 121 13 41 | SW17 3S 7E | | | | SEP 51-DATE | SEP 51-DATE | 1951
1959 | 1959 | 1.11 | USCGS
USCGS | Station located 1.9 mi. above mouth, 7.7 mi. SW of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area 1,091 sq. mi. Altitude of gage is approx. 25 ft. (from U.S.G.S. topographic map). ### DAILY MEAN GAGE HEIGHT SAN JOAQUIN RIVER NEAR VERNALIS STATION NO WATER YEAR B07020 1963 | DAY | ост. | NOV. | DEC | JAN | FEB | MAR | APRIL | MAY | JUNE | JULY | AUG | SEPT | DAY | |-----|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-----| | 1 | 11.43 | 12+16 | 13.62 | 13.17 | 12.95 | 16.29 | 20.31 | 19.99 | 23.71 | 15.11 | NR | 11.49 | 1 | | 2 | 11.48 | 12 • 17 | 13.56 | 13.15 | 15.38 | 15.79 | 19.39 | 19.23 | 23.36 | 14.62 | NR | 11.60 | 2 | | 3 | 11.50 | 12+17 | 13.10 | 12.79 | 20.72 | 15.36 | 17.86 | 18.24 | 22.68 | 14.39 | NR | 11.62 | 3 | | 4 | 11.54 | 12.17 | 12.83 | 13.29 | 23.03 | 14.96 | 17.35 | 18.49 | 22.11 | 13.53 | NR | 11.61 | 4 | | 5 | 11.62 | 12.14 | 13.13 | 13.28 | 22.95 | 14.14 | 16.92 | 18.58 | 20.97 | 13.35 | NR | 11.59 | 5 | | 6 | 11.63 | 12.00 | 13.32 | 12.89 | 22.72 | 13.96 | 15.73 | 18.67 | 19.60 | 13.18 | NR | 11.59 | 6 | | 7 | 11.76 | 11.89 | 13.55 | NR | 22.18 | 13.68 | 15.43 | 18.54 | 18.33 | 13.03 | NR | 11.58 | 7 | | 8 | 11.70 | 11.91 | 13.75 | NR | 20.28 | 13.41 | 18.00 | 18.65 | 17.71 | 13.52 | NR | 11.64 | 8 | | 9 | 11.37 | 11.97 | 13.69 | 12.81 | NR | 13.22 | 19.97 | 18.91 | 17.95 | 13.50 | YR . | 11.74 | 9 | | 10 | 11.20 | 12.00 | 13.28 | 13.03 | NR | 13.01 | 21.25 | 19.39 | 18.27 | 13.30 | ЧR | 11.78 | 10 | | 11 | 11.32 | 12.02 | 13.05 | 12.88 | NR | NR | 20.90 | 20.24 | 18.44 | 13.58 | ND | 11.77 | 11 | | 12 | 11.62 | 12.03 | 13.56 | 13.03 | NR | NR | 22.34 | 22.06 | 19.57 | 13.26 | NR | 11.69 | 12 | | 13 | 12.30 | 12.05 | 13.52 | 13.08 | NR | NR | 23.35 | 23.12 | 18.86 | 13.30 | NP | 11.71 | 13 | | 14 | 12.79 | 12.06 | 13.49 | 12.74 | NR | NR | 21.95 | 22.67 | 16.39 | 13.07 | NR | 11.8/ | 14 | | 15 | 12.97 | 12.12 | 13.28 | NR | 22.91 | 11.98 | 19.96 | 21.19 | 15.17 | 12.84 | NO | NP | 15 | | 16 | 13.02 | 12.17 | 13.22 | NR | 22.36 | 11.97 | 21.21 | 19.78 | 16.62 | NR | NP | NR | 16 | | 17 | 12.83 | 12.21 | 13.06 | NR | 21.34 | 12.54 | 21.90 | 18.65 | 17.41 | NR | ٩R | 12.63 | 17 | | 18 | 12.49 | 12.22 | 12 • 84 | NR | 20.83 | 13.53 | 20.48 | 17.79 | 16.82 | NP | NR | 12.64 | 18 | | 19 | 12.26 | 12.20 | 13+38 | NR | 20.51 | 13.12 | 19.47 | 18.23 | 17.96 | NR | 11.39 | 12.66 | 19 | | 20 | 12.13 | 12 - 13 | 13.71 | NR | 20.50 | NR | 19.62 | 19.93 | 18.31 | NR | 11.39 | 12.6/ | 20 | | 21 | 12.08 | 12.18 | 13.97 | NR | 19.53 | 12.17 | 20.62 | 20.94 | 19.85 | NR | 11.37 | 12.74 | 21 | | 22 | 12.01 | 12.20 | 14.25 | NR | 18.71 | 11.92 | 21.60 | 21.55 | 20.63 | NR | 11.31 | 12.86 | 22 | | 23 | 11.84 | 12.24 | 14.37 | NR | 18.37 | 11.97 | 21.72 | 22.09 | 20.07 | NR | 11.32 | 13.08 | 23 | | 24 | 11.69 | 12.18 | 14.10 | NR | 17.97 | 12.15 | 21.70 | 22.37 | 18.25 | NR | 11.38 | 12.96 | 24 | | 25 | 11.75 | 12.41 | 13.82 | NR | 17.43 | NR | 21.23 | 22.89 | 16.97 | NR | 11.45 | 12.87 | 25 | | 26 | 11.85 | 12.76 | 13.71 | NR | 1/.09 | 12.76 | 21.03 | 23.31 | 15.64 | NR | 11.55 | 12.77 | 26 | | 27 | 11.94 | 12.70 | 13.25 | NR | 16.90 | 12.49 | 21.11 | 23.52 | 14.95 | NR | 11.50 | 12.61 | 27 | | 28 | 12.02 | 13.15 | 13.48 | NR | 16.60 | 12.54 | 20.99 | 23.15 | 14.30 | NR | 11.33 | 12.39 | 28 | | 29 | 12.08 | 13.31 | 13.25 | NR | | NR | 20.01 | 22.96 | 14.06 | NR | 11.31 | 12.20 | 29 | | 30 | 12.13 | 13.47 | 13.44 | NR | | 19.35 | 19.67 | 23.49 | 14.80 | NR | 11.36 | 12 • 12 | 30 | | 31 | 12.15 | | 13.47 | NR | | 20.08 | | 23.77 | | NR | 11.43 | 16.15 | 31 | | Ε | - | Est | imated | |----|---|-----|--------| | NR | ~ | No | Record | | NF | - | No | Flow | | | | | | | CREST | STAGES | | | | | | |-------------------------------|----------------------|-------|-------------------------------|----------------------|-------------------------|---------|------|-------|------|------|-------| | OATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | | 2- 4-63
2-15-63
4-13-63 | 2000
1500
1400 | 23.09 | 4-17-63
5-13-63
5-27-63 | 0600
1400
1100 | 22.12
23.20
23.55 | 5-31-63 | 1400 | 23.80 | | | | | | LOCATION | ı | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|---------|--------------------------------|------------------------------|------|---------------|------------|-------|--| | | | 1/4 SEC. T. 8 R. | | OF RECORD |) | OISCHARGE | GAGE HEIGHT | PER | RIOD | 2ERO | REF | | | LATITUDE | LONGITUDE | M. D. B. B M. | C.F.S. | GAGE HT. | DATE | OTSCHARGE | ONLY | FROM | TO | ON
GAGE | DATUM | | | 37 40 34 | 121 15 51 | | 79000 | 27.75 | 12-9-50 | JUL 22-DEC 23
JAN 24-FEB 25 | | | | 8.4 | USED | | | | | | | | | JUN 25-OCT 28
MAY 29-DATE | JUN 25-OCT 28
MAY 29-DATE | | 1959 | | USCGS | | Station located 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River, 3.4 mi. NE of Vernalis. Records furn. by U.S.G.S. Drainage area is approx. 14,010 sq. mi. | | Mile
and Sank | and Size | | | | | м | onthly Diren | ion in Acre I | eet | | | | | Diversion | |---|------------------|----------------------------------|------|-----|-----|-----|-----|--------------|---------------|-------|-------|-------|------------|------|--| | Water User | | Number
and Size
of
Pump | Oct | Non | Dec | Jgn | Feb | Mor | Apr | Mary | June | July | Aug | Sept | Total
Diversion
Oct - Sep
Acre Feet | | DURHAM FERRY BRIDGE | 76. | | | | | | | | | | | | | | | | | 76,7 | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN
RIVER NEAR VERNALIS | | | | | | | | | | | | | | | | | Cook Land and Cattle Company | 78.9R | 1-14" | 110 | 3 | | 1 | | | | | 222 | 540 | 433 | 173 | 1482 | | Cruze, Trudel and Gillmeister | 79,48 | 1-20" | 2 | 1 | | | | 1 | 1 | 38 | 58 | 50 | 166 | 94 | 411 | | STANISLAUS RIVER | 79.7R | | | | | | | | | | | | | | | | Faith Ranch | 79.8R | 1-16" | | 75 | | | | 21 | | | 119 | 295 | 423 | 255 | 1188 | | W. C. Blewett Estate | 80.7L | 1-12" | | | | | | 219 | 22 | | 332 | 40 | 578 | 160 | 1351 | | W. C. Blewett Estate | 81.8L
81.85 | 2-12" | 64 | | | | | 314 | | 435 | 660 | 1055 | 1099 | 350 | 3977 | | GAGING STATION - SAN JOAQUIN
RIVER AT MAZE ROAD BRIDGE | 81.85 | | | | | | | | | | | | | | | | Blewett Mutual Water Company | 81.95L | 1-10" | 43 | | | | | 394 | | 1262 | 954 | 1051 | 1050 | 530 | 5284 | | El Solyo Water Oistrict | 82.0L | 1-10"
1-16"
3-18" | 168 | | | | | 964 | 238 | 2040 | 2458 | 2730 | 2455 | 1301 | 12350 | | GAGING STATION - SAN JOAQUIN
RIVER AT HETCH HETCHY AQUEDUCT
CROSSING | 82.65 | | | | | | | | | | | | | | | | El Solyo Ranch | 82.9L | 1-16" | 32 | | | | | | | 71 | 5.9 | 199 | 242 | 250 | 853 | | El Solyo Ranch | 83.5L | 1-12" | 1 | | | | | | | 23 | 20 | 28 | 27 | 32 | 131 | | El Solyo Ranch | 83.7L | 1-12" | 3.3 | | | | | | | 114 | В6 | 232 | 244 | 146 | 855 | | Faith Ranch | 84.4R | 1-16" | 122 | 56 | 43 | | | 378 | 64 | 449 | 572 | 736 | 792 | 623 | 3835 | | | | 1-20" | | | | | | | | | | | | | | | TUOLUMNE RIVER | 91.OR | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAOUIN
RIVER AT WEST STANISLAUS
IRRIGATION DISTRICT INTAKE
CANAL | 91.8L | | | | | | | | | | | | | | | | WEST STANISLAUS IRRIGATION
DISTRICT INTAKE CANAL | JB.10 | | | | | | | | | | | | | | | | West Stanislaus Irrigation
District | 91.8L | 1-12"
1-24"
6-26" | 1260 | 493 | 277 | 577 | 0 | 4597 | 583 | 10660 | 13240 | 12820 | 9222 | 4662 | 5839 | | Fred Lara #1 | * (0,6S) | 1-14" | | 45 | | 1 | | 81 | | 255 | 369 | 147 | 380 | 77 | 135 | | Frank Sarmento #1 * | 4 (0.7N) | 3-16 " a | 94 | | | | | 106 | | 302 | 192 | 370 | 351 | 290 | 170 | | Frank Sarmento #2 * | • (1.1N) | 1-14" | 68 | | | | | 292 | 1 | 701 | 632 | 385 | 556 | 404 | 303 | | Fred Lara #2 | * (2.2S) | 1~16~ | | | | 12 | | 13 | | 7 | 37 | 48 |
65 | 28 | 21 | | Frank Sarmento #3 * | * {2,3N} | 2-16" | 125 | | | | | 176 | | 391 | 373 | 391 | 363 | 373 | 219. | | J. V. Steenstrup Estate | 93.1R | 1-12
1-14"E | | | | | | 70 | | 328 | 476 | 706 | 846 | 535 | 296 | | T. C. Daily | 94.1L | 1- 3"
1- 6" | | | | | | 25 | 16 | 66 | 60 | 74 | 101 | 22 | 36 | | Rancho Dos Rios | 94.7R | 1-12" | 5.4 | | 34 | 1 | | 54 | 1 | 192 | 279 | 345 | 338 | 280 | 158 | | E. L. Brazil | 95.5R | 1-16" | | 59 | 3 | | 3 | 115 | | 90 | 90 | 161 | 122 | 43 | 68 | | Charles Correia | 95.8R | 1-10" | | | | | | | | | | 51 | 51 | | 10 | | CAGING STATION - SAN JOAQUIN | 95.95L | Island Dairy (d) | 96.0L | 1-18" | | | 27 | | | 137 | | 512 | 402 | 476 | 435 | 227 | 221 | | LAIRD SLOUGH BRIDGE | 96.05 | | | | | | | | | | | | | | | | E. S. Brush | 98.5R | 1- 71 | | | | | | | | 61 | 8.5 | 84 | 62 | 58 | 351 | | Rancho El Pescadero | 98.9L | 1-18" | 51 | 18 | 45 | | | 191 | | 584 | 232 | 477 | 470 | 259 | 2321 | | GAGING STATION - SAN JOAQUIN
RIVER AT PATTERSON BRIDGE | 104,4L | | | | | | | | | | | | | | | | Patterson Water Oistrict | 104.4L | 1~14"
2-18"
3-20"
1-36" | 158 | | | | | 848 | | 5878 | 7684 | 7948 | 7948 | 7903 | 38 370 | | Chase Brothers | 104.5R | 1-36" | 13 | 13 | | | | 28 | | 49 | 167 | 260 | 59B | 276 | 142 | | PATTERSON BRIDGE | 104.6 | | | | | | | | | 1 | | | | | | | Chase Brothers | 106.5R | 1-12" | 23 | 24 | | | | 98 | | 319 | 535 | 517 | 445 | 271 | 2232 | | Tony Spinell: | 109,1R | 1-12" | 40 | | | | | 27 | | 57 | 12 | 39 | 69 | 44 | 288 | | Twin Oaks Irrigation Company | 109.8L | 1-12"
2-16"
1-18" | 328 | 45 | 86 | | | 562 | | 1962 | 1913 | 1338 | 1880 | 1015 | 912 | | T. J. Nenderson | 118R | 2- 8" | 108 | | | | | | | 95 | 35 | 7.7 | 19 | 87 | 42. | | L. A. Thompson | 112.55P | 1-18" | 54 | | | | | 6.3 | | 49 | 94 | 241 | 242 | | 74 | | Frank C. Mosier | 113.4R | 1-12" | 115 | 2 | 4 | | | 100 | 20 | 189 | 153 | 155 | 156 | 130 | 102 | | GAGING STATION - SAN JOAQUIN
RIVER AT CROWS LANDING BRIDGE | 113.4 | Frank C. Mosier | 114.63R | 1- 0" | | | | | | No Dive | rsion | | | | | | | | Manuel A. Serpa | 114.75R | 2-10" | | | | | | 227 | | 229 | 631 | 577 | 479 | 107 | 225 | | | | | | 1 | | | | | | | 1 | | | | | | ORESTIMBA CREEK | 115,2L | | | | | | | | | | | | 200 | 246 | | | ORESTIMBA CREEK ROY F. Crow L. B. Crow | 115.2L
115.BL | 1-10" | 77 | | 54 | | | 9 | 23 | 180 | 137 | 192 | 366
217 | 144 | 93. | DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) (Continued) October 1962 through September 1963 | | Mile
and Bank | Number
and Size | | | | | м | onthly Divers | ion in Acre-I | eet | | | | | Tatal
Diversion | |---|------------------|--------------------|-------------------|------------------|-----------------|------------------|-----------------|---------------------|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------| | Water User | * | al
Pump | Oct. | Nov. | Dec | Jan | Feb. | Mor | Apr | May | June | July | Aug | Sept. | Oct Sept
Acre-Feet | | Stevinson Water District | 121.3R | 1-18" | 2 | 3 | | | | | | 95 | 190 | 204 | 183 | 81 | 758 | | MERCED RIVER SLOUGH | 122.2R | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN
RIVER NEAR NEWMAN | 123.7 | | | | | | | | | | | | | | | | MERCED RIVER | 123.75R | | | | | | | | | | | | | | | | Stevinson Corporation | 129.1L | 1-16" | | | 6 | | 128 | | | 62 | 151 | 30 | 130 | 68 | 575 | | VERNALIS TO FREMONT FORD BRIDG | GE_ | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of sea | isonal | | 3152
51
1.9 | 837
14
0.5 | 579
9
0.3 | 592
10
0.4 | 132
2
0.1 | 10250
166
6.1 | 991
17
0.6 | 28000
455
16.6 | 33890
570
20.1 | 35340
574
20.8 | 33680
548
20.0 | 21380
360
12.6 | 168800
233 | ^{*} Mileage along San Joaquin River from its mouth, 4.5 miles below Antioch. ^{**} West Stanislaus Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from the river and the bank is shown in parentheses. a One 16" unit was removed in 1963. b Replaces a 12" unit. c Includes an undetermined amount of water returned to river by spill. d Formerly listed as W. F. Cook # DIVERSIONS - SAN JOAQUIN RIVER (Fremont Ford Bridge to Gravelly Ford) October 1962 through September 1963 | Mile
and Bank | Number
and Size | | | | | | Ionthly Diversi | an in Acre-Fi | ref | | | | | Total
Diversion | |--|------------------------|---------------------|---------------------|--------------------|--------------------|---------------------|----------------------|---------------------|------------------------|------------------------|------------------------|------------------------|----------------------|------------------------| | and Bank Water User * | ond Size
of
Pump | Oct. | Nav. | Dec. | Jan | Feb. | Mar. | Apr. | May | June | July | Aug | Sept. | Oct Sept.
Acre-Feet | | GAGING STATION - SAN JOAQUIN 129.5
RIVER AT FREMONT FORD BRIDGE | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN 186.0
RIVER NEAR DOS PALOS | | | | | | | | | | | | | | | | San Luis Canal Company (a) 186.6L | Gravity | 7449 | 3574 | 2100 | 3386 | 4326 | 11203 | 12077 | 21955 | 26852 | 28153 | 25837 | 16623 | 163535 | | FIREBAUGH BRIDGE 198.4 | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN 206.2
RIVER NEAR MENDOTA | | | | | | | | | | | | | | | | MENDOTA DAM 208.63 | | | | | | | | | | | | | | | | Central California 208.8L
Irrigation District (a) | Gravity | 21012 | 12277 | 3311 | 4806 | 10989 | 47353 | 28719 | 72893 | 81878 | 87742 | 84987 | 41667 | 497634 | | FRESNO SLOUGH 8 209.0L | | , | | | | | | | | | | | | | | DELTA-MENDOTA CANAL (0.2L) | | | | | | | | | | | | | | | | Firebaugh Canal Company (a) (0.4L) | | 1203 | 369 | 234 | | 591 | 5216 | 4840 | 10494 | 12361 | 14168 | 14168 | 4973 | 68617 | | M. Jensen (b) | • | | | | | | No Dive | rsion | | | | | | | | M. L. Dudley 8 (3.4L) | | | | | | | 405 | 268 | 444 | 434 | 595 | 309 | 46 | 2501 | | State of California & (6.45-8.20) Mendota Waterfowl Management (b) | 1-16" | 3917 | 2174 | 700 | | | | 30 | 234 | 2319 | 2670 | 2533 | 3112 | 17689 | | Fresno Slough Water 8 (9.20-10.50)
District (b) | | | | | | 60 | 736 | 16 | 341 | 1309 | 1037 | 1111 | 192 | 4802 | | JAMES BYPASS 8 (11.BOR) | l | | | | | | | | | | | | | | | Traction Water District (b) 88(0.75) | | 524 | 315 | 50 | | 54 | 559 | 214 | 623 | 748 | 619 | 668 | 494 | 4868 | | Reclamation District 88(1.50) | | | | | | 22 | 67 | | 67 | 153 | 171 | 167 | 14 | 661 | | James Irrigation District (b) 88(4.4) | | | | | | 1093 | 4941 | 1513 | 990 | 5619 | 7182 | 6028 | 496 | 27862 | | Tranquillity Irrigation 8(12.00-13.75) District (b) | | 204 | | | | 1777 | 4066 | | | | 557 | 6306 | 1414 | 14324 | | Melvin O. Hughes (b) 8 (12:20) | | | | | | | 30 | | | 36 | | | | 66 | | LONE WILLOW SLOUGH 219.BR | | | | | | | | | | | | | | | | Columbia Canal Company (a) 219.8R | | 3368 | 2846 | 1006 | 40 | 3207 | 4372 | 6668 | 8255 | 8664 | 8785 | 8959 | 5786 | 61956 | | State Center Duck Club (c) (b) | | | 141 | 1.29 | | | | | | | | | 4 | 274 | | C. Sawall (d) (b) | | | | | | | No Dive | ersion | | | | | | | | Mendota Duck Club (e) (b) | | | | | | | No Dive | ersion | | | | | | | | M. Beck (f) (b) | | 44 | 10 | | | | | | | | | | | 54 | | E. P. Jennings (b) | | 6 | | | | | 52 | 58 | 4 | 22 | | 28 | | 180 | | F. A. Yearout (b) | | | | | | 77 | 102 | 26 | 87 | 161 | 115 | 209 | | 777 | | Tulle Gun Club (g) (b) | | | | | | | No Dive | rsion | | | | | | | | GAGING STATION - SAN JOAQUIN 219.83
RIVER AT WHITEHOUSE | | | | | | | | | | | | | | | | GRAVELLY FORD CANAL 232.8R | | | | | | | | | | | | | | | | FREMONT FORD BRIDGE TO GRAVELLY FORD | | | | | | | | | | | | | | | | Total Average cubic feet per second Monthly use in percent of seasonal | | 37727
614
4.4 | 21706
365
2.5 | 7530
122
0.9 | 8232
134
1.0 | 22196
400
2.6 | 79102
1286
9.1 | 54429
915
6.3 | 116387
1893
13.4 | 140556
2362
16.2 | 151804
2469
17.5 | 351310
2461
17.5 | 74821
1257
8.6 | B65800
1196 | ^{*} Mileage along San Jrajuin River from its mouth 4.5 miles below Antioch. 8 Plant is located in Fresno Slough which diverts from San Joaquin River at mile 209.0L. Oistances from San Joaquin River and bank are shown in parentheses. 88 Plant is located or James Bypass which diverts from Fresno Slough at Mile 8 (11,80R). Distances from Fresno Slough and bank are shown in parentheses. 9 Records furnished by motifacting entities. ⁽c) 1-6" pump located on arm of slough, at SW corner S.12, T145, R15E. (d) 1-8" pump located on arm of slough, 1500' W of SE corner, S.18, T145, R16E. (e) 1-8" pump located on arm of slough, at St corner, S.11, T145, R15E. (f) 1-8" pump located on arm of slough, 1400' S of NE corner, S.24, T145, R15E. (g) 1-8" pump located on arm of slough, adjacent to M. Beck # DIVERSIONS - SAN JOAQUIN RIVER (Gravelly Ford to Friant Dam) October 1962 through September 1963 | | Mile | Number | | | | | Septemb | | on in Acre-Fi | | | | | | Total | |---|--------------------|------------------------|-----------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------------------------| | Water User | and Bank | and Size
of
Pump | Oct. | Nov | Dec | Jan | Feb. | Mar | Apr | May
 June | July | Aug | Sept | Diversion
Oct Sept
Acre Feet | | W. A. Kochergen 1 | 233.66R | 1-6" | 31 | 1107 | Dec | 76 | 1.0 | | търг | , | 23 | 71 | 3B | 19 | 192 | | Dewey W. Johnson 1 | 235.33R | 1-5" | | | | | | 10 | 11 | 5 | 24 | 32 | 54 | 30 | 166 | | Hansen, Smith and McIntuf | 237.33L | 1-10" | | 10 | | | | 33 | 18 | | | 46 | | | 107 | | | 237.98R | 1-6" | | 10 | | | | 33 | 10 | | | 40 | | | 107 | | SKAGGS BRIDGE | 238.18 | 1 0 | | | | | | | | | | | | | | | A. and M. Overgaard | 243.84R | 1-5" | 5 | | 3 | 2 | 1 | 32 | 20 | 19 | 52 | | | | 134 | | | | 1-6" | | | | | | | | | | | | | | | U. S. 99 HIGHWAY BRIDGE | 247.38 | | | | | | | | | | | | | | | | SANTA FE RAILROAD BRIDGE | 249.23 | | 8 | | | 3 | 1 | | | 37 | 62 | 73 | 69 | 36 | 289 | | Miller Brothers | 251.46L
254.93R | 1-6" | 8 | | | 3 | 1 | | | 3 / | 62 | / 3 | 69 | 30 | 289 | | | 254.93R | 1-6 | | | | | | | | | | | | | | | Sycamore Island Stock
Rench 5 (b) | 255.34R | 1-6" | | | | | | 3 | | | 20 | 82 | 77 | | 182 | | Oscar Spano River Ranch 1 | 257.10L | 1-16" | 11 | | | | | 14 | 33 | 100 | 120 | 158 | 165 | 124 | 725 | | Oscar Spano River Ranch 2 | 257.70L | 1-12" | 33 | 3 | | | | 34 | 16 | 81 | 79 | 92 | 70 | 54 | 462 | | L. D. Cobb | 258.08R | 1→6"
1-7" | | | | | | 43 | | 53 | 149 | 208 | 134 | 30 | 617 | | STATE HIGHWAY 41 BRIDGE | 258.33 | | | | | | | | | | | | | | | | R. J. Curtis | 25B.39L | 1-4" | | | | | | 89 | 35 | 55 | 40 | 100 | 56 | 68 | 443 | | W. E. Roberts 2 | 258.901 | 1-12" | 17 | | 1 | 1 | 1 | 1 | 1 | 33 | 90 | 85 | 80 | 82 | 392 | | J. E. Cobb | 259.39R | 2→6" | 2 | 4 | | | 18 | 40 | | 3 | 56 | 76 | 75 | 7 | 281 | | OLD LANES BRIDGE | 259.78 | | | | | | | | | | | | | | | | J. E. Cobb 3 | 260.40R | 1-6" | 49 | 17 | | 4 | 4 | 40 | 8 | 91 | 142 | 95 | 124 | 80 | 654 | | R. C. Arnold | 261.53R | 1-4"
1-5" | | 2 | | | | 14 | | 36 | 66 | 123 | 96 | 26 | 363 | | Duane M. Folsom | 261.70L | 1-6" | 64 | 19 | | | | 15 | 12 | 28 | 89 | 136 | 156 | 76 | 595 | | E. G. Rank, Jr. | 262.32L | 1-5" | 21 | 10 | 3 | 1 | | 8 | | 27 | 68 | 70 | 79 | 36 | 323 | | Dale McCoon 1 | 262.60R | 1-5" | | | | | | 57 | 5 | | 65 | 76 | 77 | 6 | 286 | | W. H. Rohde | 262.66L | 1-7" | 3 | | | 52 | 10 | | 4 | 1 | 45 | 75 | 78 | 19 | 287 | | Dale McCoon 2 | 263.40R | 1-7" | | | | | | 96 | 7 | | 101 | 127 | 114 | 8 | 453 | | Dale McCoon 3 | 263.48R | 1-6" | | | | | | 43 | 2 | | 95 | 116 | 77 | 2 | 335 | | H. K. Jensen | 263.76R | 1-5" | | 35 | 1 | 11 | 10 | | | 40 | 83 | 100 | 98 | 71 | 449 | | H. W. Ball 4 (c) | 264.08L | 1-6" | | | | | | | | | | | | | | | Ike D. Ball | 264.60R | 1-6" | 37 | 26 | | | | 32 | | 80 | 113 | 117 | 116 | 88 | 609 | | W. F. Bell | 264.83L | 1-4"
1-5" | 30 | 20 | 6 | 5 | 4 | | | 51 | 47 | 102 | 75 | 46 | 386 | | Virgil Durando | 267.56L | 1-8" | 32 | | 13 | 10 | 8 | 4 | 12 | 27 | 160 | 212 | 219 | 146 | 843 | | GAGING STATION - SAN
JOAQUIN RIVER BELOW
FRIANT | 268.13L | | | | | | | | | | | | | | | | FRIANT BRIDGE | 268.88 | | | | | | | | | | | | | | | | COTTONWOOD CREEK | 269.53R | | | | | | | | | | | | | | | | FRIANT DAM | 269,63 | | | | | | | | | | | | | | | | GRAVELLY FORD TO FRIANT DAM | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in per cent of se | asonal | | 343
6
3.6 | 146
2.5
1.5 | 27
0.4
0.3 | 89
1.4
0.9 | 57
1.0
0.6 | 608
9.9
6.4 | 184
3.0
1.9 | 767
12
8.0 | 1789
30
18.7 | 2372
39
24.8 | 2127
35
22.3 | 1054
18
11.0 | 9563
13 | Milesge along San Joaquin River from its mouth 4½ miles below Antioch. Mot published in 1962 report. 174 acre-feet were diverted during 1962 diversion year. Mot published in 1962 report. 174 acre-feet were diverted during 1962 diversion year. Date not published as current byear seasonal average is less than 200 acre-feet. TABLE B-89 DIVERSIONS - MERCED RIVER Uctober 1962 through September 1963 | | Mile
and Bank | Number
and Size | | | | | Mi | onthly Diverse | an in Acre-Fe | ret | | | | | Total
Diversion
Oct Sep
Acre-Feet | |---|------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|---------------------|---------------------|----------------------|---------------------|---------------------|--| | Water User | above
Mouth | al
Pump | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Acre-Feet | | | 1.1 | | | | | | | | | | | | | | | | HILLS FERRY BRIDGE | 1.1
1.8R | 1-16" | | | | | 57 | | - 1 | 73 | 252 | 445 | 185 | 32 | 104 | | Stevinson Water District #1
Stevinson Water District #2 | 3.8R | 1-16" | 100 | 16 | . 3 | | 89 | 215 | | 644 | 626 | 835 | 851 | 524 | 390 | | Stevinson Water District #2 | 4.3L | 1-10" | 17 | 8 | 6 | 4 | 5 | 3 | , | 044 | 14 | 32 | 27 | 19 | 13 | | Milton Gordon GAGING STATION - MERCED RIVER NEAR STEVINSON | 4.6 | 1-10 | 17 | | | , | , | , | - | | 2.7 | 72 | | | | | Maria DeAngelis | 5.8L | 1-12" | | | | | | | | 36 | 48 | 56 | 24 | 36 | 20 | | Stevinson Water District | 6.11. | 1-20" | 32 | 49 | 8 | | 42 | 434 | | 225 | 795 | 486 | 577 | 171 | 281 | | Stevinson Water District #3 | 7.75 | 1-20" | 192 | 74 | | | 18 | 126 | | 103 | 68 | 46 | 222 | 11 | В6 | | Manuel Clemintino | 8.SL | 1-12" | | | | | | | | | 31 | 77 | 38 | 27 | 17 | | Manuel Clemintino | 8.9L | 1-12" | | | | | | | | 14 | 51 | 62 | 70 | 35 | 23 | | Samuel B. McCullagh | 9.4L | 1-8" | | 34 | | | | | | 11 | 107 | 220 | 90 | 48 | 51 | | Mrs. J. R. Jacinto | 9.6L | 1-12" | 47 | | | | 14 | | | 33 | 70 | 130 | 59 | 45 | 39 | | Mrs. J. 8. Silva,
E. and J. Gallo Winery Ranch
L. Alves and A. Mattos | 10.35L | 1-10" | 54 | 12 | 5 | 6 | 2 | 6 | 3 | 164 | 198 | 458 | 119 | 117 | 114 | | R. E. Prusso and John Vierra | 10.9L | (a)
1- 8"
1-12" | 66 | 13 | | | | | | 57 | 113 | 87 | 121 | 86 | 54 | | Manuel Freitas | 10.9L | 1-12" | 30 | 30 | | | | | | 59 | 100 | 100 | 105 | 108 | 5.3 | | E. and J. Gallo Winery Ranch | 11.61 | 1-12 | 245 | 30 | | | | 54 | 43 | 50 | 350 | 461 | 289 | | 152 | | MILLIKEN BRIDGE | 11.65 | 1-10 | | | | | | | | | | | | | | | E. and J. Gallo Winery Ranch | 12.35L | 1-10" | 5 | 74 | 6 | | | 3 | 4 | | | 61 | 7 | | 16 | | Anthony L. Calderia | 12.5R | 1-12" | 9 | | | | | 7 | | 18 | 29 | 60 | 27 | 55 | 20 | | E. and J. Gallo Winery Ranch | 12.85L | 1-12" | 5 | 111 | 19 | | | 5 | 27 | 12 | 231 | 274 | 30 | | 71 | | J. M. Souza | 14.5L | 1-10" | 32 | | | | | | | | 57 | 136 | 88 | 35 | 34 | | GAGING STATION - MERCED
RIVER NEAR LIVINGSTON | 16.49 | | | | | | | | | | | | | | | | E. and J. Gallo Winery Ranch | 16.5L | 1-14" | | 127 | 49 | 9 | 2 | | 15 | 11 | 195 | 180 | 134 | | 72 | | J. E. Gallo | 20.4L | 1-8"(b) | 1 | 94 | 52 | | | 124 | 14 | 3 | 178 | 176 | 8 | | 65 | | U.S. HIGHWAY 99 BRIDGE . | 21.04 | | | | | | | | | | | | | | | | SDUTHERN PACIFIC RAILRDAD BRIDGE | 21.05 | | | | | | | | | | | | | | | | Gallo Cattle Company | 22.2R | 1-8" | 57 | 178 | 10 | 2 | 1 | 175 | 27 | 235 | 338 | 475 | 300 | 237 | 203 | | Gallo Cattle Company | 22.8R | 1-12" | 180 | 73 | 72 | | | 121 | 24 | 146 | 315 | 415 | 359 | 132 | 183 | | Merced River Farms Association | 26.3R | 1-8" | 12 | | | | 19 | 5 | | 33 | 81 | 78 | 97 | 32 | 35 | | SANTE FE RAILROAD BRIDGE | £7.05 | | | | | | | | | | | | | | | | W. C. Magneson | 27.5R | 1-10" | 14 | | | | | | | 1 | 72 | 81 | 103 | 92 | 36 | | GAGING STATION - MERCED
RIVER AT CRESSEY | 27.55 | | | | | | | | | | | | | | | | CRESSEY BRIDGE | 27.55 | | | | | | | | | | | | | | | | Manuel Silva | 29.9R | 1-6" | | | | | | | | | 45 | 81 | 50 | 47 | 22 | | Manuel Silva | 30.95R | 1-12" | | | | | | | | | 99 | 137 | 95 | 84 | 41 | | Rancho Con Valor | 31.1L | 1- 8" | | 1 | | | | | | 97 | 107 | 111 | 84 | 57 | 45 | | Manuel Silva | 31.4R | 1-10" | | | | | | | | 155 | 226 | 226 | 213 | 146 | 96 | | P. Hilarides | 32.3L | 1-12" | | 59 | | | | | | | | 5 | 39 | 2 | 10 | | SHAFFER BRIDGE | 32.5 | | | | | | | | | | | | | | | | Harry P. Schmidt and Son | 33.1R | 1-10" | | | | | | | | | 93 | 55 | 110 | 18 | 27 | | Walter Settencourt | 34.45L | 1-12" | | | | | | No Div | ersion | | | | | | | | W. F. Bettencourt, P.
Hilarides and Cowel Lime
and Cement Company | 36.9L | Gravity | 180 | 83 | 155 | 179 | 89 | 58 | 362 | 598 | 803 | 1414 | 1341 | 802 | 600 | | Amsterdam Orchards
Incorporated (c) | 39.1L | 1-14" | | | | | 83 | 123 | 12 | 27 | 40 | 23 | 13 | | 3. | | Ratzlaff Brothers | 40.2L | 1- 4" | | | | | | | | 21 | 43 | 53 | 46 | 26 | 1.0 | | COX FERRY BRIDGE | 42.1 | | | | | | | | | | | | | | | | Cowel Ditch | 45.3R | Gravity | 65B | 498 | 772 | 849 | 397 | 2899 | 2717 | 3650 | 2791 | 4151 | 3812 | 3126 | 263 | | GAGING STATION - MERCED
RIVER BELOW SNELLING | 46.2 | | | | | | | | | | | | | | | | MERCED RIVER | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seas | onal | | 1936
31
3.4 | 1564
26
2.8 | 1157
19
2.0 | 1051
17
1.9 | B18
15
1.4 | 4358
71
7.7 | 3250
55
5.7 | 6476
105
11.4 | 8566
144
15.1 | 11690
190
20.6 | 1733
158
17.2 | 6152
103
10.8 | 567 | a A 5" unit was removed in 1963. b Replaces a 7" unit. c Formerly listed as Reinero Brothers. TABLE B-90 DIVERSIONS - TUOLUMNE RIVER October 1962 through September 1963 | | | | | | | ougn se | | | | | | | | | | |--|------------------|--------------------|-----------------|-----------------|---------------|---------------|--------------------|------------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------| | | Mile
and Bank | Number
and Size | | | | | M | onthly Diversi | ion in Acre-F | ce1 | | | | |
Diversion
Oct Sept | | Water User | above
Mouth | of
Pump | Oct | Nov | Dec | nol | Feb | Mor | Apr | May | June | July | Aug | Sept | Acre-Feet | | E. T. Mape | 1.3R | 1-14" | 253 | 264 | 50 | 19 | | 292 | | 589 | 541 | 988 | 935 | 664 | 4595 | | J. V. Steenstrup Estate | 1.9L | 2-12" | | | | | | 72 | 1 | 171 | 400 | 509 | 595 | 132 | 1880 | | J. V. Steenstrup Estate | 2.9L | 1-10" | | | 1 | 1 | 1 | 319 | 45 | 185 | 506 | 331 | 452 | 213 | 2054 | | GAGING STATION - TUDLUMNE
RIVER AT TUOLUMNE CITY
(SHILOH BRIDGE) | 3.35 | | | | | | | | | | | | | | | | Bancroft Fruit Farms | 5.0R | 1-10" | 4 | | | | | 22 | 3 | 38 | 56 | 59 | 41 | 53 | 276 | | Della Battestin | 5.9L | 1-14" | | | | | | No D | iversio | n | | | | | | | Western Farms | 6.3L | 1-16" | | | | 1 | | | | 9 | 78 | 115 | 143 | 65 | 411 | | Eugene Boone, Galen Hartwich
and Dr. Harold Willis | 7.1R | 1-10" | | | | | | | | 94 | 75 | 83 | 79 | 48 | 379 | | Beth Wootten | 8,4R | 1-10" | 19 | | | | | | | 10 | 46 | 60 | 56 | 62 | 253 | | Ella T. Rahilly Estate | 8.5L | 1-10" | | | | | | | | 41 | 29 | 58 | 43 | 51 | 222 | | A. C. Watkins Estate | 9.4L | 1-20" | 62 | 82 | 1 | | | 73 | | 41 | 103 | 36 | 68 | 20 | 486 | | A. C. Watkins Estate | 9,6L | 1-12" | 116 | | | | | Plant | Remove | d | | | | | 116 | | McClure Ranches | 9.7R | 1-21" | | } | | | | | 19 | 33 | 106 | 64 | 63 | 43 | 328 | | Raymond 800ne | 10.2R | 1-14" | 4 | | | | | | | 25 | 162 | 126 | 107 | 100 | 524 | | CARPENTER ROAD SRIDGE | 12.9 | | | | | | | | | | | | | | | | SEVENTH STREET BRIDGE | 15.75 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 15.8 | | | | | | | | | | | | | | | | U.S. HIGHWAY 99 BRIDGE | 16.05 | | | | | | | | | | | | | | | | GAGING STATION - TUOLUMNE
RIVER AT MODESTO | 16.05 | | | | | | | | | | | | | | | | DRY CREEK | 16.5R | | | | | | | | | | | | | | | | EAST MODESTO BRIDGE | 19.3 | | | | | | | | | | | | | | | | Jack Gardella | 20.3R | 1-10" | 4 | | | | | 11 | | 36 | 51 | 34 | 40 | 27 | 203 | | SANTA FE RAILROAD BRIDGE | 21.6 | | | | | | | | | | | | | | | | SANTA FE RDAD BRIDGE | 21.65 | | | | | | | | | | | | | | | | Mrs. A. L. Leib (a) | 22.8R | 1- 3"
1- 6" | 4 | | | | | | | 20 | 11 | 30 | 30 | 7 | 102 | | GEER AVENUE BRIDGE | 26.0 | | | | | | | | | | | | | | | | Michel Investment Company | 28.8R | 1-8" | 15 | 1 | | | | | | 41 | 95 | 76 | 108 | 40 | 376 | | J. W. and Lola May Short | 29.8L | 1-10" | | 5 | | | | | | | 13 | 77 | 44 | 37 | 176 | | Firpo Ranch | 30.2L | 1-10" | 36 | 3 | 16 | | | 14 | | 51 | 65 | 95 | 83 | 87 | 450 | | SOUTHERN PACIFIC RAILROAD
BRIDGE (OAKDALE BRANCH) | 31.5 | | | | | | | | | | | | | | | | A. E. Ketcham Estate | 39.4R | 1-8" | 11 | 33 | | | | | | 20 | 92 | 83 | 93 | 56 | 388 | | Westley N. Sawyer (b) | 39.0R | 1-8"c | | | | | | | | 13 | 55 | 58 | 46 | 36 | 208 | | GAGING STATION - TUDLUMNE
RIVER AT ROBERTS FERRY
BRIDGE | 39.9 | | | | | | | | | | | | | | | | Westley N. Sawyer | 40.8L | 1-14" | 6 | | | | | | | 57 | 87 | 93 | 100 | 46 | 389 | | Curtner Zanker | 45.7L | 1-10" | 14 | | 1 | 1 | | 1 | 1 | 38 | 100 | 82 | 79 | 60 | 377 | | Dolling Brothers | 46.3R | 1- 8" | 22 | | | | | | | 71 | 68 | 100 | 80 | 95 | 4 3 6 | | STATE HIGHWAY 132 BRIDGE | 47.4 | | | | | | | | | | | | | | | | GAGING STATION - TUOLUMNE
RIVER AT LA GRANGE BRIDGE | 50.5 | | | | | | | | | | | | | | | | TUOLUMNE RIVER | | | | | | | | | | | | | | | | | Total Average cubic feet per second Monthly use in percent of seas | sonal | | 570
9
3•9 | 388
7
2.6 | 69
1
.5 | 22
0
.2 | 1
0
0 | 804
13
5.5 | 69
1
.5 | 1583
26
10.8 | 2739
46
18.7 | 3157
51
21.6 | 3285
53
22-4 | 1942
33
13.3 | 14630
20 | a Formerly listed as A. L. Leib b Formerly listed as George H. Sawyer c Replaces a 6" unit. TABLE B-91 DIVERSIONS - DRY CREEK October 1962 through September 1961 | | Number
ond Size | Monthly Diversion in Acre-Feet | | | | | | | | | | | | Total
Diversion | | |--|--------------------|--------------------------------|----------------|--------------|---------------|--------------|--------------|----------------|----------------|------------------|------------------|------------------|------------------|--------------------|-----------------------| | Woler User | above
Mouth | of
Pump | Oct. | Nov. | Dec. | Jon | Feb | Mor | Apr | May | June | July | Aug | Sept | Oct Sept
Acre-Feet | | Podesto and Arata | 0.4R | 1- 6" | | | | | | Pla | nt Dro | pped | | | | | | | MODESTO-EMPIRE TRACTION
COMPANY RAILROAD BRIDGE | 0.7 | | | | | | | | | | | | | | | | STATE HIGHWAY 132 BRIDGE
(YOSEMITE BOULEVARD) | 0.8 | | | | | | | | | | | | | | | | LA LOMA BRIDGE | 1.2 | | | | | | | | | | | | | | | | EL VISTA AVENUE BRIDGE | 2.9 | | | | | | | | | | | | | | | | GAGING STATION - DRY CREEK
NEAR MODESTO | 5.3R | | | | | | | | | | | | | | | | CLAUS ROAD BRIDGE | 5.4 | | | | | | | | | | | | | | | | SANTA FE RAILROAD BRIDGE | 6.4 | | | | | | | | | | , | | | | | | CHURCH STREET BRIDGE | 7.2 | | | | | | | | | | | | | | | | WELLSFORD ROAD BRIDGE | 8.7 | | | | | | | | | | | | | | | | ALBERS ROAD BRIDGE | 11.0 | | | | | | | | | | | | | | | | MODESTO IRRIGATION DISTRICT CANAL CROSSING | 11.1 | | | | | | | | | | | | | | | | Edward Johnson | 12.6R | 1- 6" | 6 | | | | | | | 6 | 34 | 49 | 38 | 31 | 164 | | Edward Johnson | 12.7R | 1- 6" | 10 | | | | | | | 61 | 77 | 90 | 74 | 46 | 358 | | Joe Fagundes | 14.7R | 1-10" | 30 | 3 | 11 | 6 | 1 | 59 | 13 | 123 | 150 | 182 | 165 | 103 | 846 | | OAKDALE WATERFORD HIGHWAY
BRIDGE | 17.4 | | | | | | | | | | | | | | | | DRY CREEK | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seas | onal | | 46
1
3.9 | 3
0
.2 | 11
0
.8 | 6
0
.4 | 1
0
.1 | 59
1
4.3 | 13
0
1.0 | 190
3
13.8 | 261
4
19.0 | 321
5
23.3 | 277
5
20.1 | 180
3
13.1 | 1368 | ### TABLE 3-92 DIVERSIONS - STANISLAUS RIVER October 1962 through September 1968 | | Mile
and Bank | Number
and Size | Monthly Diversion in Acre Feet | | | | | | | | | | | | | |--|------------------|-------------------------|--------------------------------|------------------|---------|--------------|-------------|-------------------|---------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------------------------| | Water User | above
Mouth | ond Size
of
Pump | Oct. | Nov | Dec | not | Feb | Mar | Apr. | Моу | June | July | Aug | Sept | Direction
Oct - Sept
Acre Feet | | GAGING STATION - STANISLAUS RIV | ER
1.9R | | | | | | | | | | | | | | | | Cook Land and Cattle Co. pany
and C. M. Carroll | 1.9R | 1-16" | | | | | | | | | 17 , | 93 | 28 | 44 | 18. | | C. C. Angyal | 2.4R | 1-18 | | | | | | 130 | 14 | 148 | 269 | 246 | 142 | 6.21 | 1_46 a | | Faith Ranch | 3.4L | 2-12"
1-16" | 115 | 84 | | | | 255 | 1 | 522 | 577 | 49 | 469 | 455 | 2975 | | Reclamation District 2064 | 4.OR | 1-14"
1-16"
2-20" | 403 | 111 | | 5 | | 3B3 | | 1462 | 1703 | 2341 | 1825 | 12 1 | 9431 | | Reclamation District 2075 | 4.05F | 2~16" | 597 | 199 | 40 | 13 | | 1293 | | 2576 | 2600 | 3119 | 2829 | 2170 | 15440 | | D. F. Koetitz | 4.7L | 1-14" | 25 | | | | | | | 208 | 163 | 291 | 257 | 51 | 1001 | | E. T. Mape | 4.75L | 1-20" | | 290 | | | | 262 | | 61 | 194 | 37 | | | 844 | | Henry Pelucca | 5.5L | 1-16" | | | | | | | | 39 | 113 | 86 | 71 | 76 | 385 | | Alice Gill | 6.4L | 1-12" | 2 | | | | | | | 46 | 533 | 99 | ~6 | 124 | 680 a | | D. J. Macedo | 8.4R | 1-16" | | | | | | 112 | | 342 | 119 | 562 | 349 | 181 | 1665 | | N. E. Cannon | 8.7R | 1-10" | 58 | 15 | | | | 80 | | 420 | 290 | 422 | 388 | 271 | 1944 | | GAGING STATION - STANISLAUS
RIVER AT KOETITZ RANCH | 9.35L | | | | | | | | | | | | | | | | D. F. Koetitz | 9.4L | 1-12" | 113 | | 4 | | | | | 421 | 357 | 466 | 363 | 199 | 1923 | | John L. Hertle | 9.81 | 1-10" | | | | | | | 40 | 10 | 31 | 39 | 65 | 2- | 212 | | Nelson Santos | 10.0R | 1-16" | 39 | | | | | | | | 6 | 91 | 39 | 49 | 224 | | Nelson Santos | 10.5R | 1-16" | 11 | | | | | | | | 7.3 | 153 | 139 | 124 | 500 | | John L. Hertle | 10.7L | 1-10" | | | | | | | | | 3 | | 5 | 23 | 31 | | GAGING STATION - STANISLAUS
RIVER AT RIPON | 15.7L | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 15.7 | | | | | | | | | | | | | | | | U.S. HIGHWAY 99 BRIDGE | 15.7 | | | | | | | | | | | | 200 | 3.4 | 1276 a | | A. Girardı | 17.7L | 1-16" | | | 1 | | 1 | | | 95 | 412 | 446 | 287 | 43 | 613 | | E. J. Freethy | 19.0R | 1-14" | 26 | 55 | | | | 35 | | 19 | | 198 | 207 | | | | Libby, McNeill and Libby | 20.9R | 1-14" | } | | 5 | | | | 12 | 367 | 202 | 305 | 189 | 10~ | 1182
258 | | Heath Ranch | 21.2L | 1- 6" | 24 | | | | | 28 | | 15 | 66 | 70 | 41 | 14 | 17 | | Mark Rumble b | 23.4L | 1~ 8" | | | | | | | | | | 5 | | , | 17 | | MODESTO-ESCALON HIGHWAY
BRIDGE | 29.6 | | | | | | | | | | | | | | | | F. K. Floden | 29.9L | 1-10" | | | | | | No | Divers | non | | | | | | | SANTA FE RAILROAD BRIDGE | 33.4 | | | | | | | | | | | | | | | | GAGING STATION - STANISLAUS
RIVER AT RIVERBANK | 33.6 | | | | | | | 10 | 12 | 5 | 176 | 212 | 132 | 5 | 552 a | | Oakdale Irrigation District
(Crawford pump) c | 37.7L | 1-14" | | | | | | 10 | 12 | 29 | 140 | 161 | 132 | 137 | 512 9 | | Oakdale Irrigation District
(Brady pump) c | 39.1L | 1-12" | | | | | | | | 29 | 140 | 101 | 124 | 15. | | | OAKDALE-STOCKTON HIGHWAY
BRIDGE | 41.2 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE (OAKDALE BRANCH) | 41.2 | | | | | | | | | | | | | | | | GAGING STATION - STANISLAUS
RIVER AT ORANGE BLOSSOM BRIDGE | 47.0 | | | | | | | | | | | | | | | | STANISLAUS RIVER | | | | | | | | | | | | | | | | | Total
Average cubic feet per
second
Monthly use in percent of seas | onal | | 1413
23
3.3 | 754
13
1.8 | 45
1 | 18
0
0 | 1
0
0 | 2596
42
6.0 | 79
1
.2 | 6785
110
15.7 | B131
137
18.8 | 9929
161
23.0 | 7982
130
18.5 | 5435
91
12.6 | 43170 | a Includes an undetermined amount of water returned to river by spill. b Formerly listed as Thomas Lyon. c Oakdale Irrigation District for season of 1963 maintained plants at miles 37.71 and 39.1L to supplement district gravity supply. ### DIVERSIONS - TULE RIVER Ucto-er 1962 through September 1963 | | Mile
and Bank | Number
and Size | | Monthly Diversion in Acre-Feet | | | | | | | | | Total
Diversion | | | |---|------------------|--------------------|-----------------|--------------------------------|------------------|------------------|---------------------|------------------|-----------------|-------------------|--------------------|----------------------|----------------------|-------------------|--------------------------| | Water User | * | of
Pump | Oct. | Nov | Dec | Jan | Feb | Mar | Apr | Moy | June | July | Aug | Sept | Oct - Sept,
Acre Feet | | SUCCESS DAM | 0.0 | | | | | | | | | | | | | | | | GAGING STATION - TULE RIVER
BELOW SUCCESS DAM | 0.35 | | | | | | | | | | | | | | | | Campbell-Moreland Ditch | a 2.4L | Gravity | 422 | 519 | 714 | 719 | 797 | | | 788 | 1684 | 1043 | 1305 | 853 | 8834 | | PORTER SLOUGH | 2.4R | | | | | | | | | | | | | | | | GAGING STATION - PORTER
SLOUGH AT PORTERVILLE
(B LANE BRIDGE) | ** (2.4) | | | | | | | | | | | | | | | | PIONEER SPILL | **(3.7R) | | | | | | | | | | | | | | | | Porter Slough Ditch b | **(4.5R) | Gravity | | | | 11 | 512 | | 5 | 337 | 669 | 870 | 518 | 205 | 3127 | | GAGING STATION - PORTER
SLOUGH NEAR PORTERVILLE
(NEWCOMB ROAD) | ** (6.1) | | | | | | | | | | | | | | | | Vandelia Ditch | c 3.1L | Gravity | | | | 17 | 228 | | | 125 | 176 | 391 | 65 | 215 | 1217 | | SANTA FE RAILROAD BRIDGE | 5.1 | | | | | | | | | | | | | | | | Poplar Ditch | d 5.8L | Gravity | | 41 | 43 | 38 | 2541 | 676 | | 58B | 1507 | 4558 | 5939 | 2141 | 18070 | | STATE HIGHWAY 190 BRIDGE | 5.9 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 6.0 | | | | | | | | | | | | | | | | Hubbs-Miner Ditch | e 6.4R | Gravity | | | | | 169 | 122 | | 407 | 590 | 851 | 483 | 793 | 3415f | | STATE HIGHWAY 65 BRIDGE | 6.6 | | | | | | | | | | | | | | | | Rhodes-Fine Ditch | g 8.4L | Gravity | | | | | | | 156 | 1120 | 872 | 115 | | | 2303h | | OLIVE AVENUE BRIDGE | 9.9 | | | | | | | | | | | | | | | | FRIANT-KERN CANAL CROSSING | 10.5 | | | | | | | | | | | | | | | | Woods-Central Ditch | 1 11.OL | Gravity | | | | 24 | 3227 | | | | | 9483 | 2763 | | 15500) | | GAGING STATION - TULE RIVER
BELOW PORTERVILLE | 11.8 | | | | | | | | | | | | | | | | OTTLE BRIDGE | 14.4 | | | | | | | | | | | | | | | | TULE RIVER | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of sea | | | 422
7
2.7 | 560
9
1.1 | 757
12
1.4 | 809
13
1.5 | 7474
135
14.2 | 79B
13
1.5 | 161
3
0.3 | 3355
55
6.4 | 5498
92
10.5 | 17350
282
33.1 | 11070
180
21.1 | 4207
71
7.8 | 52470
72 | - Mileage downstream from Success Dim Flagre in parentheses indicates distance along Porter Slough from Tule River Flow measured at gaging station on CampbellMoreland Ditch located approximately 2600 feet below head. Flow measured at gaging station on Porter Slough Ditch located approximately 150 feet below head. Ditch located approximately 100 feet below head. The greater portion of this water was used to recharge Vandalia Irrigation District well field. Flow measured at gaging station on Poplar Ditch located approximately 4750 feet below head. The greater portion of this water was used to recharge Vandalia Irrigation District well field. Flow measured at gaging station on Poplar Ditch located approximately 4750 feet below head. The recorder at this station was deactivated during the following periods: 10-1-62 through 2-1-63 and 2-6-63 through 2-10-63. This recorder was activated prior to anticipated diversion periods upon notifi- - cation from the Tule River Association. It is assumed there was no flow during these deactivated periods. Flow measured at gaging station on Rhodes-Fine Ditch located approximately 3100 feet below head. The recorder at this station was deactivated during the following periods: 10-1-62 through 2-11-63, 3-6-63 through 4-17-63, and 8-1-63 through 9-30-63. This recorder was activated prior to antiepated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during these Flow mensured at gaging station on Woods-Central Ditch located approximately 100 feet below head. The recorder at this station was deactivated during the following periods: 10-1-62 through 1-30-63, 2-26-63 through 6-22-63, and 8-16-63 through 9-30-63. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during these deactivated periods. TABLE 8-94 ### OIVERSIONS AND ACREAGE IRRIGATEO-EAST SIDE CANALS AND IRRIGATION DISTRICTS* October 1962 through September 1963 | | | | | | | | | | | | | | | Acrec
Imga | | |---|---------------------|---------------------|--------------------|---------------------|----------------------|----------------------|------------------------|------------------------|------------------------|------------------------|----------------------|------------------------|------------------|------------------|-------------| | Water User | Oct | Nov | Dec | Jan | Feb | Mar | Apr. | Мау | June | July | Aug | Sept | Total | General | Rice | | Friant-Kern Canal | | | | | Si | IN JOAQI | IN RIV | ER | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 54159
881
3.6 | 22471
378
1.5 | 0 | 1083
18
0.1 | 61071
1100
4.0 | 74279
1208
4.9 | 163174
2742
10.8 | 221468
3602
14.6 | 243915
4099
16.1 | 237905
3869
15.7 | | 173113
2909
11.4 | 1512,990
2090 | | | | Madera Canal | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 409
7
0.2 | 101
2
0 | 0 0 | 0
0
0 | 1375
25
0.5 | 6912
112
2.6 | 12672
213
4.7 | 31321
509
11.6 | 53873
905
19.9 | 1069 | 1059 | 33142
557
12.2 | 270609
371 | | | | Merced Irrigation District | | | | | | MERCED | RIVER | | | | | | | - | | | Main Canal
Northside Canal | 0
490 | 300
63 | 310
63 | 310
111 | 280
34 | 23070
776 | 35786
345 | 85124
2932 | 104612
4227 | 104222
4618 | | 65993
3529 | 512228
21673 | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 490
8
0.1 | 363
6
0.1 | 373
6
0.1 | 421
7
0.1 | 314
6
0 | 23846
388
4.4 | 36131
607
6.8 | 88056
1432
16.5 | 108839
1829
20.4 | 108840
1770
20.4 | 1573 | 69522
1168
13.0 | 533901 a
737 | 100284b | 5366 | | Turlock Irrigation Gistrict | | | | | 2 | CUOLUMNI | RIVER | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 32610
530
5.7 | 26297
442
4.6 | 6224
101
1.1 | 10199
166
1.8 | 714
13
0.1 | 24188
393
4.2 | 30250
508
5.2 | 87152
1417
15.2 | 104073
1749
18.1 | 102506
1667
17.8 | 1570 | 907 | 574705 C
794 | 171008 | 0 | | Modesto Irrigation District | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 19736
321
6.1 | 6776
114
2.1 | 32
1
0 | 110
2
0 | 0 | 15734
256
4.9 | 26421
444
8.1 | 50692
824
15.6 | 1120 | | 714 | 38185
642
11.8 | 324878 €
449 | 66028£ | 437 | | Waterford Irrigation District | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 1973
32
5.7 | 0 | 0 0 | 0 0 | 0 | 11
0
0 | 1072
18
3.1 | 5714
93
16.5 | 7182
121
20.8 | 7348
120
21.2 | 6391
104
18.5 | 4912
83
14.2 | 34603 9
48 | 7232h | | | Dakdale Irrigation District | | | | | <u>S′</u> | CANISLA | S RIVE | <u>R</u> | | | | | | | | | Northaide Canal
Southside Canal | 5669
8009 | 130
404 | 17
60 | 47 | 0 | 486
1079 | 437
42 | | 23796
32522 | | | | | 199381
33869) | 3221
416 | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 13678
222
5.3 | 534
9
0.2 | 77
1
0 | 47
1
0 | 0
0
0 | 1565
25
0.6 | 479
8
0.2 | 46386
754
17.8 | 56318
946
21.6 | 50641
824
19.5 | 49826
810
19.1 | 40938
688
15.7 | | 53807k | 3637 | | South San Joaquin Irrigation Oistrict | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 8703
142
4.1 | 0 0 | 0 | 0 0 | 0
0
0 | 5207
85
2.5 | 5888
99
2.8 | 34683
564
15.5 | 40937
688
19.5 | 45236
736
21.5 | 41288
671
19.6 | 476 | 210263
290 | 63666m | | - Oata for Madera and Friant-Kern Canal furnished by USBR, all other data furnished by individual irrigation districts. a An additional 83,200 accrefect of water was pumped from wells. by the state of - h Of this acreage, 209 was double cropped. 1 Of this acreage, 274 was double cropped. 2 Of this acreage, 608 was double cropped. 3 This acreage, 608 was double
cropped. 3 This acreage also received 32,231 acre-feet of water from wells and controlled drainage. 5 This acreage also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdale Irrigation district. Of this acreage, 3,200 was double cropped. Includes 1,355 acres served by substrigation. TABLE 8-95 DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS * October 1962 through September 1963 | | Mile Post from | | | | rough S | | | | _ | | | | | | |---|----------------|-------|-------|------|---------|-------|----------------------|------------|---------|----------|--------|--------|-------|--------| | | Conol Head | | | | Т. | | hly Oeliver | ies in Aci | re-Feet | 1 | | 1 | | Total | | Water User | From To | Oct. | Nov | Dec | Jan. | Feb | Mar | Apr. | May | June | July | Aug | Sept. | | | | | | | | | _ | <u>l</u> ta-Men
I | 1 | T | | | | | | | State of California
(South Bay Aqueduct) | 3.54 | 1571 | 1320 | 0 | 620 | 86 | 1148 | 0 | 645 | 1539 | 1407 | 2205 | 2392 | 12933 | | Plain View Water District | 8.50 20.00 | 425 | 141 | 1 | 5 | 54 | 1089 | 118 | 2861 | 2809 | 3256 | 3176 | 1930 | 15865 | | West Side Irrigation District | 14.78 | 0 | 0 | 0 | 0 | 0 | 98 | 0 | 336 | 204 | 827 | 327 | 212 | 2004 | | Banta-Carbona Irrigation District | 20.42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1530 | 1331 | 1739 | 1747 | 654 | 7001 | | Hospital Water District | 18.05 30.96 | 359 | 194 | 3 | 1 | 3 | 2009 | 631 | 2932 | 4375 | 4131 | 3598 | 2689 | 20925 | | West Stanislaus Irrigation
District | 31.31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 406 | 715 | 5778 | 6977 | 1124 | 15000 | | Kern Canon Water District | 31.31 35.18 | 136 | 129 | 13 | 4 | 0 | 401 | 151 | 1039 | 1198 | 1276 | 1592 | 636 | 6575 | | Del Puerto Water District | 35.73 42.08 | 217 | 527 | 47 | 0 | 1 | 716 | 94 | 1209 | 2405 | 1996 | 2138 | 1238 | 10588 | | Patterson Water District | 42.51 | 174 | 25 | 8 | ٥ | 0 | 0 | 268 | 806 | 895 | 891 | 1285 | 1079 | 5431 | | Salado Water District | 42.10 46.83 | 116 | 41 | 0 | 0 | 0 | 215 | 0 | 1156 | 1408 | 2034 | 1131 | 514 | 6615 | | Sunflower Water District | 44.23 52.02 | 140 | 30 | 0 | 13 | 0 | 541 | 188 | 1073 | 2005 | 2458 | 1903 | 549 | 8900 | | Orestimba Water District | 46.83 51.41 | 40 | 2 | 8 | 1 | 1 | 330 | 30 | 1181 | 1943 | 3176 | 1631 | 429 | 8772 | | Foothill Water District | 51.65 57.46 | 208 | 1 | 1 | 1 | 0 | 632 | 0 | 915 | 1393 | 2083 | 1563 | 1387 | 8184 | | Davis Water District | 53.60 56.82 | 128 | 31 | 0 | 0 | 0 | 73 | 33 | 304 | 412 | 599 | 578 | 415 | 2573 | | Luhr and Wendt | | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 6 | 6 | 9 | 13 | 10 | 53 | | Mustang Water District | 56.80 62.67 | 131 | 46 | 6 | 0 | 0 | 322 | 36 | 644 | 972 | 1626 | 1063 | 625 | 5471 | | Quinto Water District | 63.96 67.55 | 129 | 60 | 0 | 0 | 0 | 160 | 0 | 278 | 511 | 844 | 811 | 714 | 3507 | | Romero Water District | 66.70 68.03 | 390 | 100 | 50 | 0 | 0 | 145 | 0 | 181 | 291 | 489 | 545 | 128 | 2319 | | San Luis Water District | 69.21 90.53 | 2246 | 1606 | 675 | 928 | 4414 | 4265 | 5026 | 6130 | 10574 | 12698 | 9507 | 3350 | 61419 | | Grassland Water District | 70.00 | 9916 | 4341 | 54 | 0 | 0 | 0 | 0 | 796 | 899 | 762 | 402 | 1114 | 18284 | | Grassland Water District (1) | Mendota Pool | 18925 | 5648 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2759 | 27332 | | Morrison-Knudsen | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | State Fish and Game | 70.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sam Hamburg Farms | 90.53 | 1 | 2 | 1 | 3 | 1 | 2 | 1 | 2 | 3 | 4 | 3 | 2 | 25 | | Panoche Water District | 93.25 96.70 | 2153 | 2983 | 1470 | 1175 | 7264 | 7649 | 2710 | 4676 | 10665 | 12664 | 10993 | 3329 | 67731 | | Eagle Field Water District | 93.27 94.57 | 33 | 192 | 43 | 132 | 517 | 98 | 160 | 1242 | 1229 | 1451 | 1270 | 564 | 6931 | | Oro Loma Water District | 95.50 96.62 | 0 | 0 | 0 | 0 | 0 | 0 | 666 | 1156 | 933 | 1130 | 961 | 97 | 4943 | | Westside Golf Association | 95.95 | 14 | 12 | 2 | 5 | 3 | 9 | 8 | 13 | 17 | 22 | 20 | 15 | 140 | | McNamara-Mannix | | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 49 | 51 | 53 | 33 | 34 | 253 | | Mercy Springs Water District | 97.70 99.82 | 0 | 0 | 0 | 0 | 0 | 216 | 137 | 1213 | 1187 | 1119 | 733 | 220 | 4825 | | Mercy Springs Water District (1) | Pool | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Widren Water District | 102.03 | 0 | 0 | 0 | 0 | 0 | 35 | 113 | 506 | 439 | 438 | 478 | 124 | 2133 | | Broadview Water District | 102.95 | 284 | 1209 | 849 | 428 | 1911 | 1575 | 585 | 1344 | 2262 | 3271 | 2479 | 1058 | 17255 | | Total | | 37736 | 18640 | 3231 | 3316 | 14255 | 21733 | 10992 | 34629 | 52671 | 68231 | 59162 | 29392 | 353988 | | Net Deliveries DMC to
Mendota Pool | | 45629 | 26244 | 5044 | 13734 | 23909 | 83185 | 56247 | 124074 | 14 30 78 | 174944 | 163008 | 82665 | 941761 | | | | | | | | М | ıllerto | n Lake | | | | | | | | Fresno County Water District #18 | | | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 14 | 18 | 16 | 11 | 84 | | Ralston Association | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 13 | | Total | | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 9 | 15 | 20 | 18 | 12 | 97 | | | | | | | | | Madera | Canal | | | | | | | | Madera Irrigation District | 6.10 32.2 | 0 | 0 | 0 | 0 | 1006 | 5697 | 7750 | 17274 | 31861 | 38954 | 36861 | 20261 | 159664 | | Adobe Ranch | 20.6 | | 54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | | | | | | | | | | | | | | | | 105943 | | Chowchilla Water District | 35.9 | | 0 | 0 | 0 | 0 | 77 | 4104 | 12341 | 22882 | 26458 | 26809 | 1327. | 105943 | TABLE 8-99 DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS (Contilised)* October 1962 through September 1963 | | Mile Post from
Canal Head | | | | | Mont | Thly Oeliveri | es in Acre | Feet | | | | | | |---|------------------------------|-------|-------|------|-----|-------|---------------|------------|-------|-------|-------|--------|-------|----------------------| | Water User | From To | Oct. | Nov | Dec. | Jan | Feb. | Mar | Apr | May | June | July | Aug | Sept | Total | | | | | | | | Fr | lant-Ke | rn Cana | 1 | | | | | | | Garfield Water District | 7.53 | 108 | *5 | 20 | d | 71 | 92 | 18 | 296 | 668 | 571 | 462 | 274 | 264 | | International Water District | 14.9 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 147 | 180 | 187 | 116 | 740 | | Round Mountain Water District | 20.85 21.33 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 34 | 38 | 122 | | Round Mountain Ranch | 20.22 | 13 | 4 | 0 | 0 | 0 | 0 | 0 | 7 | 16 | 16 | 8 | 10 | 74 | | Consolidated Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 10820 | 16096 | 9900 | 10000 | 17278 | 0 | 64094 | | Last Chance Water Ditch Company | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 635 | 1865 | 1000 | 0 | 0 | 0 | 3500 | | Laguna Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 1460 | 3540 | 2001 | 0 | 0 | C | 7001 | | Corcoran Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 8440 | 3160 | 2001 | 0 | 0 | 5383 | 18984 | | Stratford Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 200 | 300 | 0 | 0 | 0 | 0 | 500 | | Tulare Lake Basın Water Storage
District | 28.50 95.64 | 0 | 0 | 0 | 0 | 0 | 0 | 4358 | 16284 | 4001 | 8000 | 4479 | 26523 | 63645 | | Alta Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 2101 | 901 | 601 | 0 | 0 | | 3603 | | Fresno Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 3836 | 0 | 17994 | 1226 | 2711 | 1861 | 18821 | 6179 | 52628 | | Riverdale Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 1460 | 3540 | 2501 | 0 | 0 | 0 | 7501 | | Kings River Water Association | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0. | | Westside Irrigation District | 28.50 | 0 | 0 | 0 | 0 | 0 | 0 | 1200 | 1800 | 0 | 0 | 0 | 0 | 3000 | | Kings County Water District | 28.50 71.29 | 0 | 0 | 0 | 0 | 0 | 0 | 12966 | 8536 | 3132 | 5873 | 9656 | 345 | 40508 | | Drange Cove Irrigation District | 35.87 53.31 | 1373 | 885 | 0 | 0 | 0 | 5.2 | 20 | 1950 | 5361 | 6881 | 7198 | 3669 | 27389 | | City of Orange Cove | 43,44 | 23 | 3 | 0 | 0 | | 0 | 0 | 30 | 36 | 38 | 35 | 26 | 191 | | Stone Corral Irrigation District | 56.90 64.40 | 260 | 151 | 0 | 0 | 0 | 65 | 46 | 434 | 1408 | 1910 | 1757 | 843 | 6874 | | Ivanhoe Irrigation District | 65.04 68.13 | 1010 | 674 | 0 | 0 | 0 | 12 | 157 | 1375 | 1644 | 2634 | 3402 | 2491 | 13399 | | Tulare Irrigation District | 68.14 71.29 | 3051 | 2001 | 0 | 0 | 18631 | 0 | 23241 | 24151 | 39454 | 39228 | 19250 | 26793 | 195800 | | Lakeside Irrigation Water District | 69.42 | 0 | 0 | 0 | 0 | 0 | 0 | 1628 | 4873 | 8420 | 280 | 5000 | 0 | 20201 | | Kaweah-Delta Water Conservation
District | 69.08 71.29 | 0 | 0 | 0 | 0 | 0 | 0 | 11558 | 18403 | 10193 | 0 | 7468 | 2283 | 49905 | | Exeter Irrigation District | 72.52 79.24 | 1523 | 1186 | 0 | | 409 | 353 | 422 | 3136 | 4407 | 4860 | 4324 | 2321 | 22941 | | Lindsay-Strathmore Irrigation
District | 85.56 | 2588 | 2164 | 0 | 0 | 50 | 353 | 417 | 2674 | 3781 | 4441 | 44"1 | 347+ | 24418 ⁽ · | | Lindmore Irrigation District | 20.17 91.12 | 2951 | 1730 | 0 | 0 | 1549 | 1954 | 369 | 4655 | 8589 | 10344 | 9812 | 5542 | 47195 | | Porterville Irrigation District | 93.93 98.62 | 500 | 545 | 0 | 0 | 922 | 1825 | 807 | 2275 | 30~0 | 3584 | 3995 | 1882 | 19405 | | Lower Tule Irrigation District | 95.67 98.62 | 19295 | 8398 | 0 | 0 | 8313 | 17635 | 27166 | 49088 | 49342 | 38625 | 49558 | 40392 | 317312 | | Tea Pot Dome | 99.35 | 407 | 220 | 0 | 0 | 26 | 22 | 2 | 442 | 609 | 680 | 672 | 510 | 3390 | | Saucelito Irrigation District | 93.62 107.37 | 1956 | 579 | 0 | | 1817 | 4364 | 2075 | 4395 | 8247 | 9231 | 9459 | 5123 | 47296 | | Cloer Commercial Service District | 101.60 | 0 | 0 | 0 | | 0 | 0 | 16 | 0 | 0 | 0 | 0 | | 16 | | Terra Bella Irrigation District | 102.65 | 994 | 524 | 0 | 0 | 0 | 28 | 0 | 1158 | 1603 | 2210 | 2297 | 1595 | 10409 | | Pixley Irrigation District | 102.69 | 3039 | 0 | 0 | 0 | 4320 | 0 | 2692 | 4261 | 6583 | 10277 | 10352 | 6407 | 47931 |
 Delano-Earlimart Irrigation
District | 109.48 118.45 | 7765 | 5399 | 224 | | 6748 | 18813 | 11054 | 16027 | 25240 | 33329 | 28991 | 11 .4 | 16-404 | | Rag Gulch Water District | 117.96 | 430 | 264 | 141 | | 910 | | 891 | 1327 | 149 | 1343 | 1.96 | 488 | 9148 | | Southern San Joaquin Municipal
Utility District | 117.44 127.97 | 3554 | 3082 | 555 | 0 | 2698 | 20567 | 8404 | +269 | 13222 | 29943 | 258/19 | 9425 | .16931 | | Shafter-Wasco Irrigation District | 134.42 137.17 | 1640 | 1190 | 532 | | 930 | 7147 | 2150 | 2257 | 5742 | 10719 | 10140 | 4062 | 46509 | | Pacific Gas & Electric Company Rosedale Rio Bravo Water Storage District | 150.83 | 0 | 0 | 0 | | 0 | | 4019 | 5889 | 6303 | 0 | | | ::90: | | | 151.0 | 0 | | 0 | | . 0 | | 2358 | 3830 | 9199 | 18 /5 | | 2501 | 19663 | | Buena Vista Water Storage District TOTAL | 151.80 | 52519 | 29074 | 1472 | l. | 51230 | 73282 | <u> </u> | | | | 256811 | | 19663 | | | | | | | | | | | | | | | | | ^{*} Data furnished by the U. S. Bureau of Reclamation. ⁽¹⁾ Delta-Mendota Canal water delivered via Delta-Mendota Pool. (2) Includes water transported from Wutchumna Ditch. ### APPENDIX C GROUND WATER MEASUREMENTS ### TABLE OF CONTENTS | | PAGE | |-------|--| | | TION | | | OF GROUND WATER LEVELS AT WELLS IN THE SAN JOAQUIN VALLEY | | | LIST OF TABLES | | TABLE | | | C-1 | Ground Water Levels at Wells | | | LIST OF PLATES | | PLATE | (Bound at end of volume) | | C-1 | Ground Water Level Changes in Districts and Areas Unconfined Aquifers
Spring 1962 - Spring 1963 | | C-2 | Ground Water Level Changes in Districts and Areas Confined Aquifers and
Semiconfined Aquifers Spring 1962 - Spring 1963 | | C-3 | Location of Selected Observation Wells | | C-4 | Poso Soil Conservation District Cooperative Program Area | | C-5 | Kern County Cooperative Program Area | | C-6 | Map of Nineteen Historic Ground Water Areas in San Joaquin Valley and Profiles Along
Section A-A' Showing Ground Water Levels in 1921, 1951, 1962, and 1963 | | C-7 | Fluctuation of Average Water Level, 1921 to 1963, in Nineteen Historic Ground Water Areas in San Joaquin Valley. | | C-8 | Fluctuation of Water Level in Selected Wells in San Joaquin Valley | | C-9 | Lines of Equal Elevation of Water in Wells, San Joaquin Valley - Spring 1963 | ### INTRODUCTION This appendix presents ground water measurement data for the period July 1, 1962 through June 30, 1963. The area for which ground water level measurements of selected wells are shown on Table C-1 is designated as Area 4 on page iii. Area 4 is that portion of the Water Pollution Control Board Region 5, which includes the Stanislaus River drainage area and the area south, to the Tehachapi Mountains. The department cooperates with U. S. Geological Survey and the U. S. Bureau of Reclamation and many local agencies for the systematic observation of ground water levels. Wells for which water level measurements are collected in the San Joaquin Valley Hydrologic area number approximately 7,500 of which nearly 600 are presented here. These 600 wells were selected as representative wells of all the wells measured in the area, and are designated as selected wells. These wells were selected on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, in a confined aquifer, or in a zone of shallow depth; and availability of a log, mineral analyses, and production records. The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gage or an electric sounder. Forty-six ground water basins or areas in the San Joaquin Valley are shown on Plates C-1 and C-2. The districts or areas with a ground water level change of five feet or more in the unconfined and semiconfined aquifers are also shown on Plate C-1. The districts or areas with a ground water level change of five feet or more in the confined aquifers are shown on Plate C-2. A map showing the location of the selected wells as listed in Table C-1 is presented on Plate C-3. Outlined on Plate C-4 is the Poso Soil Conservation District Cooperative Ground Water Program area. Presented on Plate C-5 is that portion of Kern County covered in the Kern County cooperative ground water program for that area. ### Definitions Free ground water - Water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water-table slope. Confined ground water - A body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body. Pressure surface - Or piezometric surface is the level to which the water level will rise above the bottom of a confining bed of impervious material when penetrated. Perched ground water - Ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material. Water table - On pervious granular material the water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air. A map of 19 historic ground water areas and profiles along a section showing water levels in 1921, 1951, 1962, and 1963 are presented on Plate C-6. Unit hydrographs depicting the fluctuation of average water levels in the 19 historic ground water areas in the San Joaquin Valley are presented on Plate C-7. Water level fluctuations are depicted graphically on hydrographs for 35 selected wells distributed among significant basins and areas in the San Joaquin Valley. The hydrographs are presented on Plate C-8 by region, basin, or area, and well number. Presented on Plate C-9 is a map showing lines of equal elevation of water in wells, San Joaquin Valley, Spring 1963. ### RECORDS OF GROUND WATER LEVELS AT WELLS IN THE SAN JOAQUIN VALLEY @181 ### Explanation of Headings and Symbols Used in Columns in Table C-1 State Well Number—The well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It conforms to the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "State" well number. Under the system, each section is divided into 40-acre tracts lettered as follows: | D | С | В | A | |---|---|---|---| | Е | F | G | Н | | М | L | K | J | | И | Р | Q | R | Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16S/15E-17K1 M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a State Well Number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (m) or the San Bernardino Base and Meridian (S). <u>Ground surface elevation</u>--The numbers in this column give the elevation in feet above mean sea level (U.S.G.S., datum). <u>Date</u>--The date shown in this column is the date upon which the depth measurement given in the next column was made. Ground surface to water surface in feet—This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gage measurement, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained through the San Joaquin Valley Branch Office of the Department of Water Resources. Other code symbols used in this column are as follows: - □ No measurement - # Measurement discontinued - @ Well has been destroyed The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively. The word DISCONTINUED indicates records from this well will no longer be published. <u>Water surface elevation</u>--This is the elevation in feet above mean sea level (U.S.G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation. Agency supplying data--The numbers in this column are the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first of which is a region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number. The first digit of the four-digit agency code designates the type of well numbering system used by the agency as follows: | Code | Well Numbering System | |------|---------------------------------------| | 4 | Local numbers | | 5 | State or U. S. G. S. | | 6 | U. S. B. R. | | 7 | South San Joaquin Irrigation District | | 8 | Kern County Land Company | The last three digits of the agency code are numbers that designate, within
specified serial limits, the type of agency from which the data were obtained, as follows: | Code | Type of Agency | |---------|---| | 000-049 | Federal | | 050-099 | State | | 100-199 | County | | 200-399 | Municipal | | 400-699 | DistrictWater, Irrigation, Conservation, etc. | | 700-999 | Private | In the Central Valley Region, the agency code for <u>districts</u> is further broken down to the geographic areas, as follows: | Code | Area in Central Valley Region | |---------|--| | 500-599 | American River to San Joaquin River | | 600-699 | San Joaquin River to Tehachapi Mountains | In this list of water levels, the agency furnishing the measurement is listed. The agencies and code numbers assigned to them are as follows: | Agency Code | Agency | |-------------|------------------------------------| | 4200 | City of Fresno | | 4520 | Oakdale Irrigation District | | 4521 | Modesto Irrigation District | | 4524 | Turlock Irrigation District | | 4525 | Merced Irrigation District | | 4636 | Consolidated Irrigation District | | 4637 | Alta Irrigation District | | 4640 | Buena Vista Water Storage District | | | C-7 | | Agency Code | Agency | |-------------|---------------------------------------| | 5000 | U. S. Geological Survey | | 5050 | Department of Water Resources | | 5120 | Kern County Surveyor | | 5529 | Poso Soil Conservation District | | 5631 | Fresno Irrigation District | | 6001* | U. S. Bureau of Reclamation | | 7518 | South San Joaquin Irrigation District | | 8700 | Kern County Land Company | ^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources. | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR, IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD, SUR.
TO WATER
SUR, IN FEET | WATER
SURFACE
ELEVATION
N FEET | AGENCY
SUPP Y NG
CATA | |----------------------|---|----------|-------------------------------------|--|-----------------------------|----------------------|---|----------|---------------------------------------|---|-----------------------------| | SAN JOAGUIN VALLEY | ĒΥ | | 5-22.00 | | | OAKDALE IRRI | OAKDALE IRRIGATION DISTRICT | CT | 5-22.06 | | | | SO SAN JOAQUIN | UIN IRRIGATION DIST | N DIST | 5-22.05 | | | 1S/09E-16J01 M | 119.0 | 3-01-62 | 59.8 | 59.2 | 4520 | | 15/07E-15J01 M | 45.0 | 1-26-63 | 6.9 | 32.7 | 7518 | | | 12-05-62 | 58.0 | 61.0
62.8 | | | 25/07E-12R01 M | 55.0 | 1-03-62 | 14.5 | 40.5 | 2050 | | | 2-01-63 | 55.8
55.9 | 63.2 | | | | | 3-05-62 | 14.5 | 40.0 | | | | 4-01-63 | 55.8 | 63.2 | | | | | 4-03-62 | 14.1 | 40.0 | | | | 6-01-63 | 57.8 | 61.2 | | | | | 6-06-62 | 14.2 | 40.8 | | 15/09E-36A01 M | 145.0 | 12-13-62 | 6.05 | 94.1 | 4520 | | | | 8-06-62 | | 9.07 | | | | 1-03-63 | 50°8 | 94.2 | | | | | 9-05-62 | 14.3 | 7.004 | | | | 2-03-63 | 51.0 | 0.46 | | | | | 11-05-62 | 14.4 | 9.04 | | | | 2-15-63 | 51.2 | 93.8 | | | | | 12-05-62 | | 8 0 7 | | | | 3-01-63 | 51.2 | 9 ° C | | | | | 1-07-63 | 13.7 | 41.0 | | 15/10F-19L01 M | 146.5 | 10-31-61 | 59.3 | 87.2 | 4520 | | | | 3-01-63 | | 42.0 | | | | 3-02-62 | | 89.4 | | | | | 4-03-63 | | 6.04 | | | | 12-05-62 | | 4.000 | | | | | 5-03-63 | | 42.3 | | | | 2-01-63 | | 7 O | | | | | 6-03-63 | | 41.9 | | | | 3-01-63 | 52.8 | 93.7 | | | | | 1-03-62 | | 42.8 | 5050 | | | 4-01-63 | 52.8 | 93.7 | | | 25/07E-12R02 M | 0.00 | 2-03-62 | 12.3 | 42.7 | 0 | | | 5-01-63 | 52.8 | 93.7 | | | | | 3-05-62 | | 43.5 | | | | 6-01-63 | 52.0 | 6.46 | | | | | 4-03-62 | _ | 0 • 44 | | M 101 95 - 70 53 91 | 103.0 | 12-05-62 | 87.5 | 105.5 | 4520 | | | | 5-03-62 | - | 44.7 | | | 0.661 | 1-03-63 | 4.08 | 106.6 | | | | | 6-06-62 | | 4 4 4 | | | | 1-17-63 | 86.2 | 106.8 | | | | | 79-60-7 | 0.00 | 4.44 | | | | 2-03-63 | 86.0 | 107.0 | | | | | 9-05-62 | | 44.1 | | | | 2-15-63 | 86.1 | 106.9 | | | | | 10-04-62 | | 43.8 | | | | 3-01-63 | 85.8 | 70101 | | | | | 11-05-62 | 11.5 | 43.5 | | 20,005-24501 M | 132.0 | 12-05-62 | 52.5 | 79.5 | 4520 | | | | 12-05-62 | | 43.6 | | | | 1-03-63 | 52.2 | 79.8 | | | | | 1-07-63 | | 43.1 | | | | 1-17-63 | 52.7 | 79.3 | | | | | 2-14-63 | 0 | 7.4.7 | | | | 2-03-63 | 52.8 | 79.2 | | | | | 3-01-03 | | 43.6 | | | | 2-15-63 | 51.7 | 80.3 | | | | | 5-03-63 | | 44.3 | | | | 3-01-63 | 52.0 | 000 | | | | | 6-03-63 | | 44.2 | | | | 3-28-63 | 52.8 | 79.6 | | | | | | | | 7518 | | | 6-01-63 | 01.0
E | 7 • 0 0 | | | 25/09E-08H01 M | 0.511 | 7-01-62 | 3 ** | | | | | | 1 | 0 | 000 | | | | | | | | 25/10E-04H01 M | 185.5 | 10-31-61 | 85.0 | 100.2 | 0764 | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4520 | 4520 | | 4521 | 4521 | 5050 | | (
L | 0606 | | | | 4521 | |---|-------------------------------------|--|---|-----------------------------|---------------------|--|-------------------------------|---|--------------------------|-------------------------------|---|-----------|----------------------------|----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 101.1
101.6
99.3 | 105.0
105.6
105.6
105.8
106.0 | | 61.0 | 67.1 | 46.2
46.4
45.7 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 49.8 | 00044
0004
0004
0001 | 4 4 4 8 • 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2000 | 50.8 | 50.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.06 | 50.9
50.4
52.7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5-22.07 | 36.2 | 33.2 | 17.8
17.6
18.3 | 100 100 100 100 100 100 100 100 100 100 | 14.2 | 13.5 | 15.9 | 13.9 | 13.2
13.2 | 23.2 | | DATE | 13 | 3-28-63
4-29-63
6-01-63 | 12-12-62
1-03-63
1-17-63
2-03-63
2-15-63 | T | 11-01-62
3-01-63 | 11-01-62
3-01-63 | 7-05-62
8-06-62
9-05-62 | 11-05-62
12-05-62
1-07-63
2-13-63
3-01-63
4-03-63 | 6-05-63 | 8-06-62
9-05-62 | 11-05-62 | 2-13-63 | 5-06-63
6-05-63 | 11-01-62 | | GROUND
SURFACE
ELEVATION
IN FEET | OAKDALE IRRIGATION DISTRICT | 152.0 | 162.0 | MODESTO IRRIGATION DISTRICT | 97.2 | 100.3 | 0 • 4 • 0 | | | 0
† | | | | 74.0 | | STATE WELL
NUMBER | OAKDALE IRRIG | 35/10E-15A01 M
CONT. | 35/11E-18D01 M | MODESTO IRRIG | 25/08E-25P01 M | 25/09E-31G01 M | 35/08E-22C01 M | | , c | 20,00E-2002 M | | | | 35/08E-24C01 M | | . 9 | | 0 | | | | 0 | | 0 | | 0 | 0 | 0 | | | | AGENCY
SUPPLYING
DATA | | 4520 | | | | 4520 | | 4520 | | 4520 | 4520 | 4520 | | | | WATER AGENCY
SURFACE SUPPLYIN
ELEVATION DATA | | 101.6
102.5
103.3 | 1004.1
1004.5
1004.8
107.8 | 108.2 | 108.3 | 103.4 45.
103.8
103.7 | 103.8
103.8
103.8 | | 123.5 | 112.4 452 | 144.5 452
145.0 | 99.3 452 | 1000 | 0.101 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.06 | | | | | | | 115.1
121.3
123.5
123.5
124.9
124.7 | 92.7 125.3
94.5 123.5 | | | | | | | WATER
SURFACE
T ELEVATION
IN FEET | | 101.6 | 811.6
811.2
811.0
81.0
77.0
77.0
77.0
77.0 | 77.3 | 77.2 | 103.4
103.8
103.7 | 61.2
61.1
61.2 | 102.9 115.1
96.7 121.3
94.5 123.5
94.5 123.5
93.1 124.9
93.3 124.9 | | 112.4 | 144.5 | 99.3 | 0.10.0
0.10.0
0.10.0 | 0.10 | | GRD SUR SURFACE
TO WATER SURFACE
SUR. IN FEET IN FEET | OAKDALE IRRIGATION DISTRICT 5-22+06 | 83.9 101.6
83.0 102.5
82.2 103.3 | 811.2
811.2
81.0
80.0
770.7 | 77.3 | 77.2 | 61.6 103.4
61.2 103.8
61.3 103.7 | 61.2
61.1
61.2 | 102.9 115.1
96.7 121.3
94.5 123.5
94.5 123.5
93.1 124.9
93.3 124.9 | 92.7
94.5 | 79.6 112.4
78.8 113.2 | 45.0 145.0 | 52.3 99.3 | 0.10.0
0.10.0
0.10.0 | 0.10 | | AGENCY
SUPPLYING
DATA | | 5050 | | | | | | | 4554 | | | | | | | | | | | 4764 | 4524 | | | | | | | | | | 70 37 | *7C# | 452 | 452 | | 264 | 452 | |---|-----------------------------|---------------|----------------|----------|----------------|---------|----------------|---------|----------------|----------------|----------|----------------|----------|----------------|---------|----------|--------------------------|---------|----------------|----------------|-----------------------------|--------------|----------------|--------------|----------|----------------|----------|----------------|---------|---------|----------------|------------------|----------------|----------------|----------------|----------------|----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 63.8 | 61.3 | 62.9 | 7 5 5 7 | 63.4 | 64.2 | 64.5 | 69.3 | 69.2 | 68.6 | 4.19 | 67.3 | 4.29 | 67.6 | 0 4 | 68.5 | 68.2 | , | 54.4 | 69.1 | 70.2 | 4.89 | 68.6 | 64.49 | 67.2 | 4 6 0 | 68.5 | 689 | 70.1 | 6 | 0 • 80 | 84.5 | 118.7 | 4 | 108.3 | 104.5 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.08 | 6.2 | 8 • 7 | 7.1 | ν.
Συ | 0 • 0 | 5.0 | 5+5 | 5.7 | 5 • 8 | 10. | 7.6 | 7 - 7 | 7.6 | 7.4 | | 0 4
0 4
0 5
0 5 | 8 9 | | 9 • 8 | 5 • 9 | 4.8 | 9.9 | 4.0 | 7.1 | 7 . 8 | 9.9 | U 4 | 0 4 | 6 • 4 | | 12.0 | 7.5 | 6.3 | | 11.7 | 45.5 | | DATE | CT | 11-01-62 | 12-05-62 | 1-07-63 | 2-14-63 | 3-06-63 | 5-14-63 | 6-04-63 | 7-03-62 | 8-02-62 | 9-05-62 | 11-01-62 | 12-04-62 | 1-03-63 | 2-01-63 | 3-02-63 | 4-02-63 | 6-04-63 | | 12-00-62 | 7-03-62 | 8-02-62 | 9-05-62 | 10-02-62 | 12-04-62 | 1-03-63 | 2-01-63 | 3-05-63 | 4-02-63 | 5-02-03 | | 12-00-62 | 3-00-63 |
89-00-6 | | 12-00-62 | 12-00-62 | | GROUND
SURFACE
ELEVATION
IN FEET | ATTON DISTRI | 0 | • | | | | | | 75.0 | | | | | | | | | | | 63.0 | 75.0 | | | | | | | | | | | 0.06 | 92.0 | 30 | 0 • 6 7 1 | 120.0 | 150.0 | | STATE WELL
NUMBER | TURLOCK IRRIGATION DISTRICT | | 55/09E-03D02 M | | | | | | N 1000 | 55/09E-14K01 H | | | | | | | | | | 55/09E-22N01 M | M 104,500,200 | 33/07E-24N01 | | | | | | | | | | 55/10E-21001 M | 55/10E-21R01 M | | 55/11E-21N01 M | 5S/11E-29F01 M | 55/12E-31N01 M | | AGENCY
SUPPLYING
DATA | | | 4521 | 4521 | | _ | 4521 | | 4521 | _ | 4521 | | 16.53 | 1761 | | 4521 | | | 4521 | | | 7097 | *7C* | 4554 | | 4554 | 4554 | | 4554 | i i | 4554 | 4554 | 4524 | | 5050 | | | | WATER
SURFACE
ELEVATION
IN FEET | | | 52.4 | 0.84 | 67.6 | | 61.2 | 61.5 | 42.9 | 44.5 | 96.8 | 6 • 96 | 100 | 1301 | 1 . 7 ! | 65.4 | 66.4 | | 9.94 | 0 1 | | | 0 • † † | 67.0 | | 96.5 | 0403 | | 118.5 | | 106.4 | 47.3 | 41.5 | | 63.1 | 65.1 | 65.0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-07 | | 21.6 | 24 5 | 24.9 | | 33.8 | 33.5 | 39.6 | 38.0 | 36.3 | 36.2 | i. | 45.5 | 40.0 | 57.6 | 56.6 | | 16.4 | | 5-22.08 | | 10.4 | 15.0 | | 12.5 | 14.7 | | 12.5 | | 23.6 | 5.7 | CI. | 0 | | 1 0 4 | | | DATE | | į. | 3-01-63 | 11 01-63 | 3-01-63 | | 11-01-62 | 3-01-63 | 11-01-62 | 3-01-63 | 11-01-62 | 3-01-63 | , | 11-01-62 | 3-01-63 | 11-01-62 | 3-01-63 | | 11-01-62 | 3-01-63 | 101 | | 3-01-63 | 3-01-63 | | 3-01-63 | 13 00-62 | 70-00-71 | 3-01-63 | | 12-00-62 | 3-01-63 | 29-00-61 | 70-00-71 | 7-05-62 | 8-06-62 | 10-04-62 | | GROUND SURFACE ELEVATION | OF A COLD | ALION DISTA | 74.0 | 6 | 6.26 | | 95.0 | | 82.5 | | 1.661 | 1 | | 119.2 | | 0 | 163.0 | | 63.0 | | SATION DISTR | | 55.0 | 0 - 6 a | 1 | 109.0 | 0 | 0 • 60 1 | 131.0 | | 130.0 | 53.0 | (| 0.00 | 70.0 | | | | STATE WELL
NUMBER | 1 4 4 4 N | MODESTO TRKIS | 35/08E-24C01 M | | 35/09E-05N01 M | | 35/09F-21A02 M | | 35/09F-30P01 M | | | 35/10E-08601 M | | 35/10E-29K01 M | | | 35/10E-32601 M | | 45/08E-03E01 M | | TURLOCK IRRIGATION DISTRICT | | 45/08E-27D01 M | I CALC LOCAL | | 45/10E-21R01 M | | 45/10E-21R02 M | 2000 | | 45/11E-32P01 M | 5.5.708F-01N01 M | | 55/08E-C2R01 M | 55/09E-03D02 M | | | | AGENCY
SUPPLYING
DATA | | 4525 | | | | 4525 | | | | | | | 4575 | 5050 | | | | | | | | | | | | | | 4575 | | | |--|-------------------------------------|----------------|-----------|-----------|------------|----------------|------------------------------------|------------------------|---------|---------|---------|---------|----------------|----------------|------------|---------|---------|------------|---------|------------|----------|------------|---------|------------|-----------|------------|---------|----------------|---------|--| | WATER
SURFACE
ELE VATION
IN FEET | | 164.0 | 166.4 | 166.0 | 166.1 | 163.4 | 163.4 | 162.6 | 166.5 | 164.1 | 165.6 | 164.8 | 80.9 | 103.4 | 105.2 | 104.7 | 104.2 | 106.5 | 105.2 | 106.6 | 107.0 | 106.8 | 106.7 | 107.8 | 107.7 | 108.2 | 108.3 | 0.89 | 98.6 | | | GRD SUR
TO WATER | 5-22.09 | 16.7 | 14.3 | 14.7 | 14.6 | 14.7 | 14.7 | 15.5 | 11.6 | 14.0 | 12.5 | 13.3 | 88 | 14.6 | 12.8 | 13.3 | 13.0 | 11.5 | 12.8 | 11.4 | 0.01 | 11.2 | 11.3 | 10.7 | 10.3 | 9.6 | 2.6 | 4 | 80 | | | DATE | | 1-08-63 | 3-04-63 | 5-01-63 | 6-27-63 | 7-03-62 | 9-06-62 | 11-05-62 | 2-05-63 | 4-02-63 | 5-02-63 | 5-29-63 | 3-05-63 | 1-02-62 | 3-05-62 | 4-05-62 | 20-20-6 | 7-02-62 | 8-02-62 | 9-06-62 | 11-01-62 | 12-05-62 | 1-07-63 | 3-05-63 | 4-02-63 | 5-03-63 | 6-04-63 | 7-03-62 | 7-30-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | MERCED IRRIGATION DISTRICT | 180.7 | | | | 178.1 | | | | | | | 2.06 | 118.0 | | | | | | | | | | | | | | 106.6 | | | | STATE WELL
NUMBER | MERCED IRRIGA | 65/13E-19N01 M | | | | 65/14E-32N01 M | | | | | | | 75/10F-01N01 M | 75/11E-01H01 M | | | | | | | | | | | | | | 75/11F-13N01 M | | | | (2 | | | | | | | | | | | | | |
 | | | | | | | | | | - | | | - | | | | | AGENCY
SUPPLYING
DATA | | 4554 | 4554 | 4554 | 4554 | 4554 | | 4525 | | | | | | | 4525 | | | | | | | | | | | 4525 | | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | 54.5 4524 | 82.8 4524 | 77.1 4524 | 101.8 4524 | 109.4 4524 | | 104.5 4525
103.8 | 103.2 | 105.3 | 104.1 | 104.2 | 103.5 | | | 128.9 | 129.4 | 127.6 | 128.4 | 127.9 | 128.9 | 128.8 | 128.8 | 125.9 | 7 6 1 6 7 | | 165.9 | 164.7 | 164.6 | | | | 5-22.08 | | | | | | 5-22.09 | | | , , , | | | | ** | 127.9 | | | 16.2 127.6 | | 15.9 127.9 | | 15.0 128.8 | | 16.9 125.9 | | 165.9 | | 16.0 164.7 | | | | SUR SURFACE SURFACE IN FEET IN FEET | | 54.5 | 82.8 | 77.1 | 101.8 | 109.4 | | 103.8 | . 8 | , , , | 7.2 | | | 6-04-63 # | 15.9 127.9 | 14.9 | | 16.2 | 15.4 | 15.9 | | 15.0 | 15.0 | | | 14.8 165.9 | 14.8 | | 16.1 | | | GRO SUR SURFACE
TO WATER ELEVATION
SUM IN FEET IN FEET | TURLOCK IRRIGATION DISTRICT 5-22.08 | 5.5 54.5 | 4.2 82.8 | 6.9 77.1 | 13.2 101.8 | 8.6 109.4 | MERCED IRRIGATION DISTRICT 5-22.09 | 6.8 104.5
7.5 103.8 | . 8 | 0.0 | 7.2 | 7.1 | 7 • 8 | | 15.9 127.9 | 14.9 | 1404 | 16.2 | 15.4 | 15.9 | 14.9 | 15.0 | 15.0 | 16.9 | | 14.8 165.9 | 14.8 | 16.0 | 16.1 | | | AGENCY
SUPPLY NG
DATA | | 4525 | 4525 | | 4 5 2 5 | 4
5
2
8 | |---|----------------------------|---|---|--
---|---| | WATER
SURFACE
ELE VATION
N FEET | | 174.4
174.3
176.2
177.0
179.7 | | | 1113.00
1113.00
11113.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
111110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
11110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
1110.00
110.00
110.00
11 | 1333.6
1333.6
1333.6
1286.0
1286.0
1290.2
1290.2
1290.6 | | GRD SUR
TO MATER
JR IN FEET | 5-22.09 | 13.1
13.2
11.3
10.5
7.8 | 00000XXXXX | 00000000000000000000000000000000000000 | 0040886660 | 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | DATE | | 2-05-63
3-05-63
4-01-63
5-02-63
5-29-63 | 7-02-62
7-30-62
9-06-62
10-02-62 | 11-04-62
12-04-62
1-04-63
3-05-63
4-01-63
5-29-63 | 8-01-62
9-05-62
10-02-62
11-04-62
12-04-63
3-04-63
3-04-63
5-01-63
5-01-63
5-01-63 | 6-27-63
8-02-62
9-05-62
11-01-62
12-05-62
12-05-63
12-05-63
13-05-63
13-05-63
13-05-63
13-05-63
13-05-63 | | GROUND
SURFACE
ELEVATION
IN FEET | MERCED IRRIGATION DISTRICT | 187.5 | 234.2 | | 120*2 | 135.0 | | STATE WELL
NUMBER | MERCED IRRIGA | 75/14E-16R01 M
CONT. | 75/15E-36N01 M | | 85/12E-01D01 M | 85/13E-09R01 M | | AGENCY
SUPPLYING
DATA | | 4525 | | 4525 | 4525 | 4 525 | | WATER
SURFACE
ELEVATION
IN FEET | | 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 101.4
101.4
98.4
98.0
97.9 | 134.1
131.8
130.7
131.9
131.9
132.0
132.9 | 11337
1337
1347
1347
1347
1347
1347
1347 | 14400.9
14400.9
13400.9
1883.1
1813.7
1771.1
1771.1
175.0
175.0
175.0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.09 | 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 888999 | 1133
1155
1155
1155
1155
1155
1155
1155 |
133.6
123.6
112.0
11.2
11.2
11.2.4
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11.3.6
11 | | | - | 1 | unnamma | n m m m m | 21 21 21 21 21 21 21 21 21 21 21 | | MUNUNUN MUNUNU | | DATE | | | 2-02-63
3-05-63
4-02-63
5-02-63
6-03-63
6-30-63 | 7-30-62
9-05-62
10-02-62
10-29-62
12-04-63
1-07-63
3-04-63 | 5-29-63
5-29-63
6-27-63
7-30-62
10-28-62
10-29-62
112-03-62
12-03-62
1-08-63 | 4-01-63
5-01-63
5-01-63
5-27-63
6-27-63
6-23-62
8-03-62
10-04-62
11-05-62
12-10-62 | | GROUND
SURFACE
ELLONION
IN FET | MERCED IRRIGATION DISTRICT | | 0 - 1 - 0 - 1 | 147.3 7-30-62
10-05-62
10-29-62
12-04-62
12-04-62
12-04-62 | 152.1
152.1
152.1
1-29-62
10-29-62
11-29-62
11-29-62
12-9-62
12-9-62
12-9-62
12-9-62
13-68-63 | 187.5
10.06-6
10.06-6
10.06-6
10.06-6
11.06-6
12.10-6 | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | | 6001 | 1009 | 6 | 6001 | 6001 | 2050 | 6001
5050
6001 | 5050 | 5050 | |---|----------------------------|-------------------------|---------------------|---------------------------------|----------------|------------------|------------------|-----------------------------|----------------|----------------|--------------------|----------------|------------------------------|-------------------------|----------------|--------------------------------|------------------|----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 84.4 | - 8.0 | 86.0 | 31.9 | 64.9 | 23.0 | 0.84 | 44.5 | 68.0 | | 51.5 | 55.1
51.5 | 8 0 7
0 0 4
0 0 4 | 231.1
235.8 | 38 • 8 | 51.9 | 63.1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.11 | 127.7 | 88°0 | 13.3 | 31.6 | 98.4 | 143.3* | 241 | 23.8 | 117.4 | | 55.5 | 75.3 | 17.9 | 17.2* | п
25 • 55 | 77.6 | 51.4 | | DATE | | 3-08-63 | 10-15-62
3-05-63 | 10-16-62 | 3-08-63 | 10-11-62 2-28-63 | 10-11-62 2-28-63 | 10-18-62 | 3-01-03 | 10-12-62 | 10-18-62 | 3-21-63 | 10-17-62
3-18-63 | 10-31-62
3-28-63 | 10-08-62 | 11-01-62
2-25-63
3-28-63 | 10-08-62 2-25-63 | 10-09-62 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 212.1 | 80. | 88.68 | 63.5 | 163.3 | 166.3 | 0 | 0 | 185.4 | 0 | • | 130.4 | 58.7 | 248.3 | 64.3 | 129.5 | 114.5 | | STATE WELL
NUMBER | DELTA-MENDOTA AREA | 35/05E-26K01 M | 35/06E-16001 M | 35/06E-18N01 M | 35/06E-25D01 M | 45/06E-04H01 M | 45/06E-09R01 M | | 43/07E=27M01 M | 45/07E-31D01 M | 2000 | | 55/07E-14D01 M | 55/08E-06K01 M | 65/07E-12P01 M | 65/08E-12L01 M | 65/08E-16M01 M | 65/08E-27J01 M | | AGENCY
SUPPLYING
DATA | | 4525 | 4525 | | | | | | 4525 | 4525 | | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 132.2 | 184.2 | 186.1
186.3
186.1 | 184.7 | 184.8 | 186.1 | | 55.7 | 83.7 | | 71.0 | 0.00
0.00
0.00
0.00 | 61.8 | 54.2 | 51.6
66.8
64.5 | 65.0 | 86.5 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.09 | 3.0 | 12.6 | 10.5 | 12.5 | 12.0 | 10.5 | 5-22.10 | 78.3 | 67.3 | 5-22.11 | 7.0 | 21.0 | 125.2 | 21.8 | 128.9 | 130.7 | 120.5 | | DATE | | 5-27-63 | 7-02-62 | 9-06-62
10-02-62
11-01-62 | 1-09-63 | 5-01-63 | 6-27-63 | CT | 2-20-63 | 2-20-63 | | 10-08-62 | 10-09-62 | 3-01-63 | 10-08-62 | 3-04-63
3-06-63 | 10-11-62 | 3-08-63 | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRIC | 135.0 | 196 • 8 | | | | | ATION DISTRI | 134.0 | 151.0 | AREA | 78.0 | 80.4 | 187.0 | 76.0 | 195.7 | 195.7 | 207.0 | | STATE WELL
NUMBER | MERCED IRRIGATION DISTRICT | 85/13E-09R01 M
CONT. | 85/14E-01A01 M | | | | | EL NIDO IRRIGATION DISTRICT | 95/13E-14R01 M | 95/14E-20801 M | DELTA-MENDOTA AREA | 2S/04E-16H01 M | 2S/04E-25J01 M | 25/04E-28A01 M | 25/05E-32A01 M | 35/05E-08R01 M | 3S/05E-08R02 M | 35/05E-25001 M | ### TABLE C-1 # GROUND WATER LEVELS AT WELLS | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | 6001 | | | | | | | | 6001 | | |---|---------------------------|---------------------------|---|---------------------------------------|-------------------------------|---------------------|---------------------|-------------------------------|---|----------------|---|--|---|--------------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 127.8 | 139.9
132.5
138.6
126.0 | 187.0
182.8 | 133.3 | 143.6 | 145.8 | 174.8 | 155.5 | 147.6 | 149.3 | 163.2
172.6
171.7
174.1 | 223.1
223.4
223.4
224.1
224.9 | 223.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.12 | 88.7
92.0
79.0 | 76.6
84.0
77.9
90.5 | 45.0 | 74°7
39°4
47°3 | 64.4
69.2* | 40.3 | 1 0 0 0
1 0 0 0
1 0 0 0 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 400 | 500000000000000000000000000000000000000 |
346
346
36
36
36
36
36
36
36
36
36
36
36
36
36 | 44444444444444444444444444444444444444 | 44.5 | | DATE | | 11-23-62 12-20-62 1-24-63 | 2-14-63
3-28-63
4-25-63
5-23-63
6-26-63 | 10-31-62 | 7-21-61
8-25-61
9-20-61 | 10-26-61 | 1-17-62 | 5-21-62 | 7-25-62 | 10-18-62 | 12-20-62 1-24-63 2-14-63 | 3-28-63
4-25-63
5-23-63
6-26-63 | 7-21-61
8-25-61
9-19-61
10-25-61
11-21-61 | 1-17-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA WATER DISTRICT | 216.5 | | 232.0 | 208.0 | | | | | | | | 267.0 | | | STATE WELL
NUMBER | CHOWCHILLA W | 95/15E-22R02 M
CONT. | | 95/15E-25J02 M | 95/15E-33801 M | | | | | | | | 95/16E-22R01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 2000 | | 6001 | 6001 | 6001 | 6001 | 6001 | | 6001 | 6001 | | | | WATER
SURFACE
ELEVATION
IN FEET | | 134.1 | 337.
366.
37.
37.
37. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 107.6 | 162.4 | 140.2 | 128.9 | | 115.3 | 1111.5
119.2
120.1
123.5 | 143.5
130.5
115.3 | 103.5 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.11 | 8 8
8 0
8 0 | 130°2
131°4
131°4
130°4 | 130°1
129°6
129°4 | • | 69.4 | 14.6 | 3 • 8 | 25.1
23.3 | 5-22.12 | 69.79 | 105.0
97.3
96.4
93.0
75.1 | 73.0
86.0
101.2 | 113.0 | | DATE | | 10-23-62 | 8-14-62
9-10-62
10-08-62
11-05-62
3-26-63 | 5-21-63
6-18-63 | 10-01-62 | 10-24-62
3-13-63 | 10-24-62
3-13-63 | 10-24-62
3-13-63 | 10-24-62 | | 10-25-62 | 10-26-61
11-21-61
12-20-61
1-17-62
2-27-62 | 3-21-62
4-25-62
5-21-62
6-19-62
7-25-62 | 9-24-62
9-20-62
10-18-62 | | GROUND
SURFACE
ELEVATION
N FEET | A AREA | 138.0 | 168.0 | | 183.0 | 177.0 | 177.0 | 144.0 | 154.0 | ATER DISTRICT | 185.0 | 216.5 | | | | STATE WELL
NUMBER | DELTA-MENDOTA | 12S/12E-04D01 M | 12S/12E-16H05 M | | 12S/12E-20J01 M | 12S/12E-25D01 M | 12S/12E-25D02 M | 12S/13E-10N01 M | 125/14E-30C01 M | CHOWCHILLA WAT | 95/14E-25R01 M | 95/15E-22R02 M | | | TABLE C-1 | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | 6001 | | | | | 6001 | |---|---------------------------|--|--------------------------------|--|---|----------------------|------------------|---|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 84.0
81.7
83.3
81.8 | | 111.1 | 40000
4000
6000
6000
6000 | 101.7 | 0.479 | 99.0 | 100.3 | 134.1
128.1
141.1
149.2
157.2
158.1
158.5
154.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-12 | 66.0
68.3
66.7
68.2
72.1 | DRY
* | 82.9 | 98 • 1
90 • 8 *
87 • 7
84 • 5 | 82.0
81.3
77.1 | , d | 88 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7 725.0 | 1034
1034
1034
1034
1034
1034
1034
1034 | | DATE | | 2-14
3-28-63
4-125-63
5-123-63
6-125-63 | 10-30-62 | 10-29-62
2-18-63 | 9-20-61
10-26-61
11-21-61
12-20-61 | 3-21-62 | 6-19-62 | 9-20-62
10-19-62 | 12-21-62
12-21-62
2-14-63
3-28-63
4-25-63
6-26-63 | 7-20-61
8-25-61
10-25-61
11-21-10-25-61
11-21-10-61
12-10-62
2-21-62
3-21-62
5-21-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA WATER DISTRICT | 150.0 | 156.0 | 194.0 | 183.0 | | | | | 232.0 | | STATE WELL
NUMBER | CHOWCHILLA W | 105/14E-08B03 M
CONT. | 105/14E-26C01 M | 10S/15E-23K01 M | 10S/15E-27D03 M | | | | | 10S/16E-09E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | | | 6001 | 6001 | 6001 | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 222.8
222.8
222.6
223.1
223.7 | 225.1
225.8
226.4 | 226.1 | 223 ° 8 | 221.5 | 244.5 | 314.9 | 72.1
71.3
72.6
74.0
75.9
80.5 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | | GRD SUR
TO WATER
SUR. IN FEET | 5-22-12 | 0046
0046
0046
0046
0046
0046
0046
0046 | 41.9
40.6 | 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4444
9529
80720
80720 | 98.5 | 75.5 | 50.1 | 77 ° ° 5
78 ° ° 5
77 ° ° 5
75 ° ° 1
74 ° 1
69 ° 5 | 665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00
665.00 | | DATE | | 3-21-62
4-25-62
5-21-62
6-19-62
7-25-62 | 8-24-62
9-20-62
10-18-62 | 11-43-62
12-20-62
1-24-63
2-14-63 | 3-28-63
4-24-63
5-23-63
6-26-63 | 10-23-62 2-13-63 | 10-23-62 2-13-63 | 10-22-62 2-13-63 | 7-21-61
8-25-61
9-20-61
10-26-61
11-21-61
12-20-61
1-17-62 | 2-27-62
3-22-62
4-25-62
5-21-62
7-25-62
7-25-62
8-24-62
8-26-62
10-18-62
11-21-62
12-21-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA WATER DISTRICT | 267.0 | | | | 320.0 | 320.0 |
365.0 | 150.0 | | | STATE WELL
NUMBER | CHOWCHILLA W | 95/16E-22R01 M
CONT. | | | | 98/17E-21L01 M | 95/17E-35J01 M | 95/18E-33001 M | 105/14E-08803 M | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | | | 6001 | 6001 | 6001 | |---|----------------------------|--|---|--|--------------------------------|------------------|---|-----------------|-------------------------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | 127.8
127.2
125.8
125.5 | 1256.3
1256.3
1256.8
1266.4
126.0
128.3 | 128.7
129.3
129.7
129.6 | 130.1 | 135.4 | 135.0
135.1
134.7
133.5 | 179.7 | 201.9 | 203.5
203.7
204.9
204.7
204.7
204.6
204.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.13 | 68°2
68°8
70°2
70°5 | 799.4
799.7
79.2
78.6
78.0
76.1 | 775.37 | 72.0 | 69.6 | 700.0 | 40.07 | 72.5 | 88000000000000000000000000000000000000 | | DATE | <u></u> | 3-28-63
4-25-63
5-23-63
6-26-63 | 7-21-61
8-24-61
9-18-61
10-25-61
11-21-61
12-19-61
1-18-62
2-26-62 | 5-24-62
5-22-62
6-18-62
7-24-62 | 8-24-62
9-19-62
10-19-62 | 12-20-62 | 2-14-00
3-28-63
4-25-63
5-24-63
6-26-63 | 2-19-63 | 12-21-62
2-19-63 | 7-20-61
9-24-61
9-25-61
10-25-61
11-21-61
12-19-61
12-19-61
12-19-62
3-21-62
4-24-62
3-21-62 | | GROUND
SURFACE
ELEVATION
IN FEET | MADERA IRRIGATION DISTRICT | 196.0 | 205.0 | | | | | 250.6 | 274.4 | 284.0 | | STATE WELL
NUMBER | MADERA IRRIGA | 115/16E-06A01 M
CONT. | 115/16E-10N01 M | | | | | 115/17E-27C01 M | 11S/18E-20N01 M | 115/18E-27M01 M | | AGENCY
SUPPLYING
DATA | | 1009 | | 6001 | 6001 | 6001 | 6001 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 142.5 | 1554
1649
1656
1656
1656
1656
1656
1656
1666
166 | 127.3 | 263.8
263.6 | 369.7 | 121.0
116.1
117.3
117.8 | 121.2 | 125.4 | 122.6
122.6
122.6
120.0
121.0
121.0
122.8
124.2
124.2
124.2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-12 | 89 ° 5
86 ° 1
86 ° 1 | 77.2
77.2
77.2
82.6
71.0
76.2
77.8
80.5 | 82.2
77.9
5-22.13 | 62.2 | 17.3 | 75.0
79.9
78.7
78.2 | 74.8 | 70.6 | 72.5
73.6
75.0
75.0
76.4
74.9
772.2
772.2
68.4 | | DATE | | 6-19-62
7-25-62
8-24-62
9-19-62 | 11.21.62
12.24.63
12.44.63
2.14-63
3.28-63
4.25-63
5.23-63 | 10-29-62 2-19-63 | 10-22-62 | 10-22-62 2-13-63 | 7-20-61
8-24-61
9-19-61
10-25-61 | 12-19-61 | 2-26-62
3-21-62
4-24-62 | 5-22-62
6-18-62
7-4-62
8-24-62
9-19-62
10-19-62
11-21-62
12-20-62
1-23-63
2-14-63 | | GROUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA WATER DISTRICT | 232.0 | | 6E-29R01 M 209.5
MADERA IRRIGATION DISTRICT | 326.0 | 387.0 | 196.0 | | | | | STATE WELL
NUMBER | HILLA W | 105/16E-09E01 M
CONT. | | 10S/16E-29R01 M
MADERA IRRIGA | 10S/18E-20B01 M | 10S/19E-16D01 M | 11S/16E-06A01 M | | | | | AGENCY
SUPPLYING
DATA | , | 1009 | 6001 | | 1004 |---|----------------------------|-----------------|---------|--------------|----------|----------|-------------|----------|---------|---------|---------|---------|---------|---------|---------|-----------------|----------|---------|-----------------|---------|-------------------|-----------------|---------|----------|-----------------|----------|-----------------|---------|----------|----------|----------|----------|---------|---------|----------|----------|----------|---------|---------|---------|---------|----------|-----------|--------| | WATER
SURFACE
ELEVATION
IN FEET | | | 124.2 | 127.1 | 138.5 | 136.8 | 146.1 | 149.0 | 140.8 | 139.0 | | | 130.4 | 30.6 | 133.5 | 143.5 | 140.1 | 140.3 | 150.5 | 138.1 | 190.9 | | | 160.0 | • | 0 | 145.4 | 167.0 | 166.2 | 165.1 | 167.4 | 16.8 | 120.1 | 170.7 | 167.2 | 167.1 | | 1070 | 10/07 | 168.9 | 0 0 0 0 | 1/1.0 | 1 / 1 . / | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.13 | | 93.8* | *6*06 | 19.5* | 81.2* | 71.9 | 0.69 | 77.2 | 19.0 | | | œ | ם | C • 7 6 | 74.5 | 77.9 | 77.7 | 67.5 | 79.9 | 1.6/ | D 1 | | 0 | • 🗆 | 6 | ±7.87 | 60.4 | 0 0 0 | 6.69 | 67.6 | | 0000 | | 1 1 | | | | | | | 0 * 4 9 | | | | DATE | | 7-20-61 | 9-18-61 | 10-24-61 | 11-20-61 | 12-18-61 | 1-16-62 | 2-26-62 | 3-20-62 | 4-24-62 | 5-21-62 | 6-18-62 | 7-24-62 | 8-23-62 | 9-19-62 | 11-20-62 | 12-20-62 | 1-23-63 | 2-12-63 | 3-27-63 | 4-24-63 | 5-23-63 | 6-25-63 | | 2-19-63 | | 7-19-61 | 8-23-01 | 10-34-61 | 11-20-61 | 12.78.61 | 10-01-71 | 1-16-62 | 79-97-7 | 3-20-62 | 79-72-7 | 2-71-6 | 6-18-62 | 7-24-62 | 8-22-62 | 9-19-62 | 10-17-62 | 11-20-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRIC | 218.0 | 228.0 | | 235.0 | | | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | MADERA IRRIGATION DISTRICT | 12S/17E-20P01 M | 12S/17E-21H01 M | | 125/17E-26C01 M | | | | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | _ | | | | _ | | | | | | | | , | 6001 | | 1004 | 1000 | | 6001 | WATER
SURFACE
ELEVATION
IN FEET | | | 204.2 | 2000
2000 | 202 | 0000 | 000 | | 203.0 | 203.7 | 203.8 | 203.8 | 203.5 | 203.3 | | 308.3 | 303.1 | 0 761 | 139.4 | | 143.1 | 139.3 | 139.1 | 143.8 | 147.2 | 150.5 | 153.3 | 152.2 | 150.4 | 149.5 | 146.5 | 144.3 | 142.7 | 143.5 | 145.6 | 147.8 | 149.8 | 151.3 | 152.0 | 149.7 | 0.041 | 150.1 | 146.1 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.13 | | 79.8 | 6.08 | 81.0 | * | 0 10 | 2 6 | 0. [8 | | 80.2 | 80.2 | 80.0 | 80.7 | | 107.7 | 112.9 | | 4.0.4 | | 85.9 | 89.7 | 6.68 | 85.2 | 81.8 | 78.5 | 75.7 | 76.8 | 78.6 | 79.5 | | | | | 63.4 | | | 77.7 | | | | | 0 0 | 100 | | DATE | | 5-21-62 | 6-18-62 | 7-24-62 | 8-23-62 | 79-07-6 | 11 20-11-02 | 12-21-62 | 1-21-02 | 2-12-63 | 3-27-63 | 4-25-63 | 5-24-63 | 6-26-63 | | 10-15-62 | 2-11-63 | | 12-26-62 | 00-61-3 | 7-20-61 | 8-23-61 | 9-18-61 | 10-24-61 | 11-20-61 | 12-16-61 | 2-26-62 | 3-20-62 | 4-24-62 | 5-21-62 | 6-18-62 | 7-24-62 | 8-23-62 | 9-19-62 | 10-17-62 | 11-20-62 | 12-20-62 | 1-23-63 | 00-07-1 | 69-71-7 | 012710 | 4-24-03 | 2-22-63 | 0-03-0 | | GROUND
SURFACE
ELEVATION | ATION DISTRIC | 284.0 | | | | | | | | | | | | | | 416.0 | | | 205.4 | | 229.0 | 0 = 6 7 7 | STATE WELL
NUMBER | MADERA IRRIGATION DISTRICT | M LOWE-27MO1 M | CONT | | | | | | | | | | | | | 115/20E-22M01 M | | | 125/16E-23A01 M | | M 10000 Pt 1, 200 | 123/1/E-U8GUI M | L | | 110 | 1 | | | | | | | | | | | | | 110 | | | 2 12 | | | 71 | TABLE C-1 | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 1 | 0000 | 6001 | |---|----------------------------|---|---|---------
--|--| | WATER
SURFACE
ELE VATION
IN FEET | | 204.8
205.3
205.1
205.9
206.8
207.1 | 207.7
206.3
208.0
206.5
183.8 | 184.8 | 1083 | 225.4 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.13 | 82.2
84.7
81.9
81.1
80.2
79.9 | 80.7
79.5
79.0
80.5 | 80.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 82.3
81.6 | | DATE | 17 | 7-23-62
8-22-62
9-18-62
10-17-62
11-21-62
12-20-62 | 2-12-63
3-27-63
4-24-63
5-23-63
6-25-63
12-20-62 | 2-18-63 | 7-19-61
9-18-61
10-24-61
11-20-61
11-20-62
2-18-62
2-26-62
4-24-62
4-24-62
6-21-62
6-21-62
6-21-62
10-17-62
11-27-62
11-27-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12-26-63
12- | 12-20-62
2-11-63 | | GROUND
SURFACE
ELEVATION
IN FEET | MADERA IRRIGATION DISTRICT | 288.0 | 2 6 5 • 0 | | 9 | 307.0 | | STATE WELL
NUMBER | MADERA IRRIG | 125/18E-13R01 M
CONT. | 12S/18E-21G01 M | | | 12S/19E-28A01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | 0000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 172.2
173.0
173.2
170.4
170.4 | 157.8
153.5
163.0
164.8
166.7 | 171.7 | 100 100 100 100 100 100 100 100 100 100 | 208.3
206.4
206.4
204.6 | | GRD SUR
TO WATER
SUR. IN FEET | 5-22.13 | 62.8
62.0
61.8
64.6
64.6
64.8 | 77.2
81.5
72.0
70.2
68.3 | 59.4 | 74444444444444444444444444444444444444 | 78.7
80.6
80.6
82.4 | | DATE | 1 | 12-20-62
1-23-63
2-12-63
3-27-63
4-24-63
5-23-63 | 7-19-61
8-23-61
9-18-61
10-24-61
11-20-61
12-18-61 | 1-16-62 | 3-20-62
5-21-62
5-21-62
7-28-62
10-10-10-10-10-10-10-10-10-10-10-10-10-1 | 3-20-62
4-24-62
5-21-62
6-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | MADERA IRRIGATION DISTRICT | 235.0 | 235 • 0 | | ° 0
8 8
7 9
8 0 | | | STATE WELL
NUMBER | MADERA IRRIG | 125/17E-26C01 M
CONT. | 125/17E-34R01 M | | 125/18E-13R01 M | | TARIE CIT | AGENCY
SUPPLYING
DATA | | 6001 | | | 6001 | 6001 | 600 1 | | |---|-----------------------------|--------------------------|---------------------------|--|---|-------------------------------
--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 92.1 | 91.8
92.2 | 98.5
97.1
95.9
95.9 | 116.6
120.0
120.0
121.0
122.2
122.4
123.0
123.0
121.0 | 131.4 | 1122 12 12 12 12 12 12 12 12 12 12 12 12 | 123
124
125
125
135
135 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.14 | п
55*9 | 55.8 | 64
50
50
50
50
50
50
50
50
50
50
50
50
50 | 188.0
15.0
15.0
12.8
12.6
11.0
11.0 | 26.6 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8 t 7 t t t t t t t t t t t t t t t t t | | DATE | 4 | 9-20-62 | 11-21-62 12-21-62 1-24-63 | 2-14-63
3-28-63
4-25-63
5-23-63
6-26-63 | 7-24
9-124-62
9-13-62
10-119-62
111-20-62
12-20-62
12-20-63
2-19-63
4-25-63
5-23-63 | 10-19-62 2-19-63 | 7-20-61
9-19-61
10-25-61
11-22-61
11-19-61
12-19-62
2-26-62
3-20-62 | 2-22-62
6-18-62
7-24-62
8-23-62
9-19-62
10-19-62
11-21-62 | | GROUND
SURFACE
ELEVATION
IN FEET | WEST CHOWCHILLA-MADERA AREA | 148.0 | | | 135.0 | 158.0 | 10
00
00
00 | | | STATE WELL
NUMBER | WEST CHOWCHIL | 105/14E-34H01 M
CONT. | | | 115/14E-33L01 M | 11S/15E-33E01 M | 11S/15E-33P01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | | 106.4 | 102.4
101.6
100.6
99.4 | 1000
11112
1112
1112
1112
1112
1112
111 | 103.6
104.1
105.0 | 1110.4
1110.4
97.2
97.0
99.0
99.0
99.0 | 99999999999999999999999999999999999999 | | GRD SUR
TO WATER
SUR IN FEET | 5-22 • 14 | = = | 70.6 | 2 2 2 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 28 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | 27.4
26.9
26.0 | 2000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000 | 523 - 6
52 - 3
52 - 4
56 - 9
56 - 9 | | DATE | AREA | 10-24-62 2-20-63 | 10-29-62 2-12-63 | 7-21-61
8-25-61
9-20-61
10-26-61
11-21-61 | 12-20-61
1-17-62
2-2-62
4-25-62
5-21-62
5-11-62
6-19-62
6-19-62
6-19-62
10-18-62
11-162 | 1-24-63
2-14-63
3-28-63 | 5-23-63
6-26-63
7-21-61
8-25-61
9-20-61
11-21-61
1-17-62 | 2-27-62
3-22-62
4-25-62
5-21-62
6-19-62
7-25-62
7-25-62 | | GROUND
SURFACE
ELEVATION
IN FEET | | 120.5 | 177.0 | 131.0 | | | 148.0 | | | STATE WELL
NUMBER | WEST CHOWCHILLA-MADERA | 105/13E-14M01 M | 105/14E-01R01 M | 10S/14E-31H01 M | | | 105/14E-34H01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | 6 0 0 1 | 5631 | 6001 | |---|-----------------------------|--
---|--|--|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 134.9
136.1
134.7
132.9
124.9 | 111111111111111111111111111111111111111 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 32 33 33 33 33 33 33 33 33 33 33 33 33 3 | 445.4 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.14 | 60.1
588.9
60.3
70.1
80.2 | 78.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00
77.00 | 966.9996.9996.999999999999999999999999 | 88 89 10 10 10 10 10 10 10 10 10 10 10 10 10 | 27.6 | | DATE | V 2 | 2-26-62
3-20-62
4-24-62
5-21-62
6-18-62 | 777 | 7-22
8-22
8-22
11-25
12-19-62
12-19-62
1-23-63
2-23-63
2-23-63
2-23-63
2-23-63
2-23-63
2-23-63 | 7-27
9-18-20
9-18-20
10-18-27
111-27-62
112-27-62
2-18-63
3-18-63
5-18-63
6-27-63 | 10-15-62 | | GROUND
SURFACE
ELEVATION
IN FEET | WEST CHOWCHILLA-MADERA AREA | 195.0 | FRESNO IRRIGATION DISTRICT | 360.0 | 587 · T | 473.0 | | STATE WELL
NUMBER | WEST CHOWCHIL | 135/16E-02C01 M
CONT. | FRESNO IRRIG | 125/20E-14A01 M | 125/21E-34D01 M | 125/22E-21E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 136.4
128.4
128.9
124.5
123.9 | 133.5
133.3
133.1
136.7
136.6
138.0 | 1336.2
1336.0
1357.9
1356.0
136.0
137.4 | 131.1
131.1
126.7
125.3
119.8
124.3 | 135.2 | | GRD SUR
TO
WATER
SUR. IN FEET | 5-22.14 | 223
24.06
31.1
35.05
37.8 | П
106.5
116.7
112.9
113.9
113.0
11.1 | 113.8
114.0
114.0
112.0
112.0 | uu ww orrro
ww ww orrro
 | 59.8 | | DATE | EA | 1-23-63
2-19-63
3-27-63
4-25-63
5-24-63
6-26-63 | 7-20-61
8-24-61
9-19-61
10-25-61
11-22-19-61
12-19-61
12-19-61
1-18-62
3-20-62
4-24-0-62
4-22-62 | 7 - 24 - 62
8 - 24 - 62
8 - 24 - 62
9 - 19 - 62
10 - 19 - 62
11 - 21 - 62
12 - 20 - 62
12 - 20 - 62
1 - 23 - 63
3 - 27 - 63
5 - 25 - 63
6 - 25 - 63
6 - 25 - 63
7 | 10-25-62
2-19-63
10-24-62
2-19-63
7-19-61
8-23-61
10-24-61
11-20-61 | 12-18-61 | | GROUND
SURFACE
ELEVATION
IN FEET | A-MADERA AR | 160.0 | 150.0 | | 165.0 | | | STATE WELL
NUMBER | WEST CHOWCHILLA-MADERA AREA | 115/15E-33P01 M
CONT. | 12S/14E-25H01 M | | 125/14E-28G01 M
125/15E-14L01 M
135/16E-02C01 M | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | | | 6001 | 6001 | |---|----------------------------|-----------------|---|--|--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 201.0 | 202.6
201.4
201.4
201.0
201.0
201.8
201.8
202.8
202.8
203.5
200.6 | 204.0
202.0
202.0
202.0
200.0
200.0
200.0 | 199.5 | 1882.7
1882.7
1882.8
1882.9
1882.9
1882.0
1882.0
1882.0
1882.0
1882.0
1882.0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 57.0 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 56.3
56.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DATE | | 7-19-61 | 9-18-61
11-23-61
11-23-61
12-18-61
1-16-62
3-20-62
3-20-62
4-23-62
5-18-62
6-18-62
8-12-62
9-18-62 | 10-16-62
11-21-62
12-19-62
12-19-62
1-23-63
3-25-63
4-23-63
6-24-63 | 10-22-62 2-20-63 | 7-19-61
9-18-61
9-18-61
10-23-61
10-23-61
12-18-61
11-6-62
2-26-62
3-20-62
3-20-62
5-21-62
7-23-62
7-23-62
8-22-62 | | GROUND
SURFACE
ELEVATION
IN FEET | TION OISTRIC | 258.0 | | | 255.8 | 245.0 | | STATE WELL
NUMBER | FRESNO IRRIGATION OISTRICT | 135/18E-10P01 M | | | 135/18E-16D01 M | 135/18E-34D01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 5631 | 6001 | | | | WATER
SURFACE
ELEVATION
IN FEET | | 448.5 | 176.7
178.7
180.2
180.2
179.8
179.8
179.8
177.8
178.4
178.4
177.9 | 148.4
150.2
150.7
151.8 | 160.7
161.5
160.3
160.9 | 15.6 % % % % % % % % % % % % % % % % % % % | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 24.5 | 44444444444444444444444444444444444444 | 663 66 61 65 65 65 65 65 65 65 65 65 65 65 65 65 | 51.3
50.5
51.7
51.1 | 00000000000000000000000000000000000000 | | DATE | | 2-12-63 | 7-02-62
7-25-62
9-26-62
10-24-62
11-30-62
12-29-63
2-25-63
4-29-63 | 7-19-61
8-21-61
9-18-61
10-23-61
11-20-61
12-18-61 | 2-26-62
3-20-62
4-23-62
5-21-62 | 6-18-62
8-22-62
8-22-62
10-18-62
11-21-62
12-19-62
12-19-63
12-19-63
12-13-63
13-25-63
6-22-63
6-22-63 | | GROUND
SURFACE
ELEVATION | FRESNO IRRIGATION DISTRICT | 473.0 | 2 2 0 • 8 | 212.0 | | | | 1 | \ \S | | | 135/17E-33D01 M | | | | AGENCY
SUPPLY:NG
DATA | | 6001 | 5631 | | 4200 | |---|----------------------------|----------------------------------|---|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 212.2
217.0
215.7 | 262.8
262.3
264.0
263.6
263.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 255.8 8 255.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 77.8
73.0
74.3 | 73.9*
72.7
73.1 | 10000000000000000000000000000000000000 | 7488899 8810 98 98 98 98 98 98 98 98 98 98 98 98 98 | | DATE | 1 | 4-23-63
5-21-63
6-24-63 | 7-20-61
8-31-61
9-25-61
10-27-61 | 12-30-61
2-130-61
2-01-62
3-29-62
4-20-62
5-31-62
6-21-62
9-27-62
10-27-62 |
12-27-6-2
2-27-6-2
2-27-6-2
2-27-6-2
2-27-6-3
5-28-6-3
8-29-6-2
10-91-6-2
11-90-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30-6-3
11-30- | | GROUND
SURFACE
ELEVATION
IN FEET | FRESND IRRIGATION DISTRICT | 290.0 | 336 • 7 | | 364.0 | | STATE WELL
NUMBER | FRESND IRRIG | 135/19E-16K01 M
CONT. | 135/20E-02L01 M | | 135/20E-21J01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 5631 | 0009 | | WATER
SURFACE
ELEVATION
IN FEET | | 182.9 | 183.0
183.0
179.5
181.0 | 2222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 62.1
66.2
62.8 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0000000
4 4440000
• 0 • • • • • • • • • • • • • • • • | 77777777777777777777777777777777777777 | | DATE | | 10-16-62
11-21-62
12-19-62 | 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 7-25-62
8-28-62
9-26-62
11-30-62
11-28-62
12-28-63
3-28-63
4-29-63 | 7-19-61
9-12-61
9-12-61
10-23-61
11-20-61
11-20-62
3-20-62
5-21-62
7-21-62
10-18-62
11-21-62
11-21-62
11-21-62
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63
11-21-63 | | GROUND
SURFACE
ELEVATION
(N FEET | FRESNO IRRIGATION DISTRICT | 245.0 | | 2 8 8 8 8 | 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | STATE WELL
NUMBER | IO IRRIGA | 135/18E-34D01 M
CONT. | | 135/19E-09G01 M | 135/19E-16K01 M | TABLE C-1 | AGENCY
SUPPLYING
DATA | | 6001 | | 5631 | | | | | | | | | | 5631 | | | | | | | | | | | | 2695 | | | | | | | | | | | |---|----------------------------|------------------------------|---------|-----------------|---------|------------------------|----------|----------|---------|--------------|---------|---------|------------------------------|--------------|--------------------|---------|----------|----------|----------|---------|---------|---------|---------|---------|-------|-----------------|---------|-----------|----------|----------|---------|---------|-----------|---------|---------|--------------| | WATER
SURFACE
ELEVATION
IN FEET | | 143.7 | | 159.1 | 147.2 | 158.4 | 160.0 | 162.3 | 162.5 | 162.5 | 159.6 | 160.3 | 159.9 | 197.3 | 195.2 | 192.5 | 193.5 | 194.1 | 194.5 | 191.7 | 193.8 | 190.8 | 191.1 | 190.7 | 0 | 210.7 | 210.7 | 217.6 | 217.9 | 218.2 | 218.4 | 218.9 | 211.5 | 217.2 | 211.3 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 71.3 | םם | 68.3 | 80.2 | 0.69 | 9,99 | 65.1 | 64.9 | 6.49 | 67.8 | 67.1 | 67.5 | 6.64 | 52.0 | 00° | 53.0 | 53.1 | 52.7 | 55.5 | 53.6 | 30.00 | 56.1 | 56.5 | | 71.8* | 13.0* | k 0 0 7 7 | 64.0 | 64.3 | 64.1 | 63.6 | 71.0* | 71.62* | 71.2 | | | DATE | | 3-25-63 | 6-24-63 | 7-02-62 | 8-28-62 | 9-26-62 | 10-24-62 | 12-29-62 | 1-28-63 | 3-28-63 | 4-29-63 | 5-27-63 | 6-25-63 | 7-02-62 | 7-25-62 | 79-67-8 | 10-25-62 | 11-29-62 | 12-29-62 | 1-31-63 | 2-26-63 | 4-30-63 | 5-27-63 | 6-26-63 | | 7-26-61 | 8-29-61 | 19-17-6 | 11-26-61 | 12-26-61 | 1-26-62 | 2-27-62 | 4-11-62 | 4-27-62 | 6-29-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRICT | 215.0 | | 227.4 | | | | | | | | | | 247.2 | 1 | | | | | | | | | | | 282.5 | | | | | | | | | | | | STATE WELL
NUMBER | FRESNO IRRIGATION DISTRICT | 145/17E-13H02 M
CONT. | | 145/18E-08J01 M | | | | | | | | | | M 10805-2010 | 2 10003-361011 | | | | | | | | | | | 145/20E-06H01 M | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5631 | | | | | | | 5631 | | | | | | | | | | 1004 | 1 | | | | | ۰ ۲ | 4 | 9 | 9 | 0 0 | 20 0 | o rc | | | n س | 00 | 0 | 6. | 4.0.4 | 38.4 | | 141.3 | 45.0 | _ u | 4.00 | , LC | 4 | 5 | 2 | 2 | ω u | 136.7 | 1 2 4 6 7 | 143.8 | 145.5 | 140.0 | | WATER
SURFACE
ELEVATION
IN FEET | | 326.8 | 327.8 | 326.3 | 325.4 | 324.9 | 325.4 | 325.6 | 371.6 | 371.0 | 371.8 | 373.5 | 373.0 | 372. | 372.3 | 371.8 | 372.0 | 371 | 14.0 | 138 | 137.3 | 141 | 145 | 145. | 147 | 138.5 | 139.4 | 144.5 | 140.3 | 130.5 | 126.8 | 13 | ٦, | | | | | | 5-22.15 | 37.2 326.8
35.8 328.2 | | | | 39.1 324.
39.3 324. | | | | | | 34.6 | | | 34.2 372. | | | | | 74.7 | | | | | 67.65 | | | | | | | | | 71.2 | 69.5 | 4 . 8 9 | | | | 8-30-62 37.2
9-27-62 35.8 | 36.2 | 37.7 | 38.6 | | 38.6 | | | 35.5 | 34.7 | | 0 .0
0 .0
0 .0
0 .0 | 34.2 | | 34.7 | 34.5 | | , | | 7-77 | | 70.0 | 69.3 | , (| 76.5 | 75.6 | 70.5 | 7.47 | 84.5 | 88.2 | 78.5 | | | | 2-25-63 68.4 | | GRD SUR
TO WATER
SUR IN FEET | RICT | 8-30-62 37.2
9-27-62 35.8 | 36.2 | 37.7 | 38.6 | 39 · 1 | 38.6 | 38.4 | 34.9 | 8-29-62 35-5 | 34.7 | 34.6 | 0 .0
0 .0
0 .0
0 .0 | 34.2 | 34.0
0.4
0.0 | 34.7 | 34.5 | 34.6 | 7 | 74.0 | 7-77 | 73.7 | 70.0 | 69.3 | 6/•3 | 76.5 | 75.6 | 70.5 | 7.47 | 84.5 | 88.2 | 78.5 | 72.0 | | | | ### TABLE C-1 GROUND WATER LEVELS AT WELLS | AGENCY
SUPPLY NG
DATA | | 5631 | 5631 | | 4 2 0 0 | |---|----------------------------|---|---
---|--| | WATER
SURFACE
ELE VATION
IN FEET | | 349°9
349°4
354°0 | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2010
2010
2010
2010
2010
2010
2010
2010 | 7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 500 1
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18488 888888888888888888888888888888888 | 5 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | | DATE | | 2+27-63
3+28-63
4-30-63
5-29-63
6-26-63 | 7-27-61
8-30-61
9-28-61
10-30-61
11-30-61
12-29-61 | 2-26-62
4-10-62
5-29-62
5-29-62
6-28-62
7-27-62
9-27-62
9-27-62
11-28-62
11-28-62 | 7-01-61
10-01-61
11-01-61
12-01-62
2-01-62
4-01-62
5-01-62
5-01-62
5-01-62
5-01-62
5-01-62
5-01-62
5-01-62
5-01-62 | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRICT | 4 00 • 0 | 282.5 | | 325+0 | | STATE WELL
NUMBER | FRESNO IRRIGATION DISTRICT | 145/22E-01P01 M
CONT. | 155/20E-13E02 M | | CITY OF FRESNO
135/20E-23801 M | | AGENCY
SUPPLYING
DATA | • | 5631 | | 5631 | 5631 | | WATER
SURFACE
ELEVATION
IN FEET | | 214.4
208.3
216.1
215.5
210.5 | 212.2
212.2
212.0
217.2
216.1 | 28 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 98 98 98 98 98 98 98 98 98 98 98 98 98 9 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.15 | 68.1
74.2
66.4
67.0
72.0 | 711.4
700.0
700.0
665.0
656.0
656.0 | 44444444
00004400400
0000440000000000 | 4 444444444444444
0 0000000000000000000 | | DATE | E | 7-25-62
8-30-62
9-27-62
10-25-62
11-28-62 | 1-31-63
2-28-63
3-28-63
4-30-63
5-29-63 | 7-27-62
9-29-62
9-29-62
10-26-62
11-28-62
11-27-62
12-27-63
3-27-63
3-27-63
5-27-63
5-27-63 | 7-28-61
9-29-61
9-29-61
10-31-61
112-31-61
2-01-62
2-01-62
5-02-62
6-28-62
6-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
1 | | GROUND
SURFACE
ELEVATION
N FEET | TION DISTRICT | 282.5 | | 0 • 4 | 0 | | STATE WELL
NUMBER | FRESNO IRRIGA | 145/20E-06H01 M
CONT. | | 145/21E-14A01 M | 145/22E-01P01 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 4200 | 000 | 0007 | 6001 | 000 | |---|----------------|---|-------------------------------|---|---
--| | WATER
SURFACE
ELE VATION
IN FEET | | 228.6
227.0
226.1
228.0
228.9
229.1
230.0
229.9 | 230.2 | 201.7
201.0
201.0
205.3
205.3
201.4
211.4
215.0
215.0
215.0
215.0 | | 97.9
1000.3
1115.0
1115.0
1127.5
1138.4
1132.4
1132.4
1132.4
1132.4
1132.4
1132.4
1132.4
1132.4
1132.4
1132.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133.4
1133 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.16 | 75.3
75.9
75.0
75.0
75.0
75.0
73.0
73.0 | 73.7 | 89.7
88.8
86.1
86.1
83.3
86.2
76.2
75.4
75.4
75.4 | 0 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | DATE | | 7-01-62
8-01-62
9-01-62
10-01-62
11-01-62
12-01-63
1-01-63
1-01-63
1-01-63
1-01-63 | 5-01-63 | 8-03-62
8-03-62
10-03-62
10-31-62
11-28-62
12-26-63
1-30-63
5-02-63
5-02-63 | 10-19-62 2-07-63 | 7-19-61
8-21-61
9-23-61
10-23-61
11-21-61
11-21-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-16-62
1-1 | | GROUND
SURFACE
ELEVATION
IN FEET | 9 | 9 0 9 9 | | 291°4 | 162.0 | | | STATE WELL
NUMBER | CITY OF FRESMO | 145/20E-01D01 M
CONT. | | 145/20E-10M01 M 291 | 135/15E-28H01 M | 138/15E-35D02 M | | AGENCY
SUPPLYING
OATA | | 4 2 0 0 | | 4 2 0 0 | | 4 200 | | WATER
SURFACE
ELEVATION
IN FEET | | 241.8
240.0
238.7
239.1
240.3
242.9
242.9
242.9 | 242.4 | 2226.
2224.
2221.
2221.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
2224.
 219.2 | 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.16 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 82 8
82 9
8 9 9 9 | 00000000000000000000000000000000000000 | 866.1
86.1
86.0 | 8866.9
8878.0
171.4 91 978.0
171.7 17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | DATE | | 7-01-62
8-01-62
9-01-62
10-01-62
11-01-62
12-01-62
12-01-63
3-01-63 | 4-01-63
5-01-63
6-01-63 | 7-01-61
8-01-61
10-01-61
11-01-61
12-01-62
7-01-62
9-01-62
9-01-62 | 12-01-62
1-01-63
2-01-63
3-01-63 | 4-01-63
5-01-63
5-01-63
7-01-63
10-01-61
11-01-61
12-01-62
3-01-62
3-01-62
5-01-62
5-01-62
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63
5-01-63 | | GROUND
SURFACE
ELEVATION
IN FEET | 1 | 325.0 | | 3 05 • 3 | | 6 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | STATE WELL
NUMBER | ON SEE FOR SON | 135/20E-23801 M | | 135/20E-35H02 M | | 145/20E-01D01 M | TABLE C-I | AGENCY
SUPPLY NG
DATA | | 6001 | | | | | | 6001 | | | | | | | | | 6001 | | | | | | | | | | |---|----------------------------|--|---|---------|------------|-----------|---------|-----------------|---------|--------------|----------|--------------|---------|------------------------------|---------|---------|-----------------|---------|---------|--------------|----------|---------|--------------|---------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 140.9
140.8
137.4 | 132.4 | 131.8 | 139.4 | 136.2 | 136.2 | 153.5 | 137.6 | 141.3 | 139.0 | 148.3 | 150.6 | 151.6 | 145.6 | 138.2 | 129.8 | | 135.9 | 130.9 | 144.0 | 145.1 | 145.9 | | 134.4 | 130.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.17 | 19.2
22.6
24.1 | 26.3
27.6
28.5 | 28.2 | 20.6 | 23.08 | 2000 | 26.5 | 45.4 | 38°7
35°1 | 41.0 | 31.7 | 29.4 | 34.1 | 34.4 | 41.8 | 35.2 | п | 29.1 | 28.1 | 21.0 | 19.9 | 19.8 | | 30.6 | 34.2 | | DATE | | 2-26-62
3-20-62
4-23-62
5-21-62 | 6-18-62
7-24-62
8-22-62 | 9-18-62 | 12-19-62 | 3-25-63 | 5-22-63 | 3-06-62 | 8-23-62 | 9-18-62 | 10-23-62 | 12-19-62 | 1-23-63 | 3-25-63 | 4-22-63 | 6-24-63 | 7-19-61 | 8-21-61 | 9-18-61 | 10-23-61 | 12-18-61 | 1-16-62 | 3-20-62 | 4-23-62 | 5-21-62 | 7-23-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SH AREA | 160.0 | | | | | | 0.081 | 9 | | | | | | | | 165.0 | | | | | | | | | | | STATE WELL
NUMBER | FRESNO SLOUGH AREA | 145/15E-25H02 M
CONT. | | | | | | 145716F-03C01 M | | | | | | | | | 145/16F-08001 M | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | 6001 | 6001 | | | | | | | | | · | | | | _ | | | 6001 | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 118.5
132.3
134.2
130.7 | 122.5
111.6
128.0 | 123.6 | | | 183.6 | 184.0 | 184.6 | 185.6 | | 184.8 | 184.9 | 184.2 | 185.1 | 185.5 | 185.4 | 184.9 | 185.1 | 184.3 | 101 | 126.7 | 126.1 | 130.0 | 135.5 | 140.5 | GRD SUR
TO WATER
SUR IN FEET | 5-22.17 | | 42°0
43°0
50°0 | 41.9 | □ * | п | 21.4 | 21.0 | 20.4 | 19.4 | | 20.2 | 20.1 | 20.8 | 19.9 | 19.6 | 19.6 | 20.1 | 19.9 | 20.7 | • | 33.3 | 93.0 | 30.0 | 24.5 | 19.5 | | GRD SUR
DATE TO WATER
SUR IN FEET | 5-22.17 | 44.0 % % % % % % % % % % % % % % % % % % % | | | 10-19-62 H | 7-19-61 п | | | | 3-20-62 19.4 | | 5-21-62 20.2 | | 8-22-62 20.8
9-18-62 20.0 | | | 1-23-63 19.6 | | _ | 5-22-63 20.7 | | | 8-21-61 33.9 | | | | | | FRESNO SLOUGH AREA 5-22.17 | 44.0 % % % % % % % % % % % % % % % % % % % | 4 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | | | | | | | | | _ | | | | | | | | TABLE C-1 #### TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | 2000 |---|------------------------|---------------|-----------------|---------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|-----------------|---------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|-----------------|---------|----------|----------|----------|---------|---------|---------|---------|---------|---------|-----------------|---------|---------|-----------------|-----------|----------|-----------------|----------|-----------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 150.8 | 153.1 | 155.1 | 153.4 | 153.5 | 152.3 | 151.7 | 151+1 | 150.2 | 150.5 | 149.2 | 148.7 | 148.7 | 148+5 | 14000 | 148.9 | 148. | 148.4 | 147.9 | 147.1 | 146.9 | 147.3 | 146.7 | 145.6 | | 131.8 | 132.0 | 1000 | 0 6 6 6 | 134.3 | 133.8 | 133.7 | 133.5 | 132.7 | 132.6 | 130.2 | 131.4 | 130.1 | 130.5 | 132.6 | 132.8 | 128.3 | 132.5 | 132.9 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.17 | 20.2 | 17.9 | 15.9 | 17.6 | 17.5 | 18.7 | 19.3 | 19.9 | 20.8 | 20.5 | 21.8 | 22+3 | 22.3 | 22.5 | 1077 | 22.1 | 22.3 | 22.6 | 23.1 | 23.9 | 24.1 | 23.7 | 24.3 | 25.4 | | 33.2 | 33,0 | 210 | 0 - 10 | 20.00 | 21.0 | 31.3 | 31.5 | 32.3 | 32.4 | 34.8 | 33.6 | 34.9 | 34.5 | 32.4 | 32.2 | 36.7 | 32.5 | 32.1 | | | DATE | | 7-20-61 | 8-21-61 | 9-19-61 | 10-23-61 | 11-20-61 | 12-19-61 | 1-17-62 | 2-27-62 | 3-20-62 | 4-23-62 | 5-21-62 | 6-18-62 | 7-24-62 | 8-22-62 | 9-18-65 | 10-16-62 | 11-21-62 | 12-19-62 | 1-23-63 | 2-25-63 | 3-25-63 | 4-23-63 | 5-22-63 | 6-24-63 | | 7-18-61 | 8-21-61 | 9-18-6 | 10-10-01 | 12-13-01 | 1-15-62 | 2-10-62 | 3-12-62 | 4-09-62 | 5-14-62 | 6-18-62 | 7-16-62 | 8-06-62 | 9-18-62 | 10-21-62 | 11-24-62 | 12-21-62 | 1-23-63 | 2-18-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | H AREA | 171.0 | 165.0 | STATE WELL
NUMBER | FRESNO SLOUGH AREA | M 60761-13603 | 133/185-18503 1 | 155/16E-17L01 M | AGENCY
SUPPLYING
DATA | | _ | 6001 | | | _ | | | | | | | _ | 6001 |) | ,000 | 1009 | | 6001 | | | 1004 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | , | 129.9 | 131.2 | 135.4 | 140.3 | 141.9 | 143.4 | 143.9 | 138.2 | 138.5 | 137.0 | 150°5 | 143.4 | 142.7 | 142.3 | 140.1 | 141.3 | 142.1 | 143.0 | 142.9 | 142.6 | 142.0 | 140.3 | 140.0 | 138.0 | 137.8 | 1 | 138.1 | 138.8 | 139.0 | 140.4 | | 140.0 | | | | 145.1 | 14/0/ | 121.1 | 132.6 | 1 2 2 4 0 | | 1 4 1 4 | 141. |)
•
•
•
• | | GRD SUR
TO WATER
SUR: IN FEET | 5-22-17 | | 35.1 | 33 8 | 59.6 | 24.7 | 23.1 | 21.6 | 21.1 | 26.8 | 26.5 | 28.0 | 34.1 | 34.4 | 37.3 | 37.7 | 0.06 | 38.7 | 0 . 6 | 27.0 | 27.0 | 37.4 | 20.00 | 000 | 0.04 | | 4.1.4 | | 41.9 | 41.2 | 41.0 | 39.6 | В | 0.04 | | 推 | | 21.9 | 19.3 | | 100 | | | | 20.62 | 7 • 67 | | DATE | | | 8-23-62 | 9-18-62 | 10-16-62 | 11-21-62 | 12-19-62 | 1-23-63 | 2-26-63 | 3-25-63 | 4-22-63 | 5-22-63 | 6-24-63 | 7-10-41 | 8-21-61 | 0-18-61 | 10-23-61 | 11-21-61 | 12-18-61 | 12-10-01 | 20-11-1 | 2-20-62 | 79-07-7 | 4-63-06 | 5-61-62 | 20-01-0 | 0-23-62 | 9-18-62 | 10-16-62 | 11-21-62 | 12-19-62 | 1-23-63 | 2-27-63 | 3-25-63 | 4-22-63 | 5-01-63 | | 10-19-62 | 2-19-63 | | 10-23-62 | 2-62-63 | | 10-22-62 | 10-23-62 | C0-90-2 | | GROUND
SURFACE
ELEVATION | 4 H H | | 165.0 | | | | | | | | | | | | 180.0 | 167.0 | | | 211.0 | | | 171.0 | | | | STATE WELL
NUMBER | A PROPERTY OF CAMPRICA | Section 1 | 145/16E-08D01 M | CONT. | | | | | | | | | | | 145/16E-10J01
M | 145/16E-22N01 M | | | 145/17E-25A01 M | | | 155/16E-01L01 M | | | TABLE C-I | AGENCY
SUPPLY:NG
DATA | | 6001 | | | | 6001 | 56.31 | 6001 | |---|-------------------------|---|-------------------------------|--------------------------|---|--------------------------------|---|------------------------------| | WATER
SURFACE
ELE VATION
N FEET | | 123.5 | 115.0 | 117.7 | 117.5 | 119.7 | 135.4
138.2.6
138.2.6
14.2.6.1
138.2.6.6
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9
138.2.6.9 | 86.2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-17 | 80.5
79.5
84.3 | | 86.3
83.4 | 86.5 | 86.1
83.1
82.8 | 9919
88888
88888
995
995
995
995
995
995
99 | 102.8 | | DATE | | 4-23-62
5-21-62
6-18-62
7-24-62 | 9-18-62
10-16-62 | 12-19-62 1+23-63 2-13-63 | 3-25-63
4-23-63
5-22-63
6-25-63 | 10-23-62
2-12-63
2-19-63 | 7-29-61
10-30-61
112-02-61
112-02-61
113-02-62
4-111-62
5-29-62
7-26-62
10-25-62
113-63
11-29-62
11-29-62
11-29-62
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29-63
11-29 | 10-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 204•0 | | | | 205.8 | 227.3 | 189.0 | | STATE WELL
NUMBER | FRESNO SLOUGH AREA | 155/18E-07A02 M
CONT. | | | | 155/18E-16G01 M | 15 S/19E-29C01 M | 16S/17E-23N01 M | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 6001 | 6001 | | 9001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 132.3
131.9
130.7 | 97.5 | | 94.0
100.3
96.0
106.1 | 112.3 | 00000000000000000000000000000000000000 | 128.2 | | GRD SUR
TO WATER
SUR IN FEET | .17 | | | | | | | | | GRD
TO V | 5-22.17 | 32°7
33°1
34°3 | 89.5 | □ * | 91.0
84.7
89.0
78.9 | 72.7 | 188 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 75.8 | | GRD
DATE TO | 5-22 | 3-19-63 32.7
4-21-63 33.1
5-20-63 34.3
6-17-63 | 10-22-62 89.5
2-08-63 73.8 | 10-19-62 n | 7-20-61 91.0
8-22-61 84.7
9-19-61 89.0
10-23-61 78.9 | | | 2-27-62 76-7
3-20-62 75.8 | | | FRESNO SLOUGH AREA 5-22 | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | | 4636 | 4636 | |---|--------------------|--
---|----------------------------------|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 137.2 | 15.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 318891989919899198999999999999999999999 | 171.6 | | GRD SUR TO WATER SUR IN FEET | 5-22-17 | 82.8
n
90.6 | 748
710
70
70
70
70
70
70
70
70
70
70
70
70
70 | 5-22.18 | 00000440000000000000000000000000000000 | 75.0 | | DATE | | 8-29-61
9-27-61
10-31-61
11-29-61 | 12-28-61
3-05-62
3-05-62
4-27-62
7-31-62
7-31-62
111-05-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28-62
112-28- | ISTRICT | 7-05-62
9-04-62
10-05-62
11-05-62
12-04-62
12-04-63
3-04-63
4-09-63
5-02-63 | 7-05-62 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 220.0 | 199.0 | CONSOLIDATED IRRIGATION DISTRICT | 355.7 | 246.6 | | STATE WELL
NUMBER | FRESNO SLOUGH AREA | 16S/19E-34P01 M
CONT. | 175/17E-12H01 M | CONSOLIDATED | 145/22E-22N01 M | 155/19E-24NO1 M | | AGENCY
SUPPLYING
DATA | | 6001 | 0 0 0 0 | ć
ć | 0000
0000
0000
0000
0000 | 5050 | | WATER
SURFACE
ELEVATION
IN FEET | | |
12277
122956
122996
122996
122996
12296
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12209
12 | 6 | 1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
1113.9
11 | 90.8
85.6
83.1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.17 | | 777
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
775.0
77 | | 84.1
82.2
101.8
1118.0
107.6
97.7
98.5
97.9
94.9
94.9 | 100.2
105.4
107.9 | | DATE | | 2-13-63 |
7-24-61
9-37-61
9-37-61
10-31-61
110-31-61
110-31-62
2-28-61
1-26-62
3-37-62
8-03-62
8-03-62
8-03-62
11-05-62
11-05-62
12-04-63
12-04-63
12-04-63
12-04-63
12-04-63
12-04-63
12-04-63
12-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
13-04-63
1 | 6-28-63 | 2-11-63
2-21-63
7-02-62
8-29-62
9-27-62
11-05-62
112-28-62
1-25-63
3-04-63 | 4-29-63
5-31-63
6-28-63
7-24-61 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 189.0 | 5 O O O O O O O O O O O O O O O O O O O | | 198.0 | 220.0 | | STATE WELL
NUMBER | FRESNO SLOUGH AREA | 165/17E-23N01 M
CONT. | 165/18E-10A01 M | | 165/18E-27C01 M | 165/19E-34P01 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 4636 | 4636 | | 7636 | | 9697 | | 4636 | |---|----------------------------------|---|---|---|---|---|---|---|-----------------| | WATER
SURFACE
ELE VATION
IN FEET | | 300.5
299.8
298.6
299.8 | 281.6
281.7
282.3
282.6
282.6 | 281.9
281.9
281.9
281.0
280.7
280.0 | 152.5
150.7
151.9
156.4
158.0 | 159.0
161.0
161.0
154.0
154.0
155.0 | 1844.
1844.
1855.
1855.
1876. | 1886.3
1886.3
186.0
183.1 | 216.9 | | GRO SUR
TO WATER
SUR IN FEET | 5-22.18 | 36.5
37.5
37.5 | 0448860
00000
000000
000000 | 400.00
400.00
400.00
410.20 | 83.0
84.8
83.6
77.5 | 76.5
74.5
73.8
78.2
81.2
81.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 54.1 | | DATE | ISTRICT | 3-04-63
4-09-63
5-02-63
6-04-63 | 7-05-62
8-04-62
9-05-62
10-05-62
11-05-62 | 11 | 7-05-62
8-04-62
9-05-62
10-05-62 | 12-04-63
1-04-63
3-04-63
4-09-63
5-02-63
6-04-63 | 7-05-62
8-04-62
9-05-62
10-05-62
11-05-62 | 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 7-05-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CONSOLIDATED IRRIGATION DISTRICT | 337.0 | 321.9 | | 235 • 5 | | 247.7 | | 271.0 | | STATE WELL
NUMBER | CONSOLIDATED | 155/22E-16A01 M
CONT. | 155/22E-29D01 M | | 165/19E-14A01 M | | 165/20E-22N01 M | | 165/21E-22N01 M | | AGENCY
SUPPLYING
DATA | | 4636 . | | 4636 | | 4636 | | 0
0
0 | | | WATER
SURFACE
ELEVATION
IN FEET | | 169.6
171.5
171.5 | 175.1
175.1
165.6
170.8 | 208.8
208.6
211.7
213.0
212.2
212.0 | 213.2
213.2
208.8
211.6
209.3 | 2665
2665
2665
2665
2665
2665
2665
2665 | 26666
266666
266666
266666
266666
266666 | 3000
3001
3001
301
301
900
900 | 300.4 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.18 | 77.0 | 71.5
71.5
70.4
81.0
75.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 U U U U U U U U U U U U U U U U U U U | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | 000000 0 | 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 36.6 | | DATE | DISTRICT | 9-05-62
10-05-62
11-05-62
12-04-62 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 7-05-62
8-04-62
9-05-62
10-05-62
11-05-62 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7-05-62
8-04-62
9-05-62
10-05-62
11-05-62
12-04-63 | 2-06-63
4-09-63
5-02-63
6-04-63 | 0.05-62
0-05-62
10-05-62
11-05-62
12-04-62
1-04-63 | 2-06-63 | | GROUND
SURFACE
ELEVATION
N FEET | IRRIGATION | 246.6 | | 264.8 | | 301.2 | 6 | 0 | | | STATE WELL
NUMBER | CONSOLIDATED | 15S/19E-24N01 M
CONT. | | 155/20E-28A01 M | | 155/21E-15D01 M | 27 | E | | | AGENCY
SUPPLYING
DATA | | 4637 | | | | | | 4637 | | | | | | | | | | | 1.627 | - | | | | | | | | | | | 7677 | 4021 | | | | | | | | | | | |---|----------------------------------|-----------------|----------|----------|----------|---------|---------|-----------------|-----------|---------|-------------------------------|----------------|---------|---------|----------|----------|----------|---------|---------|-----------------|---------|---------|----------|-----------------|---------|---------|----------|----------|----------|---------|---------|-----------------|---------|---------|----------------|--------------------------|----------|-----------------|---------|---------|----------|--| | WATER
SURFACE
ELEVATION
IN FEET | | 327.8 | 326.4 | 356.1 | 326.B | 331.0 | | 348.2 | 345.2 | 335.2 | 33.00
0.00
0.00
0.00 | 332.7 | 331.7 | 333.0 | 333.4 | 333°9 | 335.0 | 337.8 | 0 | 200 | 4067 | 298.6 | 3000 | 301.3 | 300 • 2 | 301.5 | 301.2 | 301.5 | 300.8 | 303.6 | , , , , | 40000 | 22.00 | 0000 | 332.0 | 220.00 | 327.B | 332.0 | 332.1 | 335.5 | 338.6 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22-19 | 63.2 | 9.49 | 64.3 | 63.5 | 0.04 | | 46.8 | 8 • 6 7 | 59.8 | 0.09 | 67.9 | 6363 | 62.0 | 61.6 | 61.1 | 0.09 | 51.5 | | 0 0 0 0 | 200 | 59.4 | 57.9 | 56.4 | 57 ° B | 56.5 | 56.8 | 56.5 | 57.2 | 24.4 | : | 41.6 | t . | 2040 | 00 (0
00 (0 | 0.00 | 19.4° L | 56.0 | 50.0 | 52.5 | 4.64 | | | DATE | | 12-28-62 | 2-27-63 | 3-28-63 | 4-21-63 | 6-24-63 | | 7-30-62 | 8-28-62 | 9-56-62 | 10-27-62 | 12-28-62 | 1-20-63 | 2-27-63 | 3-28-63 | 4-27-63 | 5-29-63 | 6-26-63 | 0 | 7-30-67 | 79-97-9 | 9-26-62 | 10-27-62 | 11-27-62 | 1-28-63 | 2-27-63 | 3-27-63 | 4-27-63 | 5-29-63 | 6-26-63 | | 7-27-62 | 8-30-62 | 79-87-6 | 10-30-62 | 11-29-62 | 12-31-62 | 3-01-63 | 3-30-63 | 5-02-63 | 5-30-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | ION DISTRICT | 391.0 | | | | | | 395.0 | | | | | | | | | | | , | 358.0 | | | | | | | | | | | | 388.0 | | | | | | | | | | | | STATE WELL
NUMBER | ALTA IRRIGATION DISTRICT | 145/23E-36R01 M | , | | | | | M [00[8-3700] M | 10.110 | | | | | | | | | | | 155/23E-23A02 M | | | | | | | | | | | | 15S/24E-22D01 M | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4636 | | | - | | | | _ | _ | | 4636 | | | | | | | | | | | | 4636 | | | | | | | | | | | | | | 4637 | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 216.1 | 218.4 | 220.5 | 221.2 | 221.2 | 221.4 | 222 - 8 | 222.4 | 219.9 | | 264.2 | 265.2 | 265.6 | 265.6 | 246 | 265.7 | 266.0 | 266.1 | 266.2 | 266.2 | 266.2 | | 261.2 | 559.9 | 260.0 | 7.797 | 20.00 | 25000 | 256.9 | 257.4 | 254.4 | 256.8 | 257.8 | | | | 337.0 | | | 328.5 | | | GRD SUR
TO WATER
SUR. IN FEET | 5-22.18 | 54.9 | 50.00 | 50.5 | 8.64 | 8.64 | 9.67 | 48.2 | 4 4 4 9 9 | 51. | | 33.3 | 32.3 | 31.9 | 32.0 | 51.67 | 3 1 ° C | 31.5 | 31.4 | 31.3 | 31.3 | 31.3 | | 24.8 | 26.1 | 26.0 | 23.8 | 28.0 | 2.62 | 29.1 | 28.6 | 31.6 | 29.5 | 28.2 | | 5-22-19 | | 54.0 | | | 64.8 | | | DATE | ISTRICT | 8-04-62 | 10-05-62 | 11-05-62 | 12-04-62 | 1-04-63 | 2-06-63 | 3-04-63 | 6-009-63 | 6-04-63 | | 7-05-62 | 8-04-62 | 9-05-62 | 10-05-62 | 79-60-11 | 12-04-62 | 2-04-63 | 3-04-63 | 4-09-63 | 5-02-63 | 6-04-63 | | 7-05-62 | 8-04-62 | 8-05-62 | 10-05-62 | 11-05-62 | 12-04-62 | 2-04-63 | 3-04-63 | 4-09-63 | 5-02-63 | 6-04-63 | | | | 7-30-62 | 8-28-62 | 9-56-62 | 10-27-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION D | 271.0 | | | | | | | | | | 297.5 | | | | | | | | | | | | 286.0 | | | | | | | | | | | | TON DISTRICT | | 391.0 | | | | | | STATE WELL
NUMBER | CONSOLIDATED
IRRIGATION DISTRICT | 165/21E-22N01 M | CDNT. | | | | | | | | | 65/22E-23R01 M | | | | | | | | | | | | 175/22F-03C01 M | | | | | | | | | | | | ALTA TRRIGATION DISTRICT | | 145/23E-36R01 M | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 4637 | | | | | | | | | | | | | | | | | 4637 |---|--------------------------|--------------------------|-----------------|---------|----------|----------|---------|---------|---------|----------|---|---------|-----------------|---------|---------|----------|----------|----------|-----------------|---------|---|----------|----------|---------|-----------------|---------|---------|----------|----------|----------|----------|---------|----------|----------|----------|---------|---------|-----------------|---------|---------|----------| | WATER
SURFACE
ELEVATION
.N FEET | | 239.4 | 242.6 | 243.4 | | 235.6 | 7.007 | | 233.5 | 237.6 | 241.62 | 242.4 | 242.4 | 239.2 | | 237.6 | | | 240.6 | 240.1 | 0 | 242.0 | 242.6 | 243.0 | 243.7 | 244.0 | 242.3 | 242.5 | 241.2 | 239.7 | 239.2 | 240.9 | 241.9 | 242.4 | 242.8 | 242.8 | 245.6 | 240.3 | 241.1 | 240.5 | 239.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.19 | 35.6 | 32.4 | 31.6 | n | 39.4 | • = | | 41.5 | 37.4 | 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 32.6 | 32.6 | 35.8 | n | 37.4 | a | | 34.4 | 34.9 | 10 | 0 0 0 | 32.4 | 32.0 | 31.3 | 31.0 | 32.7 | 32.5 | 33.8 | 35.3 | 35.8 | 34.1 | 33.1 | 32.6 | 32.2 | 32.2 | 32.4 | 34.7 | 33°6 | 34.5 | 35.7 | | DATE | | 11-27-61 | 1-27-62 | 3-28-62 | 4-30-62 | 5-28-62 | 7-28-62 | 8-29-62 | 9-27-62 | 10-29-62 | 12-28-62 | 1-28-63 | 2-28-63 | 3-29-63 | 5-01-63 | 5-31-63 | 6-27-63 | 0 | 19-87-7 | 9-28-61 | 10-28-61 | 11-27-61 | 12-28-61 | 1-27-62 | 2-56-62 | 3-28-62 | 4-30-62 | 5-31-62 | 79-67-9 | 7-31-62 | 8-29-62 | 9-27-62 | 10-29-62 | 11-28-62 | 12-28-62 | 1-28-63 | 2-28-63 | 3-29-63 | 5-01-63 | 5-31-63 | 6-27-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ION DISTRICT | 275.0 | | | | | | | | | | | | | | | | | 0.672 | STATE WELL
NUMBER | ALTA IRRIGATION DISTRICT | 175/22E-25A01 M
CONT. | | | | | | | | | | | | | | | | 7000 | 113/22E-23301 M | AGENCY
SUPPLYING
DATA | | 4637 | 4637 | | | | | | | | | | 4637 | | | | | | | | | | | | 4637 | | | | | | | | | | | | | 4637 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 345 • 3 | 278.1 | 280.3 | 280.5 | 280.6 | 280.3 | 280.4 | 278.2 | 2.612 | 279.0 | | 294.2 | 291.7 | 292.6 | 294.2 | 293.7 | 292.2 | 0.062 | 290.0 | 7000 | 292.1 | 294.5 | | 305.3 | 297.3 | | 301.1 | | | | 304.0 | 299.7 | 3000 | 305.8 | 308.4 | | | 229.8 | 235.3 | 238.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-19 | 42.7 | 35.9 | 33.7 | 33.5 | 33.4 | 33.7 | 33.6 | 35.8 | 34.00 | 3 to 0 | | 41.8 | 44.3 | 43.4 | 41.8 | 42.3 | 8 | 0.04 | 0.24 | 2 2 2 | 000 | 41.5 | | 58.7 | 2.99 | | 65.9 | 0 | | 1 | 0.09 | 64.3 | 63.8 | 58.2 | 55.6 | | п | 45.2 | 39.7 | 36.4 | | DATE | | 6-27-63 | 7-31-62 | 9-26-62 | 10-29-62 | 11-28-62 | 1-28-63 | 2-28-63 | 3-28-63 | 5-01-63 | 6-25-63 | | 7-28-62 | 8-30-62 | 9-52-65 | 10-26-62 | 11-26-62 | 12-27-62 | 1-28-63 | 3-27-63 | 4-27-63 | 5-78-63 | 6-25-63 | | 7-28-62 | 8-30-62 | 79-57-6 | 10-26-62 | 79-97-11 | 12-29-62 | 1-28-63 | 2-26-63 | 3-27-63 | 4-21-63 | 5-28-63 | 6-25-63 | | 7-28-61 | 8-30-61 | 9-28-61 | 10-28-61 | | GROUND
SURFACE
ELEVATION
IN FEET | TON DISTRICT | 388.0 | 314.0 | | | | | | | | | | 336.0 | | | | | | | | | | | | 364.0 | | | | | | | | | | | | | 275.0 | | | | | STATE WELL
NUMBER | ALTA IRRIGATI | 155/24E-22D01 M | 165/23E-23E01 M | | | | | | | | | | 165/24E-21J01 M | | | | | | | | | | | | 165/25E-29A01 M | | | | | | | | | | | | | 175/22E-25A01 M | | | | | AGENCY
SUPPLYING
DATA | ! | 4637 | | 5000 | 5050 | 2050 | | | | | | | | | | | |---|--------------------------|--------------------------|------------------------|-----------------|---------|-----------------|---------|----------|----------|---------|----------|----------|----------|---------|-------------|---|-----------------|----------|----------|----------|----------|---------|---------|---------|---------|-----------------|-------------|---------|-----------------|----------|----------|----------|----------|---------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 254.4
253.1 | | 156.6 | 130.0 | 151.6 | 133.3 | 163.8 | 165.5 | 167.5 | 131.3 | 161.9 | 163.7 | 162.9 | 159.4 | 157.3 | 163.1 | 169.1 | 167.1 | 167.0 | 136.2 | 160.5 | 9 4 4 | 131 • 8 | | 211.6 | 211.2 | 0 | 216.3 | 217.2 | 218.0 | | 0 310 | 210.8 | 218.3 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22-19 | 9.99 | 5-22.20 | 63.4 | *0*66 | 71.4 | ******* | 59.2 | 57.5 | 56.0 | 91.7* | 6101 | 59.3 | 60.1 | 63.6 | H 45.7 | - 0 0 | 50.00 | 55.9 | 26.0 | 86 • 8 * | 62+5 | **10 | 01.2# | | 45.6 | 0.94 | מ | 0.24 | 0.04 | 39.2 | п | E . | 0.54 | **** | V • 00 | | DATE | | 5-27-63 | | 2-18-63 | 7-24-61 | 8-30-61 | 9-27-61 | 11-29-61 | 12-28-61 | 1-26-62 | 3-05-62 | 4-27-62 | 5-31-62 | 7-02-62 | 8-03-62 | 8-29-62 | 11-05-62 | 12-04-62 | 12-28-62 | 1-25-63 | 3-04-63 | 3-29-63 | 4-29-63 | 5-31-63 | | 7-02-62 | 8-03-62 | 8-29-62 | 9-27-62 | 12-04-62 | 12-28-62 | 1-25-63 | 3-04-63 | 3-28-63 | 4-67-63 | 5-31-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ION DISTRICT | 321.0 | RIVER AREA | 220.0 | 6 | 0.622 | 257.2 | | | | | | | | | | | | STATE WELL
NUMBER | ALTA IRRIGATION DISTRICT | 175/25E-18R01 M
CONT. | LOWER KINGS RIVER AREA | 175/19E-14J02 M | | 178/20E-20001 M | 175/21F-11G01 M | 10011 11761 | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | | | | | 4637 | | | | | | | | | | | 4637 | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 258.0 | 259.0 | 267.7 | 271.6 | 274.0 | 262.3 | 257.4 | 255.5 | 254.1 | 254.7 | 263.0 | 265.9 | 269.5 | | | 287.0 | 285.0 | 283.9 | 763.4 | 783.4 | 282.5 | 283.9 | 284 • 1 | 285.1 | 285.4 | 6.182 | 251.3 | 249.6 | 250.0 | 253.0 | 254.0 | 755.7 | 256.6 | 254.5 | 253.7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.19 | 45.0 | 44.0 | 33.6 | 32.0 | 29.0 | 40.7 | 45.6 | 40.7 | 48.9 | 48.3 | 0.04 | 37.1 | 22.5 |)
0
1 | : | 0 • 8 • | 50.0 | 51.1 | 51.9 | 01.0 | 52.5 | 51.1 | 50.9 | 6.64 | 9.64 | 47.5 | | 71.4 | | | 66.5 | 65.3 | | | 67.3 | | DATE | | 7-25-61 9-01-61 | 9-19-61 | 11-27-61 | 3-01-62 | 3-27-62 | 5-22-62 | 6-21-62 | 1-24-62 | 9-19-62 | 10-16-62 | 11-20-62 | 12-17-62 | 1-22-63 | 2-25-63 | 000000000000000000000000000000000000000 | 7-26-62 | 8-27-62 | 9-52-65 | 10-26-62 | 11-26-62 | 1-28-63 | 2-26-63 | 3-27-63 | 4-25-63 | 5-29-63 | 6-26-63 | 67-76 - | 8-27-62 | 9-25-62 | 10-26-62 | 11-26-62 | 12-21-02 | 2-26-63 | 3-27-63 | 4-25-63 | | GROUND
SURFACE
ELEVATION
:N FEET | 10N DISTRICT | 303.0 | | | | | | | | | | | | | | | 335.0 | | | | | | | | | | | | 321.0 | | | | | | | | | STATE WELL
NUMBER | ALTA IRRIGATION DISTRICT | 175/24E-15A01 M | | | | | | | | | | | | | | | 175,25F-10C01 M | 10000 | | | | | | | | | | | 175/25E-18R01 M | | | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 5050 | | | | | | | | | | | | | | | | | | 6001 | | | | | | | | | | | 6001 | | | 6001 | | | |---|---------------|-----------------|-----------------|-----------|-----------------|-----------------|---------|-----------------|---------|---------|----------|----------|---------|---------|---|---------|---------|---------|---------------------------------|-----------------|-----------------|---------|-----------|----------|----------|----------|---------|---------|---------|---------|-----------------|---------|----------|-----------------|-----------------|-----| | WATER
SURFACE
ELEVATION
IN FEET | | 180.3 | 179.5 | 179.9 | 180.3 | 180.8 | 180.7 | 180.5 | 180.6 | 179.8 | 180.0 | 184.0 | 181.1 | 180.2 | 180.4 | 180 8 | 180.8 | | | 427.7 | 429.8 | 450.2 | 7-124 | 426.6 | 425.5 | 426.2 | 426.7 | 427.5 | 429.2 | 1 | 1.17. | 478.2 | | 367.9 | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.20 | 30.7 | 31.5 | 31.1 | 30.7 | 30.2 | 30.3 | 30 ° E | 30.4 | 31.2 | 30.4 | 27.0 | 59.9 | 300 | 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° | 30.2 | 30.2 | | 5-22-21 | 15.3 | 13.2 | 12.0 | 16.3 | 16.4 | 17.5 | 16.8 | 16.3 | 15.5 | 13.8 | | 32.3 | | | 37.1 | | | | DATE | | 7-24-61 | 9-27-61 | 11-29-61 | 3-06-62 | 3-30-62 | 5-31-62 | 8-03-62 | 8-30-62 | 9-27-62 | 12-05-62 | 12-28-62 | 1-25-63 | 3-04-63 | 0-63-63 | 5-31-63 | 6-28-63 | | ISTRICT | 7-25-62 | 8-21-62 | 79-61-6 | 11-20-62 | 12-17-62 | 2-04-63 | 3-05-63 | 4-03-63 | 5-02-63 | 6-03-63 | | 10-10-62 | 2-12-63 | | 7-25-62 | | | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER AREA | 211.0 | | | | | | | | | | | | | | | | | ORANGE COVE IRRIGATION DISTRICT | 443.0 | | | | | | | | | | | 510.0 | | | 405.0 | | | | STATE WELL
NUMBER | LOWER KINGS | 20S/22E-19M01 M | | | | | | | | | | | | | | | | ; | ORANGE COVE | 145/24E-20801 M | | | | | | | | | | | 145/25E-30D01 M | | | 155/24E-14D01 M | | | | AGENCY
SUPPLYING
DATA | | 2050 | 5050 | | 5050 | 5050 | | 0606 | | | | | | | | | | | 5050 | | 5050 | | | | | | | | | | | | | 2050 | 1009 | > | | WATER
SURFACE
ELEVATION
IN FEET | | | | | 203 • 8 | 219.6 | | 181.2 | 175.4 | 185.7 | 190.9 | 196.7 | 191.0 | 195.4 | 0 | 189.6 | 185.6 | 178.3 | 203.5 | | 146.5 | 141.1 | 1 0 4 ¢ C | 1000 | 145.7 | 147.2 | 140.5 | 145.9 | 147.9 | 143.2 | 141.4 | 140.1 | K • KC T | 201.1 | 201.8 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.20 | | DRY | OR∀
** | 6 • 2 | 10.4 | | 75.6 | 78.6 | 68.3 | 63.1 | 57.3 | 63.0 | 58.6 | 1,2 | 70.07 | 4 4 4 |
75.7 | 4.5 | | 70.5 | 75.0 | 7 0 0 | 100 | 71.3 | 8 9 9 | 76.5 | 71.1 | 69.1 | 73.8 | 75.6 | 76.9 | 1 • 1 | 6 • 4 | 18.2 | , , | | DATE | | 6-28-63 | 7-02-62 | 8-29-62 | 2-20-63 | 2-21-63 | | 8-03-62 | 8-29-62 | 9-27-62 | 11-05-62 | 12-28-62 | 1-25-63 | 2-14-63 | 3-04-63 | 4-29-63 | 5-31-63 | 6-28-63 | 2-21-63 | | 7-02-62 | 8-03-62 | 20-06-0 | 11-05-62 | 12-03-62 | 12-28-62 | 1-25-63 | 2-21-63 | 3-04-63 | 3-29-63 | 4-29-63 | 5-31-63 | 000000 | 2-20-63 | 2-19-63 | , | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER AREA | 257.2 | 221.0 | | 210.0 | 230•0 | | 254.0 | | | | | | | | | | | 208.0 | | 217.0 | | | | | | | | | | | | | 206.0 | 220.0 | 2 | | STATE WELL
NUMBER | LOWER KINGS R | 75/25E-11G01 M | 185/18E-12N02 M | | 185/19E-26E01 M | 185/20E-16A01 M | | 185/21E-10R01 M | | | | | | | | | | | 195/19E-25A01 M | | 195/20E-21A01 M | | | | | | | | | | | | | 205/20E-09C01 M | 205/21F-03A01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | 6001 | 6001 | | | | | | | | | | | | | | |---|----------------------------------|--------------------------|----------|---------|-----------------------------|-----------------|---------------|----------|----------|---------|----------|----------|---------|---------|---------|---------|---------|--------------------|----------|---------|---------|---------|----------|--------------|----------|---------|-----------------|---------|-----------|----------|----------|----------|----------|----------|---------|----------|----------|----------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 341.8 | 344.6 | | | 257.0 | 245.0 | 259.5 | 260.6 | 262.4 | 263.8 | 264.6 | 258.0 | 255.0 | 247.5 | 546.9 | 250 • 8 | 261.0 | 262.1 | | 262.8 | 263.6 | 264.1 | 264.4 | 763.0 | | 265.5 | 264.9 | 264.7 | 264.2 | 264.3 | 265.9 | 764.07 | 265.4 | 265.5 | 266.5 | 267.0 | 267.6 | , | | GRD SUR
TO WATER
SUR IN FEET | 5-22.22 | 22.2 | 19.4 | • | 5-22.23 | 93.0 | 105.0 | 90.5 | 4.68 | 87.6 | 86.2 | 7 • 98 | 000 | 95.0 | 102.5 | 103.1 | 99.2 | 91.2 | 97.9 | | 87.2 | 86.4 | 85.9 | 85.6 | 87.0 | 1 | 33.5 | . 70 | 9 6 4 9 9 | 00 00 | 7 . 4 a | 0 7 6 | , v | 200 | | 0 0 0 | 0 0 0 | 91.6 | • 10 | | DATE | STRICT | 3-26-63 | 5-21-63 | 60-87-9 | E | 8-01-61 | 8-31-61 | 10-31-61 | 12-01-61 | 1-02-62 | 1-31-62 | 2-28-62 | 4-05-62 | 5-01-02 | 6-10-62 | 8-01-62 | 8-31-62 | 10-03-62 | 12-05-62 | 1-03-63 | 2-04-63 | 3-04-63 | 4-01-63 | 5-01-63 | 6-06-63 | | 7-25-61 | 1011010 | 19-19-0 | 10-24-61 | 10-12-01 | 10-16-01 | 10-17-11 | 12-10-71 | 1-02-04 | 1-23-02 | 2-22-2 | 4-07-04 | 7010714 | | GROUND
SURFACE
ELEVATION
IN FEET | STONE CORRAL IRRIGATION DISTRICT | 364.0 | | | IVANHOE IRRIGATION DISTRICT | 350.0 | 349.0 | | | | | | | | | | | | | | STATE WELL
NUMBER | STONE CORRAL | 175/26E-07R01 M
CONT. | | | IVANHOE IRRIG | 175,25F-27R01 M | 113/575-51404 | 17S/25E-35M01 M | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | 6001 | | | | | | | | | | | | 6001 | | | | | | | | | | | | | 6001 | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 371.2 | 370.9 | 371.9 | 373.1
373.9 | 374.9 | 31300 | 398.5 | 397.4 | 2.00% | 397.7 | 397.6 | 396.4 | 396.9 | 397.0 | 397.8 | 376.4 | | | 402.7 | 402.4 | 402. | 402. | 402 | 405.4 | 404.2 | 404 • 0 | 403.8 | 404.2 | 403.7 | 403.1 | | 340.0 | 333.3 | 340.0 | 342.3 | 342.9 | 343.0 | 338.2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.21 | 33 • 8
32 • 8 | 34.1 | 33.1 | 31.9 | 30.1 | 31.5 | 16.5 | 17.6 | 16.8 | 17.3 | 17.4 | 18.6 | 18.1 | 18.0 | 17.2 | 16.6 | 5-22.22 | | 2.3 | 5.6 | 2.3 | 2.3 | ٠ د
د د د | 0 0 |) a | 1.0 | 1.2 | 00 | 1.3 | 1.9 | | 24.0 | 30.7 | 24.0 | 21.7 | 21.1 | 21.0 | 25.8 | | DATE | 151 | 9-19-62 | 11-20-62 | 2-04-63 | 3-05-63 | 5-02-63 | 6-04-63 | 7-25-62 | 8-21-62 | 9-19-62 | 10-16-62 | 12-17-62 | 2-04-63 | 3-05-63 | 4-04-63 | 5-03-63 | 6-05-63 |) STRICT | | 7-24-62 | 8-20-62 | 9-19-65 | 10-16-62 | 11-20-62 | 12-11-52 | 20-30-6 | 2-25-63 | 3-26-63 | 4-22-63 | 5-21-63 | 6-28-63 | | 7-25-62 | 8-20-62 | 0-10-62 | 10-16-62 | 11-20-62 | 12-17-62 | 1-22-63 | | | STR | 0, 0 | | | | | | | | | | | | | | | | - | • | GROUND
SURFACE
ELEVATION | OD ANGE COVE TRRIGATION DISTRICT | 405.0 | | • | | | | 415.0 | 1 | | | | | | | | | TOBERTION DISTRICT | ואומיותי | 0.504 | | | | | | | | | | | | | 0.776 | 200 | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | | 1003 | 1009 | | | |---|-----------------------------|--------------------------|---------|---------|----------|----------|----------|----------------------------------|---------|---------|---------|---------|-----------------|---------|-----------------|----------|----------|------------------------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|---------|-----------------|---------|-----------|-----------------|---------|-----------------|----------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | 354.0 | 361.0 | 372.1 | 371.0 | 369.B | 3/2°4 | 371.5 | 367.9 | 368.9 | 369.9 | 370.4 | 372.0 | 2 7 0 2 | 305.1 | 307.1 | 306.9 | 304.4 | 307.0 | 307.8 | 309.0 | 309.1 | 308 • 4 | 309.8 | 310.6 | 310.9 | 311.3 | 310.1 | 310.8 | 2110 | 312.9 | 314.0 | 314.6 | | 333.1 | 332.8 | 334.7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-23 | 40.0 | 33.0 | 21.9 | 23.0 | 24.2 | 22.2 | 22.5 | 26.1 | 25.1 | 24.1 | 23.6 | 22.0 | 77 0 | 79.9 | 77.9 | 78.1 | 200 | 78.0 | 77.2 | 76.0 | 75.9 | 76.6 | 75.2 | 74.4 | 74.1 | 73.7 | 74.9 | 7.41 | 0 00 | 72.0 | 71.0 | 70.4 | ; | 82 • 9 | 83.2 | 81.3 | | DATE | 13 | 2-28-62 | 5-02-62 | 6-01-62 | 8-01-62 | 9-04-62 | 10-03-62 | 12-05-62 | 1-04-63 | 2-05-63 | 4-01-63 | 5-02-63 | 6-10-63 | 17-10-0 | 8-31-61 | 9-29-61 | 10-31-61 | 12-01-61 | 1-31-62 | 2-28-62 | 4-05-62 | 5-02-62 | 6-01-62 | 8-01-62 | 9-04-62 | 10-03-62 | 10-31-62 | 12-06-62 | 1-04-63 | 2 0 - 0 2 - 0 3 | 4-02-63 | 5-02-63 | 6-10-63 | : | 8-01-61 | 9-21-61 | 10-31-61 | | GROUND
SURFACE
ELEVATION
IN FEET | ATION DISTRIC | 394.0 | | | | | | | | | | | | 0 300 | 0 • 0 0 0 | 416.0 | | | | STATE WELL
NUMBER | IVANHOE IRRIGATION DISTRICT | 175/26E-21E01 M
CONT. | | | | | | | | | | | | | 113/20E=35/01 M | 175/26E-34D01 M | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | 6001 | | | _ | | | | | | | | | | | | | | | | | 6001 | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 265.8 | 266.1 | 265.0 | 264.3 | 264.0 | 261.3 | 265.7 | 266.5 | 267.2 | 267.8 | | 271.1 | 268•1 | 276.0 | 278.1 | 280.3 | 281.5 | 278.5 | 286.2 | 286.5 | 285.5 | 285 . 2 | 285.5 | 286.5 | 284.7 | 284.1 | 284.6 | 287.4 | 288.5 | 290.0 | 0 • 6 0 7 | 352.3 | 351.1 | 352.0 | 257.0 | 357.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.23 | 83.2 | 82.9 | 0.48 | 84.97 | 85.0 | 87.7 | 00 00
00 00
00 00
00 00 | 82.5 | 81.8 | 81.2 | 1 | 63.6 | 6.96 | 89.0 | 86.9 | 84.7 | 00 0
0 0 0
0 0 0 | 86.5 | 0 0 0 | 78.5 | 79.5 | 79.8 | 70.7 | 78.5 | 80.3 | 80.9 | 80.4 | 77.6 | 76.5 | 75.0 | 7.67 | 41.7 | 45.9 | 42.0 | 26.7 | 36.2 | | DATE | _ | 5-23-62 | 7-25-62 | 8-21-62 | 10-16-62 | 11-20-62 | 12-17-62 | 2-04-63 | 3-04-63 | 4-01-63 | 5-01-63 | | 8-01-61 | 8-31-61 | 10-31-61 | 12-01-61 | 1-02-62 | 1-31-62 | 2-28-62 | 5-01-62 | 5-31-62 | 6-10-62 | 8-01-62 | 10-03-62 | 10-31-62 | 12-05-62 | 1-03-63 | 2-04-63 | 3-04-63 | 4-01-63 | 5-01-63 | 0010010 | 8-01-61 | 8-31-61 | 9-29-61 | 12-01-61 | 1-02-62 | | GROUND
SURFACE
ELEVATION
IN FEET | IVANHOE IRRIGATION DISTRICT | 349.0 | | | | | | | | | | | 365.0 | 394.0 | | | | | | STATE WELL
NUMBER | I VANHOE IRRI | 175/25E-35M01 M
CONT. | | | | | | | | | | | 175/25E-36G01 M | 175/26E-21E01 M | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | 6001 | 6001 | | | 6001 | | 1004 | • | | 1004 | | | | | | |---|---------------------------------|-----------------|-----------------|---------|---------|---------|-----------------|---------|----------|----------|----------|----------|----------|-----------|---------|---------|---------|---------|---------|----------------|----------|----------|---------|---------------------------------|---------|-----------------|---------|----------|----------|-----------------|---------|-----------------|---------|---------|-----------------|---------|---------|-----------------|----------|----------|----------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 262.5 | 262.0 | 272.6 | 279.9 | | 229.3 | 232.2 | 238.3 | 233.7 | 247.4 | 249.8 | 251.2 | 250.4 | 248.8 | 245.3 | 239.5 | 4 4 6 6 | 22200 | 232.8 | 226.0 | 225.5 | 232.1 | 240.5 | 232.5 | 237.6 | 730 5 | 7.000 | 365.4 | 362.1 | | 459.3 | 451.62 | 173 0 | 1000 | • 0 1 | 0.0% | 147.0 | 146.0 | 147.3 | 150.2 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.24 | 35.0 | 35 • 5 | 24.9 | 17.6 | | 105.7 | 101.1 | 7 9 9 7 | 101.3 | 87.6 | 85.2 | 83.8 | 84.6 | 86.2 | 89.7 | 95.5 | п ° | 99.5 | 102.2 | 109.0 | 109.5 | 102.9 | 94.5 | 102.5 | 97.4 | 113.0 | 104.0 | 10.6 | 22.9 | | 10.7 | | | 1 - | | | 0 0 0 | | | 94.8 | | | DATE | / DIST | 2-25-63 | 3-25-63 | 5-21-63 | 6-28-63 | | 7-25-61 | 8-31-61 | 10-24-01 | 11-27-61 | 12-18-61 | 1-22-62 | 3-01-62 | 3-28-62 | 4-26-62 | 5-23-62 | 6-21-62 | 7-25-62 | 8-21-62 | 10-16-62 | 11-20-62 | 12-17-62 | 1-22-63 | 2-25-63 | 3-25-63 | 4-22-63 | 5-21-63 | 6-28-63 | 10-10-62 | 2-04-63 | | 10-11-62 | 2-05-63 | | 79-01-01 | 2-04-63 | | 14-07-1 | 0-20-61 | 10-25-61 | 11-28-61 | 1 | | GROUND
SURFACE
ELEVATION
IN FEET | WATER CONSERV | 297.5 | | | | | 335.0 | 0 |
0 | | 470.0 | | ; | 251.0 | | | 245.0 | | | | | | STATE WELL
NUMBER | KAWEAH DELTA WATER CONSERV DIST | 175/24E-34801 M | CONT. | | | | 175/25E-21A01 M | 1/5/20E-1/PU2 M | | 17S/27E-34P01 M | | | 18S/22E-29A01 M | | | 18S/22E-36P01 M | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | _ | | | | | | | | | | | | 6001 | 0505 | 1009 | | | 6001 | | | | | | | | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 336.8 | 339.1 | 340.0 | 342.1 | 24.6 | 345.5 | 344.5 | 345.6 | 346.7 | 348.7 | 7,00 | 2400 | 0 0 0 0 0 | 25.1.2 | 20100 | 356.0 | 350.5 | | 297.0 | 316.3 | 301.5 | | | 246.8 | 243.5 | 242.4 | 245.6 | 244.4 | 248.4 | 250.4 | 251.2 | 257.6 | 260.0 | 260.0 | 264.7 | 263.0 | 261.8 | 261.5 | 262.5 | 262.5 | 260.3 | | GRD SUR
TO WATER
SUR, IN FEET | 5-22.23 | 70.0 | 76.9 | 76.0 | 73.9 | 0.0 | 400 | 71.5 | 70.4 | 69.3 | 67.3 | 67.2 | 6.99 | 4.00 | 0 0 0 0 | 0.40 | 0.09 | 65.5 | | 0.99 | 46.7 | 55.8 | F-32.24 | 47.77-C | 50.7 | 54.0 | 55.1 | 51.9 | 53.1 | 49.1 | 0 0 0 0 | 40.4 | 0 0 | 37.5 | 37.5 | 32.8 | 34.5 | 35.7 | 36.0 | 35.0 | 35.0 | 37.2 | | DATE | 1 5 | 13 01-61 | 1-02-62 | 1-31-62 | 2-28-62 | 4-02-62 | 5-01-62 | 6-10-62 | 8-01-62 | 9-04-62 | 10-03-62 | 10-31-62 | 12-06-62 | 1-04-63 | 2-05-63 | 3-04-63 | 5-02-63 | 6-10-63 | | 10-12-62 | 2-13-63 | 2-25-63 | F 0 + 0 | 1810 0 | 7-25-61 | 8-31-61 | 9-19-61 | 10-24-61 | 11-27-61 | 12-20-61 | 79-67-1 | 3-27-62 | 4-25-62 | 5-22-62 | 6-19-62 | 7-24-62 | 8-21-62 | 9-19-62 | 10-16-62 | 11-20-62 | 12-17-62 | 1-22-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ATION DISTRI | | 0.014 | | | | | | | | | | | | | | | | | 363.0 | | | | WATER CONSER | 1 | C + 1 6 7 | | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | TVANHOF TRRIGATION DISTRICT | | 175/26E-34D01 M | | | | | | | | | | | | | | | | | 85/25E-12001 M | | | | KAWEAH DELTA WATER CONSERV DIST | | 175/24E-34801 M | | | | | | | | | | | | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | 6001 | | | | | | | | | | | | | | | | | 1003 | 1000 | 1009 | | | | | | | | |---|---------------------------------|--------------------------------|--|-------------------------------|-----------------|----------|----------|----------|---------|---------|---|-----------------|---------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|-------------------|-----------------|----------|---------|----------|----------|---------|-----------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 241.3 | 283.8 | 363.5 | 325.7 | 324.7 | 324.6 | 325.4 | 327.5 | 330.8 | 336.5 | 336.1 | 337.5 | 336.8 | 337.1 | 335.9 | 334.1 | 335.9 | 336.5 | 339.9 | 340.2 | 176.0 | 7 0 6 1 1 | 6.76 | 7.46 | 0.00 | 101.0 | 105.2 | 109.1 | 110.0 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.24 | 71.2 | 54+2
m | 26.5 | 41.3 | 42.3 | 45.4 | 41.6 | 39.5 | 36.2 | 30.5 | 30.9 | 29.5 | 30.2 | 29.9 | 31.1 | 32.9 | 31.1 | 30.5 | 27.70 | 26.8 | 0 | 0 * 6 | 137.1 | 140.3 | 139.6 | 134.0 | 129.8 | 125.9 | 125.0 | | | DATE | V DIST | 10-12-62 | 10-11-62 2-23-63 | 10-12-62 | 7-25-61 | 9-20-61 | 11-29-61 | 12-19-61 | 3-01-62 | 3-28-62 | 5-23-62 | 6-20-62 | 7-24-62 | 9-19-62 | 10-16-62 | 11-20-62 | 1-22-63 | 2-26-63 | 3-26-63 | 5-22-63 | 6-28-63 | | 59251-7 | 7-26-61 | 8-31-61 | 10-02-6 | 11-28-61 | 12-20-61 | 1-23-62 | 3-27-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | WATER CONSER | 312.5 | 338.0 | 390.0 | 367.0 | | | | | | | | | | | | | | | | | 4 | 0 + 6 + 7 | 235 • 0 | | | | | | | 1 | | STATE WELL
NUMBER | KAWEAH DELTA WATER CONSERV DIST | 185/24E-26A01 M | 185/25E-33F01 M | 185/26E-27E01 M | 18S/26E-30N01 M | | | | | | | | | | | | | | | | | | INSTACE = OINGS M | 195/22E-19A01 M | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | 6001 | | | | | | | | | | | | | | | | | | | 5050 | | WATER
SURFACE
ELEVATION
IN FEET | | 152.6 | 161.6 | 151.8 | 147.1 | 154.3 | 158.5 | 159.0 | 0 | 9 | • | 219.8 | 217.0 | 219.1 | 223.2 | 223.9 | 227.2 | 226.0 | 226.3 | 222.5 | 218.5 | 214.6 | 216.9 | 222.0 | 224.7 | 7.677 | 224.5 | 225.9 | 226.0 | C • # 7 7 | 182.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.24 | 92.4 | 0 00 00 00
0 00 00
0 0 0 0
0 0 0 0
0 0 0 0 | 93.2 | 97.9 | 90.7 | 86.5 | 86.0 | | E 0 | 7 • 6 0 | 62.7 | 65.00
0.00 | 63.4 | 59.3 | 58.6 | 50.00 | 56.5 | 56.2 | 0.00 | 64.0 | 64.6 | 65.6 | 60.5 | 57.8 | 21.03 | 0.00 | 56.6 | 56.5 | • | 88.2 | | DATE | 7 5137 | 12-20-61
1-25-62
2-28-62 | 3-27-62 | 6-19-62
7-23-62
8-21-62 | 9-18-62 | 11-19-62 | 1-21-63 | 2-25-63 | 4-22-63 | 5-20-63 | 50-17-0 | 7-25-61 | 9-20-61 | 10-24-61 | 11-27-61 | 12-20-61 | 2-28-62 | 3-27-62 | 4-25-62 | 6-19-62 | 7-23-62 | 8-21-62 | 10-15-62 | 11-19-62 | 12-17-62 | 2-12-63 | 3-25-63 | 4-22-63 | 5-20-63 | 50-17-0 | 2-13-63 | | GROUND
SURFACE
ELEVATION
IN FEET | WATER CONSERV DIST | 245.0 | | | | | | | | | | 282.5 | | | | | | | | | | | | | | | | | | | 271.0 | | STATE WELL
NUMBER | KAWEAH DELTA | 185/22E-36P01 M
CONT. | | | | | | | | | | 18S/23E-12H01 M | | | | | | | | | | | | | | | | | | | 185/23E-34A01 M | | AGENCY
SUPPLYING
DATA | | 1009 | | | | | | | 5050 |) | 6001 | 6001 | | 6001 | | | | | | | |---|---------------------------------|--------------------------|----------|---------|---------|---------|----------|----------|---------|-----------------|-----------------|---------|---------|----------|-----------------|----------|---------|----------|----------|----------|---------|---------|---------|---------|----------|----------|----------|-----------------|---------|---------|----------|----------|----------|-----------------|---------|-----------------|---------|---------|-------------------|----------|----------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 270.7 | 265.8 | 265.6 | 264.4 | 265.2 | 267.9 | 277.1 | 264.9 | , | | 183.5 | 196.2 | 211.0 | 2000 | 227. 6 | 237.0 | 9 | 217.8 | 214.5 | | | | | 230.0 | 221.7 | 227.4 | 238.3 | | 247.6 | | 220.8 | | 104.8 | | 197.6 | 193.5 | 202.9 | 202.0 | 0.612 | 217.8 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.24 | 51.8 | 54.2 | 54.4 | 55.6 | 54.8 | 52.1 | 45.9 | 72.1 | **7/ | п | 157,5 | 144.8 | 130.0 | 1.421 | 11/00 | 106.0 |)
• E | 123.2 | 126.5 | | | п | п | 111.0 | 1 0 1 | 112.6 | 102.7 | | 4.80 | | 120.2 | | 121.2 | | 106.9 | 111.0 | 101.6 | 5 • 86
0 0 0 0 | 89.0 | 86.7 | | | DATE | v DIST | 10-15-62 | 12-18-62 | 2-25-63 | 3-26-63 | 4-22-63 | 5-20-63 | 6-28-63 | 2-13-63 | 50-51-7 | 7-25-61 | 9-01-61 | 9-20-61 | 10-25-61 | 11-29-61 | 12-19-61 | 3-01-62 | 3-10-6 | 4-25-62 | 5-23-62 | 6-20-62 | 7-24-62 | 8-23-62 | 9-19-62 | 10-16-62 | 13 10 43 | 12-10-02 | 2-26-63 | 3-26-63 | 4-22-63 | 5-20-63 | 6-28-63 | | 2-19-63 | | 7-25-61 | 8-30-61 | 9-20-61 | 10-25-61 | 19-87-11 | 12-21-61 | | | GROUND
SURFACE
ELEVATION
IN FEET | WATER CONSER | 320.0 | | | | | | | 0 | 00156 | 341.0 | 226.0 | | 304.5 | | | | | | | | STATE WELL
NUMBER | KAWEAH DELTA WATER CONSERV DIST | 195/25E-07K01 M
CONT. | | | | | | | | 195/25E-25D01 M | 105/26F-34802 M | 205/22E-10C01 M | | 205/25E-14F01 M | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | _ | | _ | | | | | | | | | | 6001 | | | | | | | | | | | | | 6001 | | | | | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 114.0 | 118.5 | 132.3 | 135.5 | 134.7 | 120 7 | 142.9 | 145.0 | 144.8 | 140.0 | 147.0 | 145.9 | • | 130.4 | 131.3 | 130.2 | 129.7 | 129.6 | 129.5 | 129.5 | 129.3 | 129.7 | 128-7 | 128.9 | 128.2 | | 259.1 | 256.0 | 255.2 | 255.0 | 254.7 | 224.8 | 254 • U | 25.00 | 261.3 | 269.0 | 274.2 | 271.7 | 270.8 | 271.1 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.24 | 121.0 | 116.5 | 102.7 | 6.66 | 100.3 | 900 | 92.1 | 0.06 | 90.2 | 95.0 | 91.4 | 80.1 | | 103.6 | 102.7 | 103.8 | 104.3 | 104.4 | 104.5 | 104.5 | 104.7 | 104.0 | 100 | 105.1 | 105.8 | | 6.09 | 0.49 | 8.49 | 65.0 | 65.3 | 5.69 | 65.5 | 0407 | 20.00 | 51.0 | 8 - 14 | 4.8°3 | 6000 | 0 87 | | | DATE | v DIST | 4-23-62 | 6-19-62 | 7-23-62 | 8-21-62 | 9-19-62 | 10-13-62 | 12-17-62 | 1-21-63 | 2-25-63 | 3-25-63 | 5-22-63 | 6-27-63 | | 7-23-62 | 8-22-62 | 9-18-62 | 10-15-62 | 11-19-62 | 12-17-62 | 1-21-63 | 2-19-63 | 2 25-63 | 7-22-63 | 5-20-63 | 6-27-63 | | 7-25-61 | 8-31-61 | 9-19-61 | 10-26-61 | 11-27-61 | 12-19-61 | 1-24-62 | 79-87-7 | 4-25-62 | 5-22-62 | 6-19-62 | 7-24-62 | 8-23-62 | 0-10-62 | 70 (4-6 | | GROUND
SURFACE
ELEVATION
N FEET | WATER CONSER | 235.0 | | | | | | | | | | | | | 234.0 | | | | | | | | | | | | | 320.0 | | | | | | | | | | | | | | | | STATE WELL
NUMBER | KAWEAH DELTA WATER CONSERV DIST | 195/22E-19A01 M | | | | | | | | | | | | | 195/22E-36E01 M | | | | | | | | | | | | | 195/25E-07K01 M | | | | | | | | | | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | | | 6001 | | |---|---------------------------------|--
--|----------------------------|---|----------|-------------------------------|--|-------------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 257.7
269.1
267.8 | 1268.9
1266.7
1125.6
1129.0
1129.0
1131.3
1131.4
117.5 | 125.8 | 111.1
126.9
129.5
131.4 | 133.3 | 130.9 | 125.7
125.7
124.8
126.0
126.1
130.0 | 127.7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.25 | 59.00 | 11125 | 115.2 | 129.9
1114.1
1111.5
109.6 | 110.5 | 110.1 | 1117 - 4
115 - 3
116 - 2
117 - 0
111 - 0
110 - 8 | 113.3 | | DATE | 1 | 10-02-61
2-07-62
10-08-62
2-05-63
3-21-63
6-28-63 | 7-26-61
9-31-61
10-25-61
11-28-61
11-28-61
11-28-61
11-28-61
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62 | 7-23-62 | 9-18-62
10-15-62
11-19-62
12-17-62 | 3-25-63 | 5-20-63
5-20-63
6-27-63 | 7-26-61
9-31-61
0-25-61
10-25-61
11-28-61
12-27-61
12-3-62
3-27-62
4-23-62 | 5-22-62
6-19-62
7-23-62 | | GROUND
SURFACE
ELEVATION
IN FEET | TULARE IRRIGATION DISTRICT | 327.0 | 241.0 | | | | | 241.0 | | | STATE WELL
NUMBER | TULARE IRRIGA | 195/25E-17J01 M | 20S/23E-08B02 M | | | | | 20 5/23E -08G01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | | 6001 | 6001 | 6001 | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 219.9
220.3
220.3
209.4
211.0 | 1966.0
207.0
217.0
217.0
219.7
218.5
213.5
213.5
213.6
217.9 | | 179.2
163.0
181.0 | 142.6 | 179.7 | 1998.7
1998.7
1998.3
204.6
203.0
182.0
192.6 | 197.5 | | GRD SUR
TO WATER
SUR, IN FEET | 5-22.24 | \$2000000000000000000000000000000000000 | 100
900
900
900
900
900
900
900
900
900 | 5-22.25 | 90.8
107.0
89.0 | 107.9 | 110.3
n
95.5 | 991.99
985.09
985.00
1080.00
108.00 | 92.5 | | DATE | V DIST | 2-28-62
3-28-62
4-25-62
5-25-62
6-129-62 | 8-22-62
10-15-62
11-18-62
12-18-62
12-18-62
12-18-62
12-18-62
12-18-62
13-26-63
4-22-63
5-20-63
5-20-63 | - | 10-10-62
2-20-63
5-20-63
6-27-63 | 10-10-62 | 7-24-62 8-22-62 9-18-62 | 11111111111111111111111111111111111111 | 5-20-63 | | | ~ | | | 210 | | | | | | | GROUND
SURFACE
ELEVATION
IN FEET | KAWEAH DELTA WATER CONSERV DIST | 304.5 | | TULARE IRRIGATION DISTRICT | 270.0 | 250.5 | 290.0 | | 290•0 | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | 6001 | | | | | | | | | | | | 6001 | | |---|----------------------------|-----------------|----------------------------|-----------------|---------|----------|----------|-----------------|----------|---------|-----------|---------|---------|-----------------|---------|----------|----------|----------|---------|---------|---------|-----------|---------|------------|-----------------|----------|----------|----------|----------|---------|---------|---------|---------|---------|-----------------|---------|-----------------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 121.9 | | 360.0 | 361.2 | 357.2 | 357.6 | 360.0 | 365.0 | 367.8 | 367.5 | 360.4 | 369.4 | 369.2 | 360.2 | 369.7 | 370.3 | 368.9 | 371.7 | 376.3 | 0.770 | 376.1 | 378.6 | | 410.2 | 0.00 | 400 | 405.3 | 410.9 | 404.0 | 410.5 | 409 • 3 | 410.0 | 415.9 | 41107 | | | 234.4 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.25 | 10001 | 5-22.26 | 76.0 | 76.9 | 78.8 | 78.4 | 76.0 | 100 | 68.2 | 68.5 | 75.6 | 9.99 | 66.8 | 0 0 0 | 000 | 65.7 | 67.1 | 64.3 | 59.7 | 59.0 | 7 - 1 - 1 | 57.4 | | 36.8 | 41.0 | 000 | 70.07 | 36.0 | 6.00 | 36.5 | 37.7 | 37.0 | 31.1 | 100
100 | | | 140.6 | | DATE | | 6-28-63 | | 7-25-61 | 8-30-61 | 10-25-61 | 11-29-61 | 12-19-61 | 3 01-62 | 3-78-62 | 4-26-62 | 5-23-62 | 6-20-62 | 7-24-62 | 79-67-8 | 10-16-62 | 11-20-62 | 12-18-62 | 1-22-63 | 2-26-63 | 3-25-63 | 4-22-63 | 6-28-63 | | 7-24-62 | 8-23-62 | 79-61-6 | 11-20-62 | 12-18-62 | 1-22-63 | 2-06-63 | 2-25-63 | 3-26-63 | 4-22-63 | 5-20-63 | 000000 | 7-25-61 | 8-30-61 | | GROUND
SURFACE
ELEVATION
IN FEET | TULARE IRRIGATION DISTRICT | 222.0 | EXETER IRRIGATION DISTRICT | 436.0 | 0.744 | | | | | | | | | | | | 375.0 | | | STATE WELL NUMBER | TULARE IRRIGA | 215/23E-05R01 M | EXETER IRRIGA | 185/26E-25K01 M | 185/27E-29001 M | | | | | | | | | | | | 195/26F-14E01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | _ | | | 6001 | | | | | | 6001 | 6001 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 122.4 | 125.3 | 128.2 | 130.7 | | 164.6 | 179.8 | 167.7 | 180.0 | 1 / 4 • 1 | 104.4 | | | | 152.1 | 153.2 | 154.0 | 154. | 151.9 | | | | | | 150.6 | 152.2 | 142.7 | | 144.6 | 153.1 | | | | 120.6 | 122.1 | 120.1 | 122.8 | | GRD SUR
TO WATER
SUR, IN FEET | 5-22.25 | 118.6 | 115.7 | 112.8 | 110.3 | *2 | 4.801 | 93.2 | 105.3 | 93.0 | 98.9 | 11301 | 5 | = | | 6.16 | 96.8 | 95.5 | 000 | 98.1 | | п
 ם | D 1 | n E | 4.66 | 97.8 | 107.3 | | 105.4 | 6.96 | ום | o : | 3 | | | | 99.2 | | DATE | | | 9-18-62 | 11-19-62 | 1-21-63 | 2-01-63 | 10-05-61 | 2-09-62 | 10-10-62 | 2-06-63 | 5-20-63 | 6-77-9 | 7-26-61 | 8-31-61 | 9-20-61 | 10-25-61 | 11-28-61 | 12-20-61 | 79-67-1 | 3-27-62 | 4-23-62 | 5-22-62 | 6-19-62 | 7-23-62 | 0-18-62 | 10-15-62 | 11-19-62 | 12-17-62 | 1-21-63 | 2-25-63 | 3-25-63 | 4-22-63 | 5-70-63 | 0-77-0 | 10-03-61 | 2-07-62 | 10-09-62 | 5-21-63 | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRIC | 241.0 | | | | | 0 | 7.79.0 | | | | | 0 | 0.002 | 222.0 | | | | | STATE WELL
NUMBER | THE IRRIGATION DISTRICT | 205/23E-08G01 M | CONT. | | | | | 205/24E-16H01 M | | | | | | 205/24E-30302 M | 215/23F-05R01 M | | | | | | | | | | | | | | | | | | , | , | Λ | 2 | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | | 6001 | | | | | 6001 | | | 6001 | 6001 | | |---|-------------------------------|--------------------------|----------|-----------------|---------------|------------------------------|-----------------|----------|---------|---------|----------|-----------------|---------|---------|--------------------|---------|----------|----------|-----------------|---------|--------------------------|---------|-----------------|---------|-----------------|---------|----------|----------|----------|---------|---------|---------|---------|---------|---------|--------------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | 346.3 | 354.8 | 351.4 | | | 220.4 | 251.0 | 251.0 | 250.0 | 261.0 | 214.1 | 222.0 | | 249.0 | 2000 | 255.7 | 259.1 | 260.7 | 262.6 | 265.7 | 263.0 | 264.3 | 265.0 | 264.6 | 268.7 | 270.6 | 273.9 | 270.0 | 276.3 | 274.0 | 277.7 | 276.7 | 275.4 | | 180.6 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.27 | 67.7 | 59.2 | 9.49 | 000 | 97.77-6 | 139.6 | 109.0 | 109.0 | 110.0 | 0 * 6 6 | 126.9 | 119.0 | | 113.5 | 110 2 | 106.8 | 103.4 | 101.8 | 6.66 | 96.8 | 99.5 | 98.2 | 97.5 | 6.16 | 93.8 | 91.9 | 88.6 | 0 4 6 0 | 86.2 | 88 | 84.8 | 85.8 | 87.1 | | 150.9 | | | DATE | 1810 | 2-05-62 | 2-04-63 | 2-04-63 | 101 | | 9-30-61 | 10-08-62 | 2-05-63 | 5-20-63 | 6-82-93 | 10-09-62 | 2-06-63 | | 7-25-61
8-30-61 | 0-00-0 | 10-25-61 | 11-29-61 | 12-19-61 | 1-24-62 | 3-28-62 | 4-25-62 | 5-23-62 | 7-23-62 | 8-22-62 | 9-18-62 | 10-15-62 | 11-19-62 | 1-22-63 | 2-26-63 | 3-21-63 | 4-25-63 | 5-20-63 | 6-27-63 | | 7-25-61
8-30-61 | | | GROUND
SURFACE
ELEVATION
IN FEET | LINDSAY-STRATHMORE IRRIG DIST | 414.0 | | 406.0 | STORY MOTTAGE | LINDMONE IRRIGATION DISTRICT | 360.0 | | | | | 341.0 | | | 362.5 | ; | 331.5 | | | STATE WELL
NUMBER | LINDSAY-STRA | 20S/27E-21F01 M | | 205/27E-29J01 M | DOCK CALL | LINDMOKE IKH | 205/26E-01P01 M | | | | | 205/26E-22C02 M | | | 205/26E-24K01 M | 205/26E-32AU1 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | | | | | | | 6001 | | | | 6001 | | 6001 | | | | | | | | | | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 239.5 | 255.3 | 262.0 | 262.4 | 263.4 | 25.8.3 | 257.1 | 263.0 | 266.6 | 268.1 | 271.6 | 270.3 | 271.2 | 273.1 | | | | 244.0 | 262.5 | | | 293.4 | | 307.1 | 309.2 | 300 | 300 × V | 300 | 307.6 | 306.1 | 305.3 | 304.6 | 304.5 | 304.2 | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.26 | 135.5 | 119.7 | 113.0 | 112.6 | 112.1 | 116.7 | 117.9 | 112.0 | 108.4 | 104.2 | 103.4 | 104.7 | 103.8 | 101.9 | | 1 11 | | 115.0 | 96.5 | 5-22.27 | | 91.6 | | 6.49 | 62.8 | 62.7 | 62.5 | 62.0 | 4 • 49 | 65.9 | 66.7 | 67.4 | 67.5 | 67.8 | | | | ОАТЕ | 1 | 9-20-61 | 11-29-61 | 1-23-62 | 3-01-62 | 4-26-62 | 5-23-62 | 7-23-62 | 8-23-62 | 9-19-62 | 11-20-62 | 12-18-62 | 1-22-63 | 59-97-7 | 4-22-63 | 5-20-63 | 6-28-63 | | 10-10-62 | 2-01-63 | DIST | | 10-12-62 | | 7-24-62 | 8-23-62 | 9-19-62 | 11-20-62 | 12-19-62 | 1-22-63 | 2-26-63 | 3-26-63 | 4-22-63 | 5-20-63 | 6-28-63 | 10-03-61 | | | GROUND
SURFACE
ELEVATION
IN FEET | EXETER IRRIGATION DISTRICT | 375.0 | | | | | | | | | | | | | | | | | 359.0 | | | | 385.0 | | 372.0 | | | | | | | | | | | 414.0 | | | STATE WELL
NUMBER | EXETER IRRIG | 195/26E-14E01 M
CONT. | | | | | | | | | | | | | | | | | 195/26E-23E01 M | | LINDSAY-STRATHMORE IRRIG | | 195/2/E-29D01 M | | 20S/27E-06B01 M | | | | | | | | | | | 205/27E-21F01 M | | | AGENCY
SUPPLY:NG
DATA | | 6001 | 6001 | | | | | | | | | | | | | | | 6001 | | | | | | | | | | | | | | | | |---|------------------------------|--------------------------|-----------------|---------------------------------|----------|--------------|---|----------|----------|---------|----------|----------|----------|---------|---------|-----------------|---------|-----------------|----------|---------|----------|----------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | 331.6 | 220.8 | 255.6
270.9
255.9 | 279.0 | 285.6 | 268.9 | 249.0 | 255.6 | 273.2 | 279.6 | 286.4 | 286.8 | 290.7 | 287.2 | 266.5 | | 379.4 | 01000 | 376.3 | | 376.0 | 376.1 | 377.5 | 380 0 3 | 2.974 | 380.3 | | 385.4 | 387.0 | 387.8 | 286.0 | • | | GRD SUR
TO WATER
SUR IN FEET | 5-22.28 | 4.09 | 151.2*
134.5 | 116.4
101.1
116.1* | 93.0 | 86.4
85.0 | 103.1 | 123.0 | 116.4 | 98.8 | 92.4 | 85.6 | 90.5 | 81.3 | 84.8 | 103.9 | | 9.64 | 75.5 | 100 c | | 53.0 | 52.9 | 51.5 | 48.7 | 8 • 6 4 | 000 | | 43.6 | 42.0 | 41.2 | 49-14 | 1 + 7 + | | DATE | CT | 5-20-63 | 7-26-61 8-29-61 | 9-20-61
10-26-61
11-28-61 | 12-21-61 | 2-27-62 | 4-25-62 | 6-20-62 | 7-24-62 | 9-18-62 | 10-15-62 | 11-19-62 | 12-18-62 | 2-26-63 | 4-25-63 | 5-20-63 | 001770 | 7-26-61 | 8-29-61 | 19-07-6 | 11-28-61 | 12-19-61 | 1-24-62 | 3-01-62 | 3-28-62 | 4-25-62 | 2-23-02 | 7-23-62 | 8-22-62 | 9-18-62 | 10-15-62 | 11-19-62 | 12-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | GATION DISTRI | 392.0 | 372.0 | | | | | | | | | | | | | | | 429.0 | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | LINDMORE IRRIGATION DISTRICT | 205/27E-29E01 M
CONT. | 215/26E-01001 M | | | | | | | | | | | | | | | 215/27E-02E01 M | | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | | | 6001 | WATER
SURFACE
ELEVATION
IN FEET | | 190.2 | 203.6 | 214.5 | 207.0 | 0 6 6 | • 60 | 199.5 | 211.5 | 212.2 | 211.5 | 216.0 | 212.6 | 195.5 | | 310.9 | 310.4 | 318.4 | 319.5 | 319.8 | 321.3 | 364.1 | | | 323.3 | 326.8 | | 328.1 | 329.9 | 331.3 | 320.0 | 333.0 | 334.8 | | GRD SUR
TO WATER | 5-22.28 | 141.3 | 127.9 | 117.0 | 124.5 | 136.5 | † • • • • • • • • • • • • • • • • • • • | 132.0 | 120.0 | 119.3 | 120.0 | 115.5 | 118.9 | 136.0 | c | 81.1 | 81.6 | 73.6 | 72.5 | 72.2 | 70.07 | 67.3 | | D 6 | 7 2 4 | 65.2 | | 63.9 | 62.1 | 60.7 | 0.04 | 20.00 | 57.5 | | DATE | | 9-20-61 | 11-28-61 | 2-28-62 | 4-25-62 | 7-00-62 | 9-18-62 | 10-15-62 | 12-19-62 | 1-21-63 | 2-26-63 | 4-25-63 | 5-20-63 | 6-27-63 | 7-26-61 | 8-30-61 | 9-20-61 | 10-25-61 | 12-19-61 | 1-24-62 | 3-01-62 | 3-28-62 | 4-25-62 | 5-23-62 | 7-23-62 | 8-22-62 | 9-19-62 | 10-15-62 | 11-19-62 | 12-18-62 | 1-22-63 | 3-21-63 | 4-25-63 | | GROUND
SURFACE
ELEVATION | ATSTON DISTR | 331.5 | | | | | | | | | | | | | 0 000 | 20760 | | | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | TOTALINATION DISTRICT | 205/26E-32A01 M | • 200 | | | | | | | | | | | | | 203/2/E=29E01 M | | | | | | | | | | | | | | | | | | TABLE C-I | AGENCY
SUPPLY NC | | 6001 | 6001 | 6001 | | | 1009 | | | | | | | | | | | | | | | : | 6001 | | | | | | | | | | | | .007 | 1000 | |---|---------------------------------|--------------------------|----------------------|-----------------|---------------------------------|-----------------|-----------------|---------|----------|----------|---------|---------|---------|---------|---------|-----------------|---------|----------|----------|----------|---------|---------|-----------------|---------|---------|---------|---------|----------|----------|----------|----------|---------|---------|---------|---|---| | WATER
SURFACE
ELEVATION
IN FEET | | 362.9 | 375.5 | 380.6 | 380.9 | | | | 369.0 | 370.1 | • | 371.1 | | , ,,,, | 373.0 | | | 275.0 | 376.1 | 377.3 | | | 305.5 | 300.00 | 9046 | 306.2 | 277.8 | 301.1 | | 309.2 | 310.6 | 309.9 | 306.9 | 305.3 | 0 | 0.40 | | GRD SUR
TO WATER
JR IN FEET | 5-22.29 | 46.1 | 60.5 | 39.4 | 39.1 | | | | 45.0 | 0.00 | | 45.9 | п | _ C | 41.0 | | D 1 | 30.0 | 37.0 | 36.7 | žt. | | 89.0 | ; c | 26. | 0 0 | 117.2 | 63.6 | | 85.8 | 84.4 | 85.1 | 88.1 | 89.7 | 4 70 | 1.00.2 | | DATE | STRICT | 6-27-63 | 10-12-62 2-01-63 | 1-24-63 | 5-27-63 | | 7-26-61 | 9-20-61 | 10-26-61 | 12-19-61 | 1-24-62 | 2-27-62 | 3-28-62 | 4-24-62 | 6-20-62 | 7-23-62 | 8-22-62 | 10-15-62 | 11-19-62 | 12-18-62 | 1-24-63 | 4 | 10-00-01 | 2-04-61 | 4-25-62 | 6-11-62 | 8-17-62 | 10-08-62 | 1-22-63 | 2-08-63 | 3-22-63 | 4-26-63 | 5-27-63 | 6-17-63 | 200 | 70-67-1 | | GROUND
SURFACE
ELEVATION
IN FEET | RRIGATION DI | 0.607 | 436.0 | 420.0 | | | 414.0 | | | | | | | | | | | | | | | i i | 395.0 | | | | | | | | | | | | | • | | STATE WELL
NUMBER | PORTERVILLE IRRIGATION DISTRICT | 215/27E-21E01 M
CONT. | 21S/27E-23N01 M | 215/27E-28E01 M | | | 215/27E-29H01 M | | | | | | | | | | | | | | | | 225/26E-01301 M | | | | | | | | | | | | M 10001 7567 366 | M 10801 B | | AGENCY
SUPPLYING
DATA | | 6001 | | | | 6001 | | | | | | | | | | 6001 | WATER
SURFACE
ELEVATION
IN FEET | | 381.9 | 388.7 | 385.5 | | 294.3 |
304.1 | 299.9 | 310.1 | 307.1 | 305.9 | 307.9 | 306.9 | 306.3 | 00100 | 359.2 | 355.7 | 355.6 | 356.6 | 357.1 | 357.5 | 358.1 | 350.0 | 358.6 | 356.9 | | | | 355.3 | 358.7 | 358.8 | 359.7 | 361.4 | 361.0 | 302.1 | • | | GRD SUR
TO WATER
SUR IN FEET | 5-22,28 | 47.1 | 40°3
8°04
6°24 | 43.5 | 5-22.29 | 79.7 | 6.69 | 74.1 | 80°3 | 6.99 | 68.1 | 66.1 | 67.1 | 1.19 | • 00 | 49.8 | 53.3 | 73.4 | 52.4 | 51.9 | 51.5 | 50.0 | 1 t t | 50.4 | 52.1 | DRY | DRY | DRY | 53.7 | 50.3 | 50.2 | 49.3 | 47.6 | 0 . 8 . | 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | • | | DATE | ICT | 1-22-63 2-26-63 | 3-21-63 | 6-27-63 | STRICT | 10-09-61 | 4-25-62 | 6-07-62 | 8-16-62 | 1-22-63 | 2-06-63 | 3-22-63 | 4-26-63 | 5-21-63 | 010110 | 7-27-61 | 8-29-61 | 10-26-61 | 11-28-61 | 12-19-61 | 1-24-62 | 29-17-7 | 79-62-67 | 5-23-62 | 6-20-62 | 7-23-62 | 8-22-62 | 9-18-62 | 10-15-62 | 11-19-62 | 12-18-62 | 1-21-63 | 2-26-63 | 3-21-63 | 5-20-63 | 00000 | | GROUND
SURFACE
ELEVATION
IN FEET | LINDMORE IRRIGATION DISTRICT | 429.0 | | | PORTERVILLE IRRIGATION DISTRICT | 374.0 | | | | | | | | | | 0.607 | STATE WELL
NUMBER | LINDMORE IRR | 21S/27E-02E01 M
CONT. | | | PORTERVILLE | 215/26E-23N01 M | | | | | | | | | | 215/27E-21E01 M | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | 6001 | 6001 | 6001 | | |---|-----------------------|--------------------------------|--|---|-----------------------|----------------------------------|-------------------------|--------------------|---------------------------------|--|--|-----------------| | WATER
SURFACE
ELE VATION
IN FEET | | 152.1 | 150.3
151.0
151.9
158.0 | 157.9
155.9
151.1
150.0 | 154.2 | 155.4
155.0
155.6 | 155.4
158.0
155.0 | 154.0 | 20002 | 217.0
225.0
224.0
229.5
229.5
229.0 | 1665
17665
20166
20166
20166
20166
2017
2017
2017
2017
2017
2017
2017
2017 | 181.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22,30 | 98.9
99.8
101.7 | 100.7
100.0
99.1
93.0 | 93.1
95.1
99.9
101.0 | 96.8 | 95.6
96.0
95.4 | 95.6
93.0
96.0 | 97.0 | 84.5 | 74.0
66.0
61.5
62.0
27.0 | 156.8*
158.0*
143.1*
112.5
105.5
96.6
94.6
108.5 | 140.7 | | DATE | ON DIST | 8-30-61
9-18-61
10-25-61 | 11-28-61
12-20-61
1-24-62
2-28-62 | 3-27-62
4-23-62
5-22-62
6-19-62
7-23-62 | 8-22-62 | 10-15-62
11-19-62
12-17-62 | 1-14-63 2-06-63 4-03-63 | 5-01-63
6-03-63 | 10-10-62 2-06-63 | 10-02-61
2-20-62
10-10-62
1-14-63
2-06-63
6-05-63 | 7-26-61
8-30-61
9-20-61
10-26-61
11-28-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-21-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61
12-61 | 6-19-62 | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER IRRIGATION DIST | 251.0 | | | | | | | 285.0 | 291.0 | 322.0 | | | STATE WELL
NUMBER | LOWER TULE R | 215/24E-35M01 M
CONT. | | | | | | | 215/25E-08H01 M | 215/25E-16A01 M | 215/26E-06G02 M | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | 6001 | 6001 | 6001 | | | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 345.0 | 24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 386.8
386.8
384.1
351.2 | | 102.2 | 179.1 | 142.4 | 141.1
140.3
140.0 | 1399.1
1399.1
1399.9
1399.2
1399.5 | 14400.2
14410.0
14411.0
14411.0
1440.0
1440.0
1440.0
1440.0
1440.0 | 155.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.29 | 122.0
123.0 | 120.2 | 80.2
78.9
82.9
115.8 | 5-22.30 | 119.3 | 73.9 | 87.6 | 88.9
89.7
90.0 | 9000
9000
9000
9000
9000
9000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 95.4 | | DATE | DISTRICT | 8-22-62 9-18-62 | 11-20-62 12-18-62 1-22-63 | 3-22-63
4-26-63
5-27-63
6-19-63 | ON DIST | 10-09-62 2-21-63 | 10-09-62 2-05-63 | 7-26-61 | 9-18-61
10-24-61
11-28-61 | 12-20-61
1-24-62
2-28-62
3-27-62
4-23-62
5-22-62
6-19-62 | 7-23-62
8-22-62
9-18-62
10-19-62
11-19-62
12-17-62
12-17-63
5-01-63
5-03-63
6-03-63 | 7-26-61 | | GROUND
SURFACE
ELEVATION
'N FEET | IRRIGATION DI | 0.467.0 | | | NIVER IRRIGATION DIST | 221.5 | 253.0 | 230.0 | | | | 251.0 | | STATE WELL
NUMBER | PORTERVILLE | 225/27E-10R01 M
CONT. | | | LOWER TULE R | 215/23E-22J01 M |
215/24E-15H01 M | 21S/24E-31D01 M | | | | 215/24E-35M01 M | TABLE C-I | IN FEET | DATE | TO WATER
SUR IN FEET | SURFACE
ELEVATION
IN FEET | SUPPLYING | STATE WELL
NUMBER | SURFACE
ELEVATION
IN FEET | DATE | TO WATER | SURFACE
ELE JATION
IN FEET | SUPPLYING | |---------|----------------------------------|-------------------------|---------------------------------|-----------|--------------------------|----------------------------------|-------------------------------|-------------------------|----------------------------------|-----------| | RRIGATI | LOWER TULE RIVER IRRIGATION DIST | 5-22.30 | | | LOWER TULE RI | LOWER TULE RIVER IRRIGATION DIST | ON DIST | 5-22.30 | | | | 322.0 | 7-24-62
8-22-62
9-18-62 | 136.8
131.9
125.7 | 185.2
190.1
196.3 | 6001 | 225/25E-10E01 M
CONT. | 294•0 | 8-08-61
9-15-61
9-28-61 | 121.5
130.3
118.5 | 172.5
163.7
175.5 | 6001 | | | 10-15-62 | 102.8
94.3 | 219.2 | | | | 11-14-61 12-18-61 1-23-62 | 119.5 | 179.5 | | | | 1-14-63 | 92.5 | 229.5 | | | | 2-15-62 | 119.5 | 174.5 | | | | 4-03-63 | 99.5 | 222.5 | | | | 4-17-62 | 125.5 | 168.5 | | | | 6-05-63 | 103.5 | 218.5 | | | | 6-19-62 | 120.5 | 173.5 | | | 359.0 | 7-24-62 | | | 6001 | | | 7-19-62 | 123.5 | 170.5 | | | | 8-22-62 | 100.0 | 259.0 | | | | 9-13-62 | 126.5 | 167.5 | | | | 10-15-62 | 86.9 | 272.1 | | | | 11-21-62 | 115.5 | 178.5 | | | | 11-19-62 | 86.2 | 272.8 | | | | 1-15-63 | 117.9 | 176.1 | | | | 12-18-62 | α
. • τ | 21301 | | | | 3-06-63 | 117.5 | 176.5 | | | | 2-06-63 | 0.06 | 269.0 | | | | 4-03-63 | 118.5 | 175.5 | | | | 3-03-63 | 65.0 | 294.0 | | | | 5-02-63 | 120.5 | 173.5 | | | | 5-01-63 | E3 E | | | | | 6-05-63 | 119.5 | 174.5 | | | | | 1 | | | 225/25E-15A01 M | 300.5 | 7-19-62 | 145.5 | 155.0 | 6001 | | 244.0 | 9-28-61 | 122.0 | 122.0 | 6001 | | | 8-16-62 | 139.5 | 161.0 | | | | 2-15-62 | 118.0 | 126.0 | | | | 9-13-62 | 139.5 | 161.0 | | | | 1-15-63 | 120.3 | 111.0 | | | | 11-21-62 | 120.5 | 168.0 | | | | 2-07-63 | 126.0 | 118.0 | | | | 12-12-62 | 127.5 | 173.0 | | | | 6-05-63 | 126.0 | 118.0 | | | | 1-15-63 | 134.5 | 166.0 | | | 4 | 7-10-62 | t | | 1003 | | | 2-07-63 | 120.5 | 180.0 | | | | 8-16-62 | 157.0 | 94.5 | | | | 4-03-63 | 151.5 | 149.0 | | | | 9-13-62 | 155.0 | 96.5 | | | | 5-02-63 | 130.5 | 170.0 | | | | 10-10-62 | 156.0 | 95.5 | | | | 6-03-63 | 139.5 | 161.0 | | | | 12-12-62 | 163.0 | 88.5 | | 225,26F-06A01 M | 337.0 | 10-08-62 | | 217.0 | 6001 | | | 1-15-63 | םנ | | | | | 2-05-63 | 113.7 | 223.3 | | | | 2-06-63 | D | | | | | | | | | | | 3-06-63 | 151.0 | 100.5 | | 225/26E-06F04 M | 331.0 | 7-27-61 | 157.6 | 173.4 | 6001 | | | 4-03-63 | 141.0 | 110.5 | | | | 0-20-61 | 140.7 | 181.3 | | | | 6-03-63 | 153.0* | 98.5 | | | | 10-26-61 | 140.2 | 190.8 | | | | | | | | | | 11-30-61 | 130.1 | 200.9 | | | 294.0 | 7-22-61 | | | 6001 | | | 19-61-71 | 16/04 | 20200 | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | 6001 | 6001 | |---|----------------------------------|--|--------------------------------|---|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 3882.1
3842.2
409.8
408.2
419.5
415.9
427.0
431.7
411.0 | 272.7
281.5
274.0 | 278.4
278.0
282.1
282.6
277.2 | 2223
2223
2223
2223
2223
2223
2233
223 | 176.
180.
179.
180.
180.
189.
192.
1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.31 | 155.8
1155.8
1125.8
1125.8
1115.2
1119.2
1108.0
108.0
103.3
124.0 | 123.3
114.5
122.0 | 117.6
118.0
113.9
113.6 |
11474
11474
11466
11966
11966
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11996
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966
11966 | 1562.9
1583.6
1598.6
11598.1
1498.1
1468.9
1598.9 | | DATE | 101 | 8-22-62
10-15-62
11-20-62
12-18-62
12-18-63
1-23-63
2-26-63
4-25-63
6-27-63 | 10-04-61
2-08-62
8-17-62 | 10-08-62
10-12-62
2-04-63
4-26-63
6-18-63 | 7-23-62
9-22-62
9-18-62
10-18-62
11-20-62
11-29-63
2-26-63
3-21-63
4-25-63
5-20-63
6-27-63 | 7-27-61
8-30-61
9-20-61
10-26-61
11-29-61
12-20-61
12-26-2
2-27-62
3-28-62 | | GROUND
SURFACE
ELEVATION
IN FEET | VANDALIA IRRIGATION DISTRICT | E-18A01 M 535.0 8-10-10-10-10-10-10-10-10-10-10-10-10-10- | 396.0 | | 371.0 | 9399 | | STATE WELL
NUMBER | VANDALIA IRR | 225.728E-18A01 M | 225/26E-12R02 M | | 225/26E-15J01 M | 225/26E-32E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 205.9
207.2
200.8
2004.1
203.6
196.7
196.7
197.2
201.7
201.7
201.7
208.7 | 207.5 | 372.0 | 00000000000000000000000000000000000000 | 391.0
392.5
3974.3
3994.0
401.1
401.1
402.0
399.9 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.30 | 125.1
123.8
1123.8
1126.9
127.4
1134.3
1140.4
1140.9
1129.3
1129.3 | 123.5
121.5
119.5 | 5-22.31
152.0
135.6 | 136.0
134.8
132.8
129.7
127.3
127.5
131.0
139.5
136.0 | 133.0
131.5
1256.0
1256.0
125.0
1322.0
133.0 | | DATE | DN DIST | 1-25-62
2-27-62
3-27-62
4-28-62
5-22-62
6-20-62
7-23-62
10-15-62
110-15-62
112-18-62
113-18-63 | 5-01-63
5-01-63
6-03-63 | 7-27-61
9-01-61
9-20-61 | 10-26-61
11-30-61
12-20-61
1-25-62
1-25-62
3-24-62
4-24-62
4-24-62
4-24-62
4-24-62
4-24-62
4-24-62
4-24-62
4-24-62
9-23-62
6-20-62
9-23-62
9-23-62 | 111-20-62
12-18-62
12-26-63
2-26-63
3-21-63
4-25-63
5-20-63
6-27-63 | | GROUND
SURFACE
ELEVATION
N FEET | LOWER TULE RIVER IRRIGATION DIST | 331.0 | | VANDALIA IRRIGATION DISTRICT
8E-07G01 M 524.0 9 | | 0
9
9 | | STATE WELL
NUMBER | LOWER TULE RI | 225/26E-06F04 M | | VANDALIA IRR
225/28E-07001 M | | 225/28E-18A01 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 000 | | 6 001
6 001 | |---|-------------------------------|---|--
--| | WATER
SURFACE
ELEVATION
IN FEET | | 88 9 8 8 9 8 8 9 9 8 9 9 9 9 9 9 9 9 9 | 117.2
120.8
121.9
124.7
114.5
116.9 | 7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.33 | 2220.3
2211.4
211.6
201.6
1195.6
1195.7
1195.3
1195.3
202.3
203.5
203.5
203.5
203.5 | 192.8
189.2
188.1
185.3
195.3
197.6
193.1 | 33 H
1266 3
1200 6
1000 | | DATE | — | 10000000000000000000000000000000000000 | 11-19-62
12-17-62
1-23-63
2-26-63
3-21-63
4-25-63
5-20-63 | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 | | GROUND
SURFACE
ELEVATION
IN FEET | PIXLEY IRRIGATION DISTRICT | 910.0 | | 207.0 | | STATE WELL
NUMBER | PIXLEY IRRIG | 225/25E-25N01 M | | 235/234E-16R01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 1993.
1994.
1994.
1995.
1996.
1996.
1999.
1999.
1999.
1999. | 233.0
229.0
181.4
187.6
193.9
197.2 | 1897.7
1897.7
1993.9
1993.9
1811.3
1871.0
200.1
200.1
1990.4
1990.4 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.32 | 110
140
140
140
140
140
140
140 | 164.0
168.0
199.6
193.4
187.1
183.8
181.2 | 183.3
193.3
194.0
194.0
194.0
196.0
196.0
196.0
196.0 | | | | ************************************** | 222222 | ппппппппппппппппппппппппппппппппппппппп | | DATE | RICT | 4-24-62
6-201-62
6-20-62
7-23-62
10-15-62
11-118-62
11-13-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
12-18-63
13-18-63
13-18-63
13-18-63
13-18-63
13-18-63
13-18-63
13-18 | 10-111-62
2-07-63
2-07-63
9-19-61
10-26-61
11-29-61
1-25-62
2-26-62 | 3-26-62
5-21-6-52
5-21-6-52
7-24-62
9-18-62
10-15-62
11-17-62
11-17-62
11-17-62
12-17-62
12-17-62
12-17-62
13-17-62
13-17-62
14-17-62
15-17-62
16-17-62
17-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-63
18-18-6 | | GROUND
SURFACE
ELEVATION
IN FEET | SAUCELITO IRRIGATION DISTRICT | ਜਕਾਰ | 397.0 10-11-6
2-07-6
381.0 9-10-6
11-29-6
12-19-6
12-19-6
12-19-6 | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | | AGENCY
SUPPLYING
DATA | 6001 | | | | | T 0009 | | 2000 | |---
----------------------------|---------------------------------|--|---|--|---|--|--------------------| | WATER
SURFACE
ELEVATION
IN FEET | 211.5 | 210.0 | 207.3 | 205.4
205.4
205.4
205.8
205.8 | 207.6
208.1
208.3
208.8 | 54.6
771.6
91.8
104.2
108.0
118.6
1109.9
100.3
107.5
73.1
73.1 | 94.1
123.6.3
123.6.0
125.9
125.9
126.0
120.0
120.0 | 68.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-33 | 7.00 | 8833
848
848
848
848 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 82.0
81.0
81.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 236.
2136.
1999.
186.
186.
173.
181.
181.
181.
181.
213.
223.
223. | | | | DATE | | 9-19-61
10-25-61
11-29-61 | 12-19-61
1-25-62
2-26-62
3-28-62
4-24-62 | 5-21-62
6-20-62
7-24-62
8-22-62
9-18-62 | 11-19-62
12-17-62
1-23-63
2-26-63
3-22-63 | 7-26-61
9-19-0-61
10-25-61
10-25-61
11-29-61
11-29-61
12-19-61
12-26-62
2-26-62
3-26-62
4-21-6-2
5-21-6-2
6-20-62
6-20-62
8-22-6-2
8-21-6-2
7-24-62 | 9-18-62
10-15-62
11-19-62
12-17-62
12-13-63
1-28-63
1-26-63
3-21-63
4-25-63
5-20-63 | 7-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | PIXLEY IRRIGATION DISTRICT | 290•0 | | | | 291.0 | | 263.0 | | STATE WELL
NUMBER | PIXLEY IRRIG | 235/25E-15A01 M
CONT. | | | | 235/25E-15J02 M | | 235/25E-16N03 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 97.3 | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 27 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | 107.6
117.3
122.0
86.5 | 100 100 100 100 100 100 100 100 100 100 | 212.1
213.0
214.0
217.0
217.4
2217.2
221.2 | 209.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.33 | 122.7 | 120.2
120.8
122.3
122.5 | 250.5
243.6
217.4
190.6
178.6 | 17004
16007
15600
19105
18307 | DRY
DRY
DRY
DRY
DRY
DRO
DEC. 5
166.5
166.5
162.6
1163.5
173.9 | 00000000000000000000000000000000000000 | 80.2 | | DATE | | - | 2-26-63
3-22-63
4-26-63
5-21-63 | 7-26-61
8-30-61
9-19-61
10-25-61 | 12-19-61
1-25-62
2-26-62
3-28-62
4-24-62 | 6-20-62
6-20-62
8-22-62
8-22-62
10-115-62
11-13-62
12-117-62
12-117-62
12-126-63
3-22-63
4-25-63
5-20-63 | 7-23-62
8-22-62
9-18-62
10-15-62
11-19-62
12-17-63
1-23-63
3-20-63 | 7-26-61
8-30-61 | | GROUND
SURFACE
ELEVATION | PIXLEY IRRIGATION DISTRICT | 220.0 | | 278.0 | | | 0.000 | 290.0 | | STATE WELL NUMBER | PIXLEY IRRIG | 235/24E-16R01 M
CONT. | | 235/25E-09002 M | | | 235/25E-14C01 M | 235/25E-15A01 M | TABLE C-I | AGENCY
SUPPLY NG
DATA | | 6001 | | 6001 | | 6001 | |---|----------------------------|--|--|--|--|-----------------| | WATER
SURFACE
ELEVATION
N FEET | | 1447111996471199999999999999999999999999 | 156.
150.
155.
151.
5. | 32.1
85.5
104.4
112.8
1112.9
1115.1
98.0 | 70.0
61.2
87.2
93.8
1114.5
1118.2
118.9
120.9
120.9 | 196.0 | | GRO SUR
TO WATER
SUR IN FEET | 5-22.33 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 190.5
194.3
189.3
189.2
193.5
5-22.34 | 162.9
109.5*
90.6
82.2
76.2
77.0
82.7 | 11255
11325
11325
11325
125
125
125
125
125
125
125
125
125
1 | 14.0 | | DATE | _ | 2-26-62
3-28-62
5-21-62
6-20-62
7-23-62
8-28-62
8-28-62
9-18-62
10-15-62
11-17-62
11-13-62
11-13-62 | 2-26-63
3-21-63
4-25-63
5-20-63
6-27-63 | 7-27-61
9-1-29-61
10-25-61
11-29-61
11-29-61
12-18-61
2-26-62
3-29-62
4-23-62
6-20-62 | 7-24-62
9-13-62
10-16-62
11-17-62
12-17-62
12-17-62
12-17-62
12-17-62
12-17-62
12-17-62
12-17-63
12-17-63
12-17-63
12-17-63
12-17-63
12-17-63
12-17-63
12-17-63 | 7-26-61 | | GROUND
SURFACE
ELEVATION
IN FEET | PIXLEY IRRIGATION DISTRICT | 0.646. | NSWORTH AREA | 0 • 9 • 9 | | 210.0 | | STATE WELL
NUMBER | PIXLEY IRRIG | 235/26E-08R01 M | ALPAUGH-ALLENSWORTH AREA | 225/23E-28L01 M | | 235/23E-33A01 M | | AGENCY
SUPPLYING
DATA | | 0000 | 0000 | 2000 | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 63.2
67.0
90.0
102.4
1110.3
120.7
120.7
104.0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 158.6
158.6
158.6
158.9
152.7
153.2
154.5
158.9 | 1602.1
1602.0
1600.0
1600.0
161.0
1225.0
1325.0
1400.0
161.7 | 145.1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22+33 | 10000000000000000000000000000000000000 | 1115.
1114.
1113.
1104.
1106.
1106.
1106.
1106.
1106.
1106. | 1005.3
1005.3
1105.3
1115.6
1112.6
1110.5
110.5 | 1006.9
1008.1
1008.1
1008.1
107.7
2219.7
2210.5
204.0 | 199.9 | | DATE | | 8-117-62
110-62
110-08-62
12-04-62
12-05-63
3-27-63
4-24-63
5-22-63 | 7-18-62
8-17-62
9-11-62
10-09-62
11-08-62
11-06-62
1-05-63 | 3-27-63
5-12-63
6-12-63
7-18-62
8-11-62
9-11-62
11-08-62
11-08-62
11-08-62 | 2-27-63
4-1-63
4-1-63
4-1-63
6-19-63
7-19-63
7-19-61
11-19-61
11-19-61
11-19-61
11-19-61
11-19-61
11-19-61
11-19-61 | 1-25-62 | | GROUND
SURFACE
ELEVATION
N FEET | ATION DISTRICT | 263.0 | 2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 0 *692 | 34.5.0 | | | STATE WELL
NUMBER | PIXLEY IRRIGAT | 235/25E-16N03 M | 235/25E-16N04 M | 235/25E-17G03 M | 235/26E-08R01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | |---|--------------------------|--------------------------------|--
--| | WATER
SURFACE
ELEVATION
IN FEET | | 136.4
136.2
136.6 | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 1112223 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.34 | 73.6 | 1122
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225
1225 | 111111
12221
12221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222221
122221
122221
122221
122221
122221
122221
122221
122221
1222222 | | DATE | | 4-26-63
5-21-63
6-28-63 | 7-26-61
9-18-29-61
10-28-61
111-29-61
111-29-61
11-29-62
2-26-62
3-29-62
4-23-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
6-21-62
7-26-62
10-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-6 |
3-22-63
5-22-63
6-28-63
10-09-62
2-09-61
10-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
110-29-61
12-18-61
12-18-61
12-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18-61
13-18- | | GROUND
SURFACE
ELEVATION
IN FEET | SWORTH AREA | 210.0 | 21000 | 204.0 | | STATE WELL
NUMBER | ALPAUGH-ALLENSWORTH AREA | 235/23E-33A04 M
CONT. | 235/23E-33A05 M | 245/23E-21B02 M
245/23E-22E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 196.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GRD SUR
TO WATER
SUR. IN FEET | 5-22.34 | 14.0 | | 11111111111111111111111111111111111111 | | DATE | | 8-29-61
9-18-61
10-25-61 | 12.1.62
1.24-62
3.29-65
3.29-65
4.23-62
6.21-62
7.24-62
10.10-62
11.10-62
11.10-62
12.17-62
12.17-62
12.17-62
13.12-63
3.22-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63
4.26-63 | 7 7 2 6 6 6 1 1 2 6 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 1 1 1 2 9 6 2 1 6 2 9 9 6 2 9 9 6 2 9 6 2 9 9 6 2 9 9 6 2 9 9 6 2 9 9 9 9 | | GROUND
SURFACE
ELEVATION
IN FEET | NSWORTH AREA | 210.0 | | 210.0 | | STATE WELL
NUMBER | ALPAUGH-ALLENSWORTH AREA | 235/23E-33A01 M
CONT• | | 235/23E-33A04 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | | | | | | | | | 1009 | | | | | | 6001 | | | 6001 | | 6001 | | 6001 | | | |---|--------------------------|--------------------------|----------|----------|---------|--------------|---------|---------|---------|-----------------|----------|-------------|-----------------|---------|----------|----------|----------|---------|---------|-----------------|----------|---------|---------|---------|------------------------|-----------------|---------|---------|-----------------|---------|------------------|---------|-----------------|-----------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | | 139.0 | 150.4 | 153.8 | 158.6 | | | | | 7 0 7 1 | †
•
• | | 149.4 | 155.4 | | | | , | 133.6 | 91.9 | 110.5 | 119.3 | 104.6 | | 188.0 | 192.0 | | 150.0 | 159.0 | 120.3 | 181.6 | 212.5 | 213.4 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.34 | םם | 110.0 | 98.6 | 95.2 | 7. 06 | | 1 11 | в с | 1 0 | 7 801 | • = | ם | 9.66 | v • c | п | п | п | | 115.8 | 134.1 | 115.5 | 106.7 | 121.4 | 5-22.35 | 108.0 | 104.0 | | 206.5 | 197.5 | 413.0 | 351.7 | 107.5 | 105.9 | | | DATE | | 8-29-61 | 10-24-61 | 12-18-61 | 1-24-62 | 2-26-62 | 4-23-62 | 5-21-62 | 6-21-62 | 8-23-62 | 9-19-62 | 11-19-62 | 12-17-62 | 1-24-63 | 3-22-63 | 4-26-63 | 5-21-63 | 6-28-63 | | 2-02-62 | 10-10-62 | 2-04-63 | 5-21-63 | 6-28-63 | ST | 10-09-62 | 2-07-63 | | 10-09-62 | 2-08-63 | 10-10-62 | 1-31-63 | 7-26-61 | 9-19-61 | | | GROUND
SURFACE
ELEVATION
IN FEET | ALPAUGH-ALLENSWORTH AREA | 249.0 | | | | | | | | | | | | | | | | | | 7.66.0 | | | | | MART IRRIG DIST | 296.0 | | | 356.5 | | 533.3 | • | 320.0 | | | | STATE WELL
NUMBER | ALPAUGH-ALLE | 245/24E-25F01 M
CONT. | | | | | | | | | | | | | | | | | | 445/24E-32KU4 M | | | | | DELANO-EARLIMART IRRIG | 235/25F-27J02 M | | | 235/26E-29P01 M | | 235/27F-28.101 M | | 245/25E-02H01 M | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | 6001 | | | 6001 | 7009 |
4001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 140.9 | 135.5 | 139.2 | 137.7 | 134.8 | 135.6 | 135.2 | 130.1 | 56.3 | 29.8 | 0.00 | 20.8 | 20.5 | 14.0 | 48.4 | 65.4 | 82.4 | 93•3 | 4.7.4 | 69.2 | 51.2 | | | 25.0 | 59.1 | | 84.8 | | 56.2 | 30.0 | 2.46 | 187.9 | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.34 | 64.1 | 69.5 | 65.8 | 67.3 | 70.2 | 4004 | 69.8 | 74.9 | 149.7 | 176.2 | C • 7 C T | 197.2 | 197.5 | 201.0 | 169.6 | 152.6 | 135.6 | 124.7 | 150.4 | 148.8 | 166.8 | ם | 0 0 | 193.0 | 168.9 | | 133.2 | " | 161.8 | 178-8 | 0 • 0 | 47.1 | Е | | | DATE | | 8-23-62 | 10-15-62 | 12-17-62 | 1-24-63 | 2-26-63 | 4-26-63 | 5-21-63 | 6-28-63 | 2-05-62 | 10-09-62 | 001 | 7-26-61 | 8-29-61 | 10-25-61 | 11-29-61 | 12-18-61 | 1-24-62 | 2-26-62 | 3-29-62 | 5-21-62 | 6-21-62 | 7-24-62 | 9-19-62 | 10-16-62 | 11-19-62 | 1-25-63 | 2-26-63 | 3-22-63 | 4-25-63 | 5-27-63 | 601770 | 2-04-63 | 7-00-61 | | | GROUND
SURFACE
ELEVATION
IN FEET | ALPAUGH-ALLENSWORTH AREA | 205.0 | | | | | | | | 206.0 | | | 218 • 0 | | | | | | | | | | | | | | | | | | | i, | 0.00 | 249.0 | | | STATE WELL
NUMBER | ALPAUGH-ALLE | 245/23E-22E01 M
CONT. | | | | | | | | 245/23E-34R01 M | | | 245/24E-20R01 M | | | | | | | | | | | | | | | | | | | 1,000 | | 245/24E-25F01 M | | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 2000 | | | | | | | 6001 | | 2000 | | | | | | | 6001 | | 2000 | | | | | |---|-----------------------------|--------------------------|-------------------------------|-------------------------------|----------|----------|----------|----------|---------|---------|-----------------|-----------------|-----------------|-----------------|----------|------------------|-----------------|---------|-----------------|-----------------|----------|-----------------|----------|----------|----------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | 235.5 | 242.5 | 166.8 | 175.0 | 181.6 | 178.5 | 162.7 | 173.4 | 174.4 | 116.5 | | 83.8 | 83.6 | 144.7 | 145.8 | 52.5 | 124.5 | 135.6 | 182.5 | 188.0 | 276.2 | 275.5 | 275.7 | 275.4 | 273.7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-35 | 164.5 | 153.5 | 278.2 | 270.0 | 263.4 | 266.5 | 282.3 | 271.6 | 270.6* | 410.0 | | 421.7 | 421.9 | 360.8 | 359.7 | 453.0* | 381.0 | 369.9* | 247.5 | 241.5 | 111.8 | 112.5 | 112.3 | 112.6 | 113.1 | | DATE | 15 | 5-23-63 | 10-11-62 2-11-63 | 7-17-62 | 10-09-62 | 12-04-62 | 2-28-63 | 3-27-63 | 5-27-63 | 6-19-63 | 10-08-62 | 9 | 7-17-62 | 9-11-62 | 11-09-62 | 12-05-62 | 3-27-63 | 5-22-63 | 6-19-63 | 10-11-62 | 2-11-63 | 7-21-61 | 9-1/-6 | 10-20-61 | 11-16-61 | 12-22-61 | | GROUND
SURFACE
ELEVATION
IN FEET | IART TRRIG DIS | 400.0 | 396.0 | 445.0 | | | | | | | 526.5 | | 505.5 | | | | | | | 430.0 | | 388.0 | | | | | | STATE WELL
NUMBER | DELANO-EARLIMART IRRIG DIST | 245/26E-29R02 M
CONT. | 245/26E-32G01 M | 245/26E-34F01 M | | | | | | | 245/27E-31P01 M | | 255/26E-01A02 M | | | | | | | 255/26E-10803 M | | 255/26E-16P01 M | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | 6001 | | 6001 | | 6001 | 6001 | | 2000 | į | 5000 | | | 6001 | 2000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 215.2 | 213.9 | 214.1
214.4
213.4 | 213.4 | 216.4 | 216.4 | 218.6 | 216.3 | 215.1 | 214.7 | | 173.5 | 207.8 | 212.0 | 176.0 | 169.0 | 159.0 | 234.4 | 239.9 | 223.0 | 243.1 | 240.4 | 239.0 | 237.7 | 236.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22-35 | 104.8 | 106.1 | 105.9
105.6
106.6 | 106.6 | 105.1 | 103.6 | 101.4 | 103.7 | 104.9 | 105.3 | п | 130.5 | 83.7 | 79.5 | 200.0 | 209.0 | 219.0 | 165.6 | 160.1 | 177.0 | 156.9 | 159.6 | 161.0 | 162.3 | 163.2 | | DATE | ST | 10-25-61 | 1-19-61
1-24-62
2-26-62 | 3-28-62
4-24-62
5-21-62 | 6-21-62 | 8-23-62 | 10-16-62 | 12-17-62 | 1-23-63 | 4-25-63 | 6-27-63 | 10-08-62 | 2-07-63 | 10-09-62 | 1-31-63 | 10-09-62 2-08-63 | 10-11-62 | 2-08-63 | 7-20-62 | 9-20-62 | 10-11-62 | 11-25-62 | 12-15-62 | 2-11-63 | 2-22-63 | 3-19-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ART IRRIG DI | 320.0 | | | | | | | | | | 3.04.0 | | 291.5 | | 376.0 | 378.0 | | 400.0 | | | | | | | | | STATE WELL
NUMBER | DELANO-EARLIMART IRRIG DIST | 245/25E-02H01 M
CONT. | | | | | | | | | | 245/25F-10A01 M | | 245/25E-33J01 M | | 245/26E-05R01 M | 245/26E-20H01 M | | 245/26E-29R02 M | | | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 2000 | | | | | | | | | | | | | | 6001 | | 2000 | | | | | | | | | | | |---|-----------------------------|--------------------------|-----------------|--------------------------------|--------------------------|---------|---------|--------------------|-----------------|---------|--------------------------|-----------------|---------|----------|----------|----------|---------|-----------------|---------|-----------------|---------|---------|----------|----------|----------|----------|---------|---------|---------|---| | WATER
SURFACE
ELEVATION
IN FEET | | 149.9 | 178.8 | 12.9
15.8
29.0 | 73.6
96.1
121.7 | 133.4 | 151.2 | 135.7 | 114.2 | 87.2 | 100.9 | 126.9 | 144.5 | 152.7 | 122.9 | 117.1 | 130.5 | 139.2 | 156.4 | 186.3 | 200.2 | 203.8 | 205.3 | 208.1 | 209.7 | 211.8 | 214.1 | 213.7 | 213.4 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.36 | 103.1 | 80•2 | 273.1
270.2
257.0 | 212.4*
189.9
164.3 | 152.6 | 134.8 | 150.3 | 171.8 | 198.8 | 185.1 | 159.1 | 141.5 | 134.0 | 163.1 | 168.9 | 155.5 | 182.8 | 165.6 | 70707 | 193.8 | 190.2 | 188.7 | 185.9 | 184.3 | 182.2 | 179.9 | 180.9 | 180.6 | | | DATE | | 5-23-63
6-19-63 | 10-09-62 | 7-21-61
8-23-61
9-21-61 | 11-16-61 12-21-61 | 1-18-62 | 3-15-62 | 4-13-62
5-18-62 | 6-21-62 | 8-08-62 | 10-14-62 | 11-25-62 | 1-26-63 | 3-18-63 | 4-28-63 | 5-23-63 | 6-19-63 | 10-09-62 | 1-30-63 | 7-21-61 | 8-17-61 | 9-21-61 | 10-20-61 | 11-16-61 | 12-22-61 | 1-18-62 | 2-22-2 | 4-13-62 | 5-18-62 | 1 | | GROUND
SURFACE
ELEVATION
IN FEET | JOAQUIN MUD | 253.0 | 259.0 | 286.0 | | | | | | | | | | | | | | 322.0 | | 394.0 | | | | | | | | | | | | STATE WELL
NUMBER | SOUTHERN SAN JOAQUIN MUD | 255/24E-12A02 M
CONT. | 255/25E-06H01 M | 255/25E-22D01 M | | | | | | | | | | | | | | 255/25E-35P01 M | | 255/26F-28F01 M | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | 6001 | | | 5000 | WATER
SURFACE
ELEVATION
IN FEET | | 272.7 271.9 | 271.5 | 273.2 | 274.9 | 271.8 | 268.5 | 266.0 | 372.2 | 364.0 | | 132.8 | 135.5 | 147.7 | 153.7 | 160.5 | 163.8 | 167.7 | 158.6 | 148.8 | | 141.6 | 144.3 | 154.0 | 157.9 | 164.1 | 160.0 | | 156.0 | 2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.35 | 115.3 | 1116.5 | 1114.8
1113.6 | 113.1 | 116.2 | 119.5 | 122.0
118.6 | 377.8 | 386.0 | 5-22.36 | 120.2 | 117.5 | 105.3 | 99.3 | 92.5 | 89.2 | 85.3 | 5.46 | 104.2 | | 1111.4 | 108.7 | 0.66 | 95.1 | 88.9 | 93.0 | 3 5 | 0.70 | | | DATE | _ | 2-22-62 3-15-62 | 5-18-62 | 8-08-62
9-20-62
10-14-62 | 12-15-62 | 2-22-63 | 4-28-63 | 5-23-63 6-19-63 | 10-05-62 | 1-31-63 | | 7-21-61 | 8-23-61 | 10-19-61 | 11-16-61 | 12-21-61 | 1-18-62 | 3-15-62 | 4-13-62 | 6-21-62 | 7-19-62 | 8-08-62 | 9-20-62 | 10-14-62 | 11-25-62 | 12-15-62 | 1-26-63 | 2-18-63 | 4-28-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | DELANO-EARLIMART IRRIG DIST | 388.0 | | | | | | | 750.0 | | JOAQUIN MUD | 253.0 | STATE WELL
NUMBER | DELANO-EARLIM | 255/26E-16P01 M
CONT. | | | | | | | 25S/27E-22H01 M | | SOUTHERN SAN JOAQUIN MUD | 255/24E-12A02 M | AGENCY
SUPPLYING
DATA | | 2000 | | 6001 | 2000 | | 8700 | | |---|--------------------------|-------------------------------|--|-------------------------------|-----------------|---------------------------------
---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 131.5
122.4
126.0 | 123.1
132.9
129.6
135.3 | 119.7 | 91.9 | 112.9 | 1130.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 92.7
90.7
114.7
154.7 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.36 | 371.5
380.6
377.0 | 379.9
370.1
373.4
367.7 | 323.3 | 319.1 | 304.2
298.1
295.8 | 2.044.6.8
2.714.7
2.714.7
2.715.7
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.86.9
2.8 | 259.6*
261.6*
237.6*
197.6* | | OATE | | 11-25-62 12-15-62 1-26-63 | 2-22-63
3-19-63
4-27-63
5-23-63
6-19-63 | 10-11-62 | 7-21-61 | 9-21-61
10-20-61
11-16-61 | 1-18-62
3-15-62
3-15-62
3-18-62
5-18-62
7-20-62
10-14-62
11-25-62
11-25-62
11-25-63
12-15-63
13-13-63
5-13-63
6-19-63
6-19-63
6-19-63 | 8-02-62
8-29-62
9-11-62
1-02-63 | | GROUND
SURFACE
ELEVATION
IN FEET | JOAQUIN MUD | 503.0 | | 443.0 | 411.0 | | NORTH KERN WATER STORAGE
SE-15R01 M 352*3 | | | STATE WELL
NUMBER | SOUTHERN SAN JOAQUIN MUD | 265/26E-10R01 M
CONT. | | 265/26E-16P01 M | 265/26E-29C01 M | | NORTH KERN W | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | 6001 | | 2000 | | WATER
SURFACE
ELEVATION
IN FEET | | 211.2 | 213.6
215.5
218.9
216.0
217.2 | 219.3 | 213.6 | 205.7 | 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 125.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.36 | 182.8 | 180.4
178.5
175.1
178.0
176.8 | 174.7 | 180.4 | 208.3 | 133.2.0
133.2.0
128.7
128.7
128.7
125.2
125.2
125.3
123.7
123.7
123.7
123.7
123.7 | 377.4 | | DATE | | 6-20-62
7-19-62
8-08-62 | 9-20-62
10-14-62
11-25-62
12-15-62
1-26-63 | 2-22-63
3-19-63
4-27-63 | 5-23-63 | 10-10-62 |
8-22-61
10-20-61
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-62
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-16-63
11-1 | 7-20-62
8-08-62
10-14-62 | | GROUND
SURFACE
ELEVATION
IN FEET | JOAQUIN MUD | 394.0 | | | | 414.0 | | 503.0 | | STATE WELL
NUMBER | SOUTHERN SAN JOAQUIN MUD | 255/26E-28E01 M
CONT. | | | | 255/26E-28H02 M | | 265/26E-10R01 M | TABLE C-1 | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | | | | 6001 | | 2000 | | 8700 | | | | 8700 | 2000 | 8700 | | 2000 | | | 8700 | 0 | 8700 | 2000 | 8700 | | | |--|---------------------------------------|------------------------------|--------------|---------|---------|--------------|-------------|--|---------|---------|---------|--------------|---------|-----------------|--------------|-----------------|---------|-----------------------------|----------|----------|----------|--------------|---------|---------|---------|--------------|-------------|--------------------|-------------|---------------------|---------|---------|---------|---------|-------------| | WATER
SURFACE
ELEVATION
IN FEET | | 264.7 | 269.9 | 270.1 | 269.6 | 270.8 | 269.8 | 261.03 | 263.6 | 262.9 | 264.5 | 263.8 | 9.697 | 146.0 | 158.7 | | | 121.3 | 125.1 | 128.6 | 144.9 | 105.3 | 0 111 | 1 m | 150.3 | 156.7 | 152.3 |)
4 | 93,3 | 89.3 | 124.3 | • | 84.3 | 118.3 | 125.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.37 | 129.3 | 124.1 | 123.9 | 124.4 | 123.2 | 124.2 | 120.0 | 130.4 | 131.1 | 129.5 | 130.2 | 1.8.1 | 270.0* | 65163 | п | | 325.5* | 321.7 | 318.2 | 301.9 | 341.5* | 201 E | 291.5* | 296.5* | 290.1 | 294.5 | | 353.5* | 357.5* | 322.5* | - 1 | 362.5* | 328.5* | 321.5* | | DATE | DIST | 3-15-62 | 5-18-62 | 7-19-62 | 8-08-62 | 9-20-62 | 11-25-62 | 1-26-63 | 2-21-63 | 3-18-63 | 4-27-63 | 5-22-63 | 0-17-03 | 10-03-62 | 1-30-63 | 7-21-61 | 8-22-61 | 9-15-61 | 10-19-61 | 11-16-61 | 12-20-61 | 1-13-62 | 2-18-62 | 2-26-62 | 3-07-62 | 3-15-62 | 5-18-62 | 6-20-62 | 6-21-62 | 7-109-62 | 7-19-62 | 8-08-62 | 8-14-62 | 9-04-62 | 9-13-62 | | GROUND
SURFACE
ELE VATION
IN FEET | NORTH KERN WATER STORAGE [| 394•0 | | | | | | | | | | | | 416.0 | | 446.8 | STATE WELL
NUMBER | NORTH KERN W | 275/25E-01N01 M
CONT. | | | | | | | | | | | | 275/26E-06H02 M | | 27S/26E-20D01 M | 00 | | | | | | | | | | | 2 | | | | | | | | | - | | | 5 | | | | | | | AGENCY
SUPPLYING
DATA | | 8700 | | | | | 8700 | | | | | | | | | | 0 | 00/8 | | | | | | | | | 6001 | | 4 | 0000 | | | | | | | WATER AGENCY
SURFACE SUPPLYIN
ELEVATION DATA | | | 154.7 | 121.7 | 108.7 | 149.7 | 82.5 87(| 0 4 4 7
7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 74.5 | 45.5 | 82.5 | 120.5 | 114.5 | 102.5 | 140.5 | 130.5 | | 83.0 | 123.0 | 79.0 | 123.0 | 115.0 | 0.041 | 150.0 | 158.0 | 155.0 | | 304.5 | | 269.4 | 269.8 | 268.5 | 268.2 | 266.7 | 264.0 | | | 5-22.37 | 121.7 | 197.6* 154.7 | | | 202.6* 149.7 | | | | | | 216.1* 120.5 | | | 199.1* 137.5 | | 0 311 | | | | | 277.0* 115.0 | | | | 237.0* 155.0 | | 304.5 | 7 626 | | | | | | 130.0 264.0 | | WATER
SURFACE
ELEVATION
IN FEET | | 230.6* 121.7
202.6* 149.7 | | 230.6* | 243.6* | | 254.1* 82.5 | | 262.1* | 291.1* | 254.1* | | 222.1* | 234.1* | | 206.1* | 0 200 | 83.0 | 269.0* | 313.0* | 269.0* | | 243.0* | 242.0* | 234.0* | - | 100.7 300.3 | 304.5 | 7 626 7 161 | 0.212 | 124.2 | 125.5 | 125.8 | 127.3 | | | GRO SUR SURFACE TO WATER SUR IN FEET IN FEET | NORTH KERN WATER STORAGE DIST 5-22.37 | 230.6* 121.7
202.6* 149.7 | 197.6* | 230.6* | 243.6* | 202.6* | 254.1* 82.5 | 283.1* | 262.1* | 291.1* | 254.1* | 216.1* | 222.1* | 234.1* | 199.1* | 206.1* | 0 200 | 276.0* L16.0
309.0* 83.0 | 269.0* | 313.0* | 269.0* | 27.7.0* | 243.0* | 242.0* | 234.0* | 237.0* | 100.7 300.3 | 1-28-63 96.5 304.5 | 7 626 7 161 | 8-23-61 121.4 272.6 | 124.2 | 125.5 | 125.8 | 127+3 | 130.0 | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | | | | 2000 | | | | | 6001 | | | | 2000 | | | | | | | | | | | | | | | | |---|---------------------------------------|-----------------|----------|----------|---------|---------|---------|---------|---------|----------|---------|----------|---------|---------|---------|-----------------|---------|---------|-----------------|---------|---------|--------------------------|-----------------|---------|---------------------------------------|----------|-----------------|---------|-----------------|---------|---------|---------|---------|---------|---------|----------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 216.4 | 219.1 | 219.7 | 220.6 | 222.1 | 223.2 | 225.5 | 224.0 | 222.5 | 7.022 | 220.3 | 219.7 | 220.7 | 220.0 | 221.3 | 221.6 | | | | | | 6.44 | 37.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 117.5 | 141.8 | 142.3 | 151.1 | 149.7 | 114.9 | B 2 - 3 | 0.80 | 58.3 | 84.1 | 107.0 | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.37 | 171.6 | 169.3 | 168.3 | 167.4 | 165.9 | 164.8 | 162.1 | 164.0 | 165.5 | 167.3 | 167.7 | 168.3 | 167.3 | 168.0 | 166.6 | 166.4 | | DRY | ORY | 200 | 06.77-6 | 277.1 | 285.0 | 238•1 | 204.5 | 180.2 | 179.7 | 170.9 | 172.3 | 207.1 | 23012 | 763.4 | 263.7 | 237.9 | 215.0 | | | | DATE | 151 | 8-22-61 9-20-61 | 10-18-61 | 12-21-61 | 1-17-62 | 3-15-62 | 4-12-62 | 5-17-62 | 7-19-62 | 8-08-62 | 9-19-62 | 10-14-62 | 1-26-63 | 2-21-63 | 3-18-63 | 4-27-63 | 2-22-63 | 00-61-0 | 10-04-62 | 1-28-63 | | 1510 | 7-21-61 | 8-23-61 | 9-20-61 | 10-19-61 | 12-21-61 | 1-18-62 | 2-22-62 | 3-15-62 | 4-12-62 | 5-18-62 | 7-10-62 | 8-08-62 | 9-20-62 | 10-14-62 | | | | GROUND
SURFACE
ELEVATION
IN FEET | NORTH KERN WATER STORAGE DIST | 388.0 | | | | | | | | | | | | | | | | | 611.0 | | | | 322.0 | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | NORTH KERN WA | 285/26E-21H01 M | | | | | | | | | | | | | | | | | 285/27E-21F01 M | | | SHAFTER-WASCO IRRIGATION | 275/24E-01L02 M | | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | 8700 | | 5000 | 00/20 | 2000 | 8700 | 8700 | 2000 |) | _ | 8700 | 0078 | | | | | | | | | | | 6001 | | | 8 7 0 0 | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 2 6 7 1 |)
1 | 172.0 | 210.3 | 153.0 | 145.3 | | 148.3 | 20 | 0.00 | 151.2 | | 97.3 | | | 131.1 | | | | 115.1 | 154.1 | 155.1 | 153.1 | 104.1 | 108.4 | 124.6 | | 175.0 | 15/00 | 155.0 | 165.0 | 169.0 | 167.0 | 175.0 | 174.0 | 156.0 | 153.0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.37 | п (| 303.2 | 274.8 | 236.5* | 293.8 | 301.5* | | 298.5* | ם
ניי | 331.3" | 295.6 | | 349,5* | 1 | o 1 | 304.6* | | ם | | 320.6* | 281.6* | 280.6* | 282.6* | 331.6* | 418.6 | 402.4 | | 186.1* | 204.1* | 206.1* | 179. | 192.1* | 194.1* | 186.1* | 187.1* | 186.1* | 208.1* | | DATE | TST | 9-20-62 | 10-14-62 | 12-15-62 | 1-07-63 | 1-26-63 | 2-08-63 | 2-21-63 | 3-07-63 | 3-18-63 | 3-21-03 | 5-23-63 | 6-19-63 | 6-21-63 | | 79-60-2 | 7-12-62 | 8-14-62 | 9-04-62 | 9-13-62 | 1-07-63 | 2-08-63 | 2-20-63 | 3-07-63 | 6-21-63 | 10-04-62 | 1-28-63 | | 7-02-62 | 7-16-62 | 8-01-62 | 8-13-62 | 1-02-63 | 1-15-63 | 2-01-63 | 2-15-63 | 3-01-63 | 6-16-63 | | GROUND
SURFACE
ELEVATION
IN FEET | D STORAGE D | 446.8 | | | | | | | | | | | | | | 435.7 | | | | | | | | | | 0 | 0 • 1 76 | | 361.1 | | | | | | |
| | | | STATE WELL
NUMBER | TSIG SEASONS ASTREM NOST DESCRIPTIONS | 27S/26E-20D01 M | CONT. | | | | | | | | | | | | | 27S/26E-20E01 M | | | | | | | | | | | 2/5/2/E-30H02 M | | 285/25E-13L01 M | | | | | | | | | | TABLE C-I | AGENCY
SUPPLY:NG
DATA | | 6001 | 2000 | | 0000 | |---|--------------------------|---------------------------------|---|--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 140.0 | 140.7
153.4
165.5 | 1500.6
1600.6
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0
1600.0 | 1105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11105050.11110505050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11110505050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.111105050.11110505000.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1111050500.1110505000.11110500000.11110500000000 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.38 | 189.0
163.0 | п
194.3*
181.6 | 175.2
174.6
169.2
175.0
175.0
175.1
185.1
183.7 | 1746.9
11756.9
11756.9
11871.0
11871.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0
11882.0 | | DATE | DIST | 10-09-62
1-30-63
6-01-63 | 7-20-61
8-22-61
9-20-61
10-19-61 | 12-21-61
1-17-62
2-2-62
3-15-62
4-12-62
6-20-62
7-19-62
1-19-62
10-14-62 |
12-15-62
3-18-63
3-18-63
4-22-63
6-19-61
10-19-61
11-17-62
11-15-61
11-15-61
11-15-61
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62
11-15-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SHAFTER-WASCO IRRIGATION | 329.0 | 335.0 | | BLTA AREA
309.0 | | STATE WELL
NUMBER | SHAFTER-WASC | 285/24E-01R01 M | 285/25E-16003 M | | KERN RIVER DELTA AREA
285/24E-23D01 M 309.0 | | AGENCY
SUPPLYING
DATA | | | | 0 | 0
0
0
0
0 | | WATER
SURFACE
ELEVATION
IN FEET | | 133.4 | 112.5
112.5
116.8
111.0 | 94.2
81.2
83.2
76.2
125.2
125.2
125.2
130.2 | 86.5
10.00 - 5
10.00 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.38 | 188.6
186.5
199.9 | 209.5
205.2
211.0
207.9 | 2221.
2234.
234.
234.
234.
234.
234.
234.
23 | 299000
200000
2000000000000000000000000 | | DATE | DIST | 11-25-62
12-15-62
1-26-63 | 3-19-63
4-28-63
5-22-63
6-19-63 | 7-06-62
8-11-62
8-11-62
9-11-62
1-04-63
1-07-63
2-07-63
3-05-63
3-05-63 | 7-21-61
9-20-61
10-10-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-6-61
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-10-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60
110-60 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION | 322.0 | | 316.0 | 9.45°.0 | | STATE WELL
NUMBER | SHAFTER-WASCO | 27S/24E-01L02 M
CONT. | | 275/24E-35C01 M | 275/25E-28A01 H | | NG . | | 2000 | | | | | | | | | | | | | | | | | | 0 | 2150 | | | 2000 |---|-----------------------|-----------------|-----------------|---------|----------|----------|----------|----------|---|---------|----------|----------|----------|---------|---------|-----------------|----------|----------|----------|---------|-----------------|---------|-----------------|-----------------|---------|---|----------|----------|-----------|---------|---------|---------|---------|---------|---------|----------|-----------------|----------|----------|-----------------|----------|---------|----------|----------|----------|---|---------| | SUPPLYING
DATA | | 50 | | | | | | | | | | | | | | | | | | | 0 | | , | Ñ | WATER
SURFACE
ELEVATION
IN FEET | | 199.6 | 201.8 | 202.202 | 197.3 | 195.5 | 190.7 | 186.7 | 184.9 | 185.6 | 188.6 | 189.5 | 194.5 | 192.2 | 191 • 1 | 189.1 | 192.2 | 188.0 | 184.9 | | 234.9 | 242.5 | | 306.9 | 305.8 | 289.6 | 293.6 | 296.2 | 297.4 | 295.8 | 298.8 | 297.4 | 295.2 | 301.1 | 303.2 | 306.1 | 307.9 | 305 • 8 | 310.8 | 303.9 | 305.4 | 300.2 | 296.4 | 297.0 | 295.2 | 293.9 | C+167 | | GRD SUR TO WATER SUR IN FEET | 5-22.40 | 130.4 | 128.2 | 127.8 | 132.7 | 134.5 | 139.3 | 143.3 | 145.1 | 144.4 | 141.4 | 140.5 | 135.5 | 137.8 | 138.9 | 140.9 | 137.8 | 142.0 | 145.1 | | 115.1 | 107.5 | | 75.1 | 79.2 | 95.4* | 88.4 | 85.8 | 84.6 | 86.2 | 83.2 | 84.6 | 86.8 | 80.9 | 78.8 | 75.9 | 74.1 | 76.2 | 71.2 | 78.1 | 76.6 | 81.8 | 85.6 | 85.0 | 86.8 | - L
80 (80 (80 (80 (80 (80 (80 (80 (80 (80 (| 90.5 | | DATE | | 1-17-62 | 2-21-62 | 3-15-62 | 4-12-62 | 5-17-62 | 6-20-62 | 7-19-62 | 8-08-62 | 9-20-62 | 10-14-62 | 11-18-62 | 12-14-62 | 1-25-63 | 2-20-63 | 3-17-63 | 4-28-63 | 5-22-63 | 6-19-63 | | 10-08-62 | 2-01-63 | | 7-20-61 | 8-22-61 | 9-20-61 | 10-18-61 | 11-15-61 | 12-20-61 | 1-17-62 | 2-20-62 | 3-15-62 | 4-12-62 | 5-17-62 | 6-20-62 | 7-19-62 | 8-08-62 | 9-19-62 | 10-13-62 | 11-25-62 | 12-15-62 | 1-26-63 | 2-21-63 | 3-18-63 | 4-27-63 | 5-22-63 | 6-19-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ELTA AREA | 330.0 | | | | | | | | | | | | | | | | | | | 350.0 | | | 382.0 | STATE WELL
NUMBER | KERN RIVER DELTA AREA | 29S/25E-12M03 M | CONT. | | | | | | | | | | | | | | | | | | 295/26E-10L01 M | | | 295/27E-33D01 M | AGENCY
SUPPLYING
DATA | | 000 | 2 | | | | | | | | | | | | 6001 | 0 | | | | | | 8700 | | | | | 1004 | 400 | | | | | | | | 5120 | | | 0000 | 0000 | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 136.4 | 125.1 | 126.4 | 129.3 | 130.9 | 133.1 | 136.0 | 120.1 | 130.6 | 125.5 | 136.3 | 128.1 | | 178.0 | 177.0 | 175.0 | 174.5 | 172.0 | 183.0 | 180.0 | 187.9 | 186.9 | 185.9 | 184.9 | 100.0 | 103.0 | 2000 | 2040 | 0 700 | 204 20 | 192.9 | 197.9 | 108.9 | | 180.4 | 107 | | 4 500 | 203.0 | 107. | 19301 | 193.6 | 199.7 | | | | | GRD SUR
TO WATER
SUR, IN FEET | 5-22.40 | , | 183.9 | 182.6 | 179.7 | 178.1 | 176.0 | 173.0 | 100 | 140.7 | 172 5 | 173.7 | 180.9 | • | 0.841 | 0 0 7 1 | 151.0 | 151.5 | 154.0 | 143.0 | 146.0 | 161-1* | 162.1* | 163.1* | 164.14 | * | 14964 | 10001 | 1 7 0 7 7 | 1.70741 | 166.14 | 156.1* | 151.1* | 150.14 | 1.00 | 3 0 7 1 | 0 1 | 3 | , , , , | 126.4 | 140.0 | 136.3 | 134.8 | 120.3 | • | | | | DATE | | 0 | 8-08-62 | 0-20-62 | 10-14-62 | 11-25-62 | 11-22-02 |
12-15-62 | 000000000000000000000000000000000000000 | 2 10 63 | 3-10-03 | 6-22-63 | 6-10-63 | 016110 | 0-15-62 | 20-17-0 | 10-18-62 | 11-15-62 | 12-17-62 | 1-28-63 | 6-14-63 | 7-02-62 | 7-16-62 | 8-01-62 | 27 7 0 | 20-14-0 | 79-90-6 | 70-00-07 | 1 -02-03 | 1-13-63 | 2 15-63 | 2-01-63 | 5-10-1 | 4-14-4 | 0-01-0 | 64 00 01 | 10-08-02 | 59-10-2 | | 7-20-61 | 8-22-01 | 19-07-6 | 10-19-61 | 12-21-61 | 10-17-71 | | | | GROUND
SURFACE
ELEVATION
IN FEET | ELTA AREA | | 30%0 | | | | | | | | | | | | 0 700 | 320.0 | | | | | | 0.76 | | | | | | | | | | | | | | | 330.0 | | 4 | 330.0 | | | | | | | | | STATE WELL
NUMBER | KERN RIVER DELTA AREA | | 28S/24E-23D01 M | CONT | | | | | | | | | | | | 285/25E-34J01 M | | | | | | | 203/20E-29L01 M | | | | | | | | | | | | | | 295/25E-12M01 M | | | 295/25E-12M03 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 4640 | | | | | | | | | | | | | | | | | | | 5120 | 4 | 2000 |--|-------------------------------|-----------------|----------|---------|------------|---------|---------|---------|---------|------------|---------|----------|---|----------|------------|---------|---------|---------|---------|-------|-----------------|---------|-----------------|---|--------------|----------|----------|---------|---------|---------|----------|-----------|---------|---------|---------|-----------|--------------|----------|------------|-------|------| | WATER
SURFACE
ELEVATION
IN FEET | | 255.9 | 256.1 | 256.1 | 257.3 | 255.9 | 254.6 | 253.9 | 253.7 | 252.7 | 2.262 | 252.9 | 253.1 | 253.0 | 252.9 | 252.5 | 251.8 | 251.3 | 249.6 | | 285.4 | 261.0 | 7.697 | 7 . 1 9 7 | 276.1 | 272.5 | 279.9 | 280.5 | 281.3 | 281.1 | 275.5 | 274.3 | 268.7 | 269.0 | 263.1 | 272.0 | 269.6 | 275.5 | | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.40 | 52.6 | 52.4 | 52.4 | 51.2 | 52.6 | 53.9 | 24.6 | 54.8 | 55.00 | 70°3 | 55.6 | 0 C C C C C C C C C C C C C C C C C C C | 55.5 | 55.6 | 56.0 | 56.7 | 57.2 | 58.9 | 1 | 53.7 | 20,00 | 0000 | 100 | 7 7 7 | 7 | 7.00 | 57.5 | 56.7 | 6.95 | 62.5 | 63.7 | 69.3 | 0.69 | 4.0 | 0.99 | 68.4 | 62.5 | | | | | DATE | | 10-03-61 | 11-02-61 | 1-02-61 | 2-05-62 | 3-02-62 | 4-03-62 | 5-01-62 | 6-03-62 | 7-04-62 | 29-40-8 | 10-04-62 | 11-02-62 | 12-08-62 | 1-02-63 | 2-05-63 | 3-02-63 | 4-05-63 | 6-04-63 | | 10-05-62 | 1-30-63 | 19-61- | 19-77-0 | 10-17-61 | 11-14-61 | 12-20-61 | 1-16-62 | 2-21-62 | 3-14-62 | 4-11-62 | 5-16-62 | 6-19-62 | 7-18-62 | 8-08-62 | 9-19-65 | 10-13-62 | 11-18-62 | | | | | GROUND
SURFACE
ELEVATION
IN FEET | ELTA AREA | 308.5 | | | | | | | | | | | | | | | | | | | 339 • I | | 338 • 0 | STATE WELL
NUMBER | KERN RIVER DELTA AREA | 30S/25E-22D01 M | CONT. | | | | | | | | | | | | | | | | | | 305/26E-16J01 M | | 305/26E-22P02 M | > ⁰ | | 0 | 0 | 00.0 | | | | | | | | | | | | | | 0494 | | | | AGENCY
SUPPLYING
DATA | | 2000 | a | 0 | | | | | | | | | | | | | | 4 | | | | WATER AGENC
SURFACE SUPPLYI
ELEVATION DATA | | 313.0 500 | 310.4 | 302.6 | 306.7 | 305.7 | 304.9 | 304.3 | 303.7 | 302.9 | 302.7 | 302.5 | 303.9 | 305.6 | 306.5 | 307.5 | 316.4 | 308•2 | 307.5 | 306.6 | 305 · 8 | 304.6 | 303 • 2 | | 194.0 | 231.6 | 193.6 | 189.6 | 190.6 | 224.6 | 224.6 | 224.6 | 230.6 | 229.6 | 235.6 | 212.6 | 186.6 | | | 255.6 | 0 | | | 5-22.40 | | | | 78.3 306.7 | | | | | 82.1 302.9 | | | A1 303 9 | | 78.5 306.5 | | | | | | | | 81.8 303.2 | 7 701 | | | | | | | | | | | | | 132.7* 186.6 | | | | | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.40 | 72.0 313.0 | 74.6 | | 70.9 | 79.3 | 80.1 | 80.7 | 81.3 | 82.1 | 82.3 | | 0 1 0 | 7.67 | 78.5 | 77.5 | 9.89 | 76.8 | 77.5 | 78.4 | 79.2 | 7 0 0 | | *************************************** | 194.0 | 107 | 125.7* | 120.7* | 128.7* | 7.46 | * L * 76 | * 2 * 7 6 | 88.7* | 89.7* | 83.7* | | | | 52.5 256.0 | | 75.7 | | GRO SUR SURFACE
TO WATER ELEVATION
SUR IN FEET IN FEET | KERN RIVER DELTA AREA 5-22.40 | 72.0 313.0 | 74.6 | 77.4 | 70 - 7 | 79.3 | 80.1 | 80.7 | 81.3 | 82.1 | 82.3 | 0.00 | 0 1 0 | 7.67 | 78.5 | 77.5 | 9.89 | 76.8 | 77.5 | 78.4 | 79.2 | 7 0 0 | 81.8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 126 74 194 6 | 107 | 125.7* | 120.7* | 128.7* | 7.46 | * L * 76 | * 2 * 7 6 | 88.7* | 89.7* | 83.7* | 106 • 7 * | 132.7* | | 52.5 256.0 | 52.9 | 75.7 | | AGENCY
SUPPLYING
DATA | | 2000 | 5120 | 0715 | 8700 | | | | 5000 | | | | | |---|-----------------------|-------------------------------|--|-----------------|-------------------------------|--|--|-----------------|---|-----------------|-------------------------------|--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 263.3
257.8
258.7 | 267.4 | 248.3 | 210.5 | 208.5
220.5
212.5
247.5 | 245.5
248.5
244.5
228.5 | 216.5 | 229.9 | 249.6 | 7.2.7 | 1 | 235.1
240.1
245.5 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.40 | 95.7
101.2
100.3 | 65.6 | 56.7 | 130.6* | 132.6*
120.6*
128.6* | 95.6
92.6
96.6*
112.6* | 124.6* | 80.1
70.7 | , 4
, 1 | ,
,
, | | 6 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | DATE | | 4-27-63
5-22-63
6-18-63 | 10-02-62 | 10-02-62 | 7-11-62
7-25-62
8-07-62 | 8-16-62
8-16-62
9-10-62
1-08-63 | 1-21-63
2-11-63
2-25-63
3-07-63 | 5-03-63 | 7-19-61
8-22-61
9-19-61
10-17-61 | 12-20-61 | 2-21-62
3-14-62
4-11-62 | 5-16-62
6-19-62
7-18-62
8-07-62 | 9-19-62
10-13-62
11-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | ELTA AREA | 359.0 | 333.0 | 294.5 | 341.1 | | | | 310.0 | | | | | | STATE WELL
NUMBER | KERN RIVER DELTA AREA | 30S/28E-34R02 M
CONT. | | 315/26E-35001 M | 31S/27E-04L01 M | | | | 31S/27E-28H01 M | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | 8700 | | | | 8700 | | 5120 | 6001 | 2000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 274.6 275.1 | 274.1
269.4
267.1
262.1 | 254.0 | 255.0 | 256.0
265.0
266.0
267.0 | 269.0
256.0
250.0
254.0 | 259.0 | 257.0
273.0
276.0 | 263.3 | 248.6 | 252.9
251.5
256.1 | 260°2
264°0
264°1
265°5
265°8
261°8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.40 | 662 | 63.9
68.6
70.9 | * 2 * 48 | 83°7*
84°7*
84°7* | 82°7*
73°7*
72°7*
71°7* | 880.7*
880.7*
840.7* | 125.2* | 127°2*
111°2*
108°2* | 95.7 | 105.8 | 106.1
107.5
102.9 | 99999999999999999999999999999999999999 | | DATE | | 12-14-62 1-25-63 | 3-17-63
4-27-63
5-22-63
6-19-63 | 7-06-62 | 7-23-62
8-07-62
8-22-62 | 8-27-62
9-10-62
1-11-63
1-18-63 | 2-07-63
2-20-63
3-06-63
6-24-63 | 7-09-62 | 8-07-62
8-20-62
9-07-62
9-08-62 | 10-05-62 | 10-01-62 | 7-18-62
8-07-62
9-19-62 | 10-13-62
11-18-62
12-14-62
1-25-63
2-20-63
3-17-63 | | GROUND
SURFACE
ELEVATION
'N FEET | TA AREA | 338.0 | | 338.7 | | | | 384.2 | | 359.0 | 354.4 | 359.0 | | | STATE WELL
NUMBER | KERN RIVER DELTA AREA | 30S/26E-22P02 M
CONT. | | 305/26E-27A01 M | | | | 30S/27E-03G01 M | | 305/27E-28A02 M | 305/28E-32801 M | 30S/28E-34R02 M | | TABLE C-I | AGENIY
SUPPLYIN_
LATA | | 6001 | 6001 | 2000 | | | | | | | | | | | | | 2000 | | | | | | | | | |---|-------------------------------|-------------------------------|-----------------|-------------------------------|---------------------------|--------------|---------|---------|--------------|---------|-------------|----------|------------|-------------|---------|-----------------------------|-----------------|-------------|----------|--------------|----------|---------|---------|----------|---| | WATER
SURFACE
E_EVAT.ON
IN FEET | | 129.0 | 236.8 | 225.5
337.5
337.2 | | 337.5 | 335.9 | 333.9 | 335.0 | 337.1 | 337.0 | 338.0 | 337.3 | 336.0 | 332.7 | 333.2 | 225.7 | 222.9 | 230.7 | 233.7 | 237.2 | 238.8 | 238.4 | 735.4 | | | GRE SUR
TO WATER
STR IN PEET | 5-22.41 | 449.0 | 173.2 | 146.0*
34.0°
34.0° | 1 M M M | 141 | 36.1 | 38 . 1 | 37.0 | 34.0 | 35.0 | 34.0 | 34.7 | 36.0 | 39.3 | 38 • 8 | 146.3 | 149.1 | 141.3 | 138.3 | 130.0 | 133.2 | 133.6 | 139.0 | | | DATE | | 10-03-62 | 10-03-62 | 7-20-61
8-22-61
9-20-61 | 11-15-61 12-20-61 1-17-62 | 2-21-62 | 4-11-62 | 6-19-62 | 7-18-62 | 9-19-62 | 10-13-62 | 12-14-62 | 1-25-63 | 3-17-63 | 4-27-63 | 6-19-63 | 7-20-61 | 8-22-61 | 10-18-61 | 11-15-61 | 10-07-01 | 2-21-62 | 3-15-62 | 79-11-4 | | | GROUND
SURFACE
ELEVATION
IN FEET | OPA AREA | 578.0 | 410.0 | 372.0 | | | | | | | | | | | | | 372.0 | | | | | | | | | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 295/29E-33N01 M | 305/28E-02R01 M | 30S/28E-10N01 M | | | | | | | | | | | | | 30S/28E-10N04 M | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | 5120 | 6001 | 8700 | | | | | | | | 5120 | | 8700 | | | | 8700 | | | | 6001 | | | - | WATER
SURFACE
ELEVAT JA | | | 236.7 | 260.0 | | 172.7 | 174.7 | 229.7 | 205.7 | 187.7 | 244.7 | 175.7 | 234.7 | 203.8 | 166.8 | 102.3 | 100.3 | 139.3 | 167.3 | 108+3 | 0 | 124.3 | 114.3 | | | | GRD SUR SURFACE TO WATER ELEVAT OF | 5-22.40 | 0 0 1 | m | 52.1 260.0
63.2 248.9 | | 142.0* 172.7 | | | 109.0* 205.7 | | 70.0* 244.7 | | 80.0 234.7 | 174.2 203.8 | | 190.3* 102.3
143.3 149.3 | | 153.3 139.3 | * | 184.3* 108.3 | | * | | 0 1 | 3 | | |
5-22.40 | 1-26-63
2-19-63
3-17-63 | 73.3 | | 10-02-62 n
1-29-63 n | | 140.0* | 85.0 | | 127.0* | | 139.0* | | 174.2 | | | 192.3* | | 125.3* | | | 168.3* | | 10-01-62 | | | GRD SUR
TO WATER
SUR IN FEET | KERN RIVER DELTA AREA 5-22.40 | | 73.3 | 52.1
63.2 | | 142.0* | 140.0* | 85.0 | 109 • 0 * | 127.0* | 70°0* | 139.0* | 80.0 | 174.2 | 211.2 | 190.3* | 192.3* | 153.3 | 125.3* | 184.3* | | 168.3* | 178.3* | | | | AGENCY
SUPPLYING
DATA | | 0000 | 6001 | 5120 | 6001 | 9000 | 2000 | |---|----------------------|---|---------------------------------|-----------------|--------------------------------|---|--------------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 189.9
177.5
177.5
177.6
176.1
176.1
176.7
177.7
177.7
175.3
175.3 | | 208.5 | 81.7 | 19999999999999999999999999999999999999 | 255.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 00000000000000000000000000000000000000 | | 234.0 | 305.0 | 314.7 * 315.4 * 314.7 * 314.1 * 314.1 * 315.4 * 315.4 * 315.4 * 315.4 * 315.4 * 315.4 * 315.5 | 160.4* | | DATE | |
7-20-61
9-20-61
9-20-61
10-18-61
11-20-61
11-17-62
2-21-62
3-14-62
3-14-62
3-14-62
5-17-62
5-17-62
5-17-62
6-20-62
7-18-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-10-62
8-1 | 10-01-62 | 10-01-62 | 10-01-62 | 7-18-62
8-07-62
9-19-62
10-13-62
11-18-62
12-14-62
12-14-63
12-14-63
12-14-63
12-14-63
12-14-63
12-16-33
13-11-63
13-11-63 | 7-20-61 | | GROUND
SURFACE
ELEVATION
IN FEET | PA AREA | 9.13°. | 536.0 | 442.5 | 386.7 | 470.0 | 416.0 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 315/30E-18801 # | 315/30E-21G01 M | 325/25E-35N02 M | 32S/28E-23R01 M | 325/29E-16R02 M | 325/29E-19H02 M | | AGENCY
SUPPLYING
DATA | | 0000 | 6001 | 2000 | | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 229.8
218.4
218.6
218.6
218.6
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2
226.2 | 183.3 | 172.5 | 289.5 | 000 000 000 000 000 000 000 000 000 00 | 174.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 147.2.2
1157.2.1
1155.4.8
1157.3.8
1157.6.8
1157.6.8
1157.6.8
1157.6.8 | 331.7
467.0 | 131.9 | 131.5 | 131.0
130.0.7
1300.7
1300.7
130.0.5
1300.7
1300.7 | 297.9
153.1 | | DATE | | 5-17-62
19-62
1-18-62
8-07-62
8-07-62
19-13-62
10-118-62
11-18-62
12-14-63
12-14-63
12-14-63
12-14-63
12-14-63
12-14-63
12-14-63
12-14-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13-63
1-13 | 10-02-62
1-30-63
10-02-62 | 1-28-63 | 8-07-62
9-19-62
10-13-62 | 11-18-62
12-14-62
1-20-63
2-20-63
3-17-63
4-27-63
5-22-63
6-18-63
10-04-62
1-29-63 | 1-30-63
10-02-62
1-31-63 | | GROUND
SURFACE
ELEVATION
IN FEET | DPA AREA | 372.0 | 515.0
628.0 | 421.0 | | 791.5 | 0 • 00 • | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 305/28E-10N04 M | 30S/29E-05F01 M | | | 305/30E-20R01 M | 315/29E-29A01 M | TABLE C-I | AGENCY
SUPPLY NG
DATA | | 2000 | 0000 | 6001 | 0000 | |---|----------------------|--------------------------------|--|--
--| | WATER
SURFACE
ELEVATION
IN FEET | | 102.0
90.2
77.7 | 2600
2600
2662
2664
2665
2665
2665
2665
2665
2665 | 717.3 | 22232222222222222222222222222222222222 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 314.0
325.8
338.3 | 21233
2133.0
22133.0
2209.0
208.0
208.0
210.0
210.0
210.0
210.0
210.0 | п
132.7
97.7 | 2 | | DATE | | 4-27-63
5-21-63
6-18-63 | 7-18-62
8-07-62
10-13-62
11-18-62
11-18-62
12-14-62
12-14-62
12-14-63
12-14-63
12-14-63
13-17-63
13-17-63
14-27-63
14-27-63
14-27-63
14-27-63
14-27-63
14-27-63 | 10-03-62
1-29-63
10-04-62
1-29-63 | 10-03-62
1-30-63
1-30-64
10-18-61
11-10-18-61
11-10-18-61
11-10-18-62
11-10-62
11-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62
10-62 | | GROUND
SURFACE
ELEVATION
IN FEET | PA AREA | 416.0 | 473.0 | 657.0 | 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 32S/29E-19H03 M
CONT. | 325/29E-21₽01 M | | 11N/19W-04H01 S | | AGENCY
SUPPLYING
DATA | | 2000 | | | 0000 | | WATER
SURFACE
ELEVATION
IN FEET | | 263.0
263.0
264.8 | 00000000000000000000000000000000000000 | 238.00
234.00
234.00
233.7
226.6
231.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 166.5 | 1100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 177-1
177-1
181-4
182-3
189-4
184-2 | 90000000000000000000000000000000000000 | | DATE | | 8-22-61
9-20-61
10-18-61 | 12-20-62
3-14-62
3-17-62
4-11-62
5-17-62
6-11-62
7-18-62
9-19-62
10-13-62 | 1+25-63
1+25-63
2-17-63
3-17-63
4+27-63
5-21-63 | 7-20-61
8-22-61
10-18-61
11-19-61
11-19-61
12-20-61
12-20-62
2-11-62
3-12-62
4-11-62
5-17-62
6-20-62
9-19-62
11-18-62
11-18-62
11-18-62
11-18-62
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11-18-63
11 | | GROUND
SURFACE
ELEVATION
IN FEET | PA AREA | 416.0 | | | 416.0 | | STATE WELL
NUMBER | ED I SON-MARICOPA | 325/29E-19H02 M
CONT. | | | 325/29E-19H03 M | | AGENCY
SUPPLYING
DATA | | 8700 | | 8700 | | | 5120 | 6001 | 6001 | 5120 | 5120 | | 2000 | |---|----------------------|--------------------------|---
---|--|--|---|-----------------|-------------------------|-------------------------|-------------------------------|--------------------|---| | WATER
SURFACE
ELEVATION
IN FEET | | 47.8 | | 70.7 | 79.7
80.7
55.7 | 76.7 | | 124.2 | 315.0 | 107.8 | 228.1 | | 153.1
147.5
141.5
156.1 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 468•1 | | 4
10
10
10
10
10
10
10
10
10
10
10
10
10 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 3 4 4 4 4 | 452+3 | = 0 | 238.8 | 194.0 | 315.5 | 271.9 | 5-22.42 | 84.9
90.5
96.5
81.9 | | DATE | | 10-25-62 | 2-25-63
3-11-63
4-24-63
5-15-63
6-28-63 | 7-10-62
7-23-62
8-09-62
9-05-62 | 9-12-62
10-25-62
1-10-63
1-22-63
2-04-63
2-5-63 | 5-11-63
6-24-63
5-15-63
6-28-63 | 10-04-62 | 10-01-62 | 10-02-62 | 10-03-62 | 10-01-62 | DIST | 7-17-62
8-07-62
9-18-62
10-20-62 | | GROUND
SURFACE
ELEVATION
IN FEET | DPA AREA | 515.9 | | 529.0 | | | 747.0 | 363.0 | 209•0 | 423.3 | 498.0 | WATER STORAGE DIST | 238.0 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 11N/21W-05M01 S
CONT. | | 11N/22W-04H01 S | | | 11N/23W-12P01 S | 12N/20W-31R01 S | 12N/20W-36002 S | 12N/21W-29N01 S | 12N/23W-26P01 S | BUENA VISTA | 275/22E-16801 M | | AGENCY
SUPPLYING
DATA | | 2000 | 8700 | | | 6001 | 8700 | | | | | | 8700 | | WATER
SURFACE
ELEVATION
IN FEET | | 218.1 | - 180.6
- 180.6
- 180.6
- 177.6 | - 168.6
- 113.6
- 76.4
- 115.6 | - 138.6
- 97.6
- 100.6 | 135.2 | 231.6 | 224.6 | 231.6
232.6
233.6 | 233.6
232.6
231.6 | 225.6 227.6 224.6 | | 37.8 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.41 | 456.9 | 632 ° 9 * 632 ° 9 * 632 ° 9 * | 5620
5620
5675
5675
5675
5675
5675
5675
5675
567 | 59
59
59
59
59
59
59
59 | 349.5 | п п о о о о о о о о о о о о о о о о о о | 505.6* | | | | | 0
0
0
478.1 | | DATE | | 5-21-63 | 7-10-62
7-23-62
7-26-62
8-09-62 | 9-12-62
10-24-62
1-10-63
1-22-63 | 2-12-63
2-25-63
3-11-63
4-03-63
4-24-63
5-15-63 | 10-02-62 | 7-10-62 | 7-24-62 | 9-12-62 | 1-22-63 2-12-63 2-25-63 | 3-11-63
4-24-63
5-15-63 | 6-28-63 | 7-10-62
7-23-62
8-09-62
9-05-62
9-12-62 | | GROUND
SURFACE
ELEVATION
IN FEET | PA AREA | 675.0 | 452.3 | | | 484.7 | 730.2 | | | | | | 515.9 | | STATE WELL
NUMBER | MANON LAND A AREA | 11N/19W-07R03 S
CONT. | 11N/20W-07001 S | | | 11N/20W-18F01 S | 11N/20W-24A01 S | | | | | | 11N/21W-05MG1 S | TABLE C-I | AGENCY
SUPPLYING
DATA | | 2000 | 5120 | 0494 | | 0 4 9 9 4 | 4
6
6 | |---|--------------------------------|--|--|-------------------------|--|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 195.2
201.3
207.1
191.6 | | 207.2 | 2006
22300
219.7
206.0
215.5
220.2 | 213.1
200.6
1295.4
2256.2
2256.6
2255.6
2255.6
2257.2
207.2 | 203.8
198.5
204.9
222.7
2224.7
224.7
196.8
206.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.42 | 449.8
37.9
53.4 | 8 8 | 46.0
45.2 | 00 4 N D D C C C C C C C C C C C C C C C C C | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | | DATE | 1810 | 3-18-63
4-20-63
5-21-63
6-18-63 | 10-10-62 | 7-04-62 8-03-62 9-05-62 | 11-02-62
11-02-62
1-02-63
3-02-63
3-02-63
5-01-63 | 7-02-62
9-03-62
10-03-62
111-02-62
12-07-62
12-07-62
12-07-63
1-02-63
1-03-63
1-03-63
1-03-63
1-03-63
1-03-63
1-03-63 | 7-0-3-6-2
8-0-3-6-2
11-0-3-6-2
11-0-3-6-2
11-0-3-6-2
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
12-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6-3
13-0-3-6 | | GROUND
SURFACE
ELEVATION
IN FEET | ATER STORAGE | 245.0 | 245.0 | 253.2 | | 257.8 | 2600 | | STATE WELL
NUMBER | BUENA VISTA WATER STORAGE DIST | 285/22E-09D01 M
CONT. | 285/22E-10D02 M | 285/22E-36P01 M | | 285/23E-31R01 M | 295/23E-08A01 M | | AGENCY
SUPPLYING
DATA | | 2000 | | 5120 | 0000 | 0000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 165.2
168.9
159.8 | 160.7 | 200.2 | 1557.6
137.6
141.8
148.0
1448.0
155.0 | 1401.5
1448.0
148.0
1500.3
2003.1
2003.1
2008.8
2008.8
1999.7 | 196.8
193.0
209.8
208.9
204.2
199.7
199.0
196.9
197.6
197.7 | | GRO SUR
TO WATER
SUR IN FEET | 5-22.42 | 72.8
69.1
78.2 | 77.3
78.8
73.0 | 39.8 | 83.44
103.44
999.2
93.0
996.0
886.0 | \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | DATE | DIST | 11-23-62
12-20-62
1-22-63
2-19-63 | 5-18-63
4-20-63
5-21-63
6-18-63 | 10-10-62 |
7-17-62
8-07-62
9-18-62
10-20-62
11-23-62
12-20-62
1-22-63 | 7-10-63
5-21-63
5-21-63
7-19-61
10-17-61
11-14-61
12-19-61
12-19-61
12-19-61
12-19-61
12-19-61
12-19-61
12-19-61 | 3-13-62
5-16-62
5-16-62
6-19-62
7-17-62
8-07-62
10-23-62
11-23-62
11-22-63
2-19-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ATER STORAGE | 238.0 | | 240.0 | 241.0 | 245.0 | | | STATE WELL
NUMBER | BUENA VISTA WATER STORAGE DIST | 275/22E-16801 M
CONT. | | 275/22E-21F02 M | 275/22E-32H01 M | 285/22E-09D01 M | | | AGENCY
SUPPLYING
DATA | | 6 | 0000 | | | 7640 | | | | | | | | | | 0494 | | | | | | | | | | 4640 | | | | | | | | | | 2000 | |------------------------------------|------------------|--|--------------------------|---|--------------|-----------------|---------------|----------|----------|----------|---------|---------|---------|---------|-----------|------------|-----------------|----------|----------|----------|--------------|-----------|---------|---------|---------------|-----------------|---|----------|----------|--------------|---------|---------|---------|---------------|-------|-----------------| | WATER
SURFACE
ELEVATION | | | , | 225.2 | 225.8 | 221.5 | 206.3 | 225.0 | 225.7 | 225.1 | 211.1 | 193.7 | 221.1 | 222.6 | 0 • 0 7 7 | 227.1 | 228.5 | 223.6 | 222.5 | 225.6 | 244.0 | 243.8 | 250.3 | 247.8 | 1 | 221.1 | 220.0 | 222.2 | 222.7 | | 218.6 | 215.3 | 219.8 | 7 - 0.77 | | 152.9 | | GRD SUR
TO WATER
SUR IN FEET | | 5-22.42 | | 4 1 ° 00 ° 4 ° 10 ° 10 ° 10 ° 10 ° 10 ° | 44.2 | 59.2 | 74.4 | 55.7 | 55.0 | 55.6 | 2000 | 87.0 | 59.6 | 58.1 | 6.66 | 1.64 | 4 8 ° 3 | 53.7 | 40 | 51.2 | 32.8 | 33.0 | 26.5 | 29.0 | 0.67 | 6 - 59 | 67.0 | 64.8 | 64.3 | u t | 6.8 | | 67.2 | 8 • 99 | I | 129.1* | | DATE | | DIST | 2-19-63 | 4-20-63 | 6-18-63 | 7-04-62 | 8-04-62 | 10-04-62 | 11-03-62 | 12-08-62 | 2-05-63 | 3-02-63 | 4-05-63 | 5-01-63 | 6-04-63 | 7-02-62 | 8-03-62 | 10-03-62 | 11-02-62 | 12-07-62 | 1-02-63 | 3-01-63 | 4-02-63 | 5-01-63 | 0-04-0 | 7-03-62 | 8-03-62 | 10-03-62 | 11-02-62 | 12-07-62 | 2-04-63 | 3-01-63 | 4-02-63 | 5-01-63 | 1 | 7-19-61 | | GROUND
SURFACE
ELE VATION | IN FEET | BUENA VISTA WATER STORAGE DIST | 270.0 | | | 280.7 | | | | | | | | | | 276.8 | | | | | | | | | | 287.0 | | | | | | | | | | 282.0 | | STATE WELL NUMBER | | BUENA VISTA | 295/23E-27M01 M
CONT. | | | 206,24F-32001 M | 10010 717/6/7 | | | | | | | | | M LOJECTOR | 202/225-01-01 1 | | | | | | | | | 305/24F-02C01 M | | | | | | | | | | 305/24E-04C01 M | | AGENCY | PATA | | 0494 | 0494 | | | | | | | | - | | | | | | | | | | 2000 | | | | | | | | | | | | | | | | WATER
SURFACE | EET | | 216.5 | | 171.8 | 217.5 | 221.0 | 225.0 | 225.8 | 221.1 | 226.9 | 228.2 | 2.010 | 196.8 | 224.7 | 230.1 | 211.4 | | 194.6 | 221.3 | 20102 | | | 223.8 | 224.4 | 224.1 | 7 | | 224.6 | 225.6 | 226.2 | | 225.0 | 226.0 | 226.8 | 225.7 | | WATER
SURFAC | IN FEET | | 21 | | 21 | | • | 114 | | 9 19 | | | | • | | 2 | SUR IN FEET IN F | 5-22.42 | 43.8 21 | | 91.7 17 | | 47°2 | | | 42.4 | | | | 53.3 | 38.8 | | | - 11 | 68.89 | 42.2 | 55.7 | D | | | | 45.9 | | | 4.0.4 | | | | | | 43.2 | | | | _ | | 4-63 43.8 | | 91.7 | 0.94 | | 9 F | 37.7 | | 36.6 | 35.3 | n (1 | | | 33.4 | | | | | 6-04-63 55.7 | 7-19-61 " | | | 11-14-61 45-6 | 45.9 | | | | 5-10-62 45.0 | | | | 11-18-62 44.0 | | 1-23-63 44.1 | | GRD SUR
DATE TO WATER | _ | BUENA VISTA WATER STORAGE DIST 5-22.42 | 4-63 43.8 | В | 8-02-61 91.7 | 0.94 | 47.7 | 9 F | 37.7 | 42.4 | 36.6 | 35.3 | n (1 | 53.3 | | 33.4 | 52.1 | | | | | | 8-21-61 | | | 45.9 | | | | | | | | | | | TABLE C-I | AGENCY
SUPPLY NG
DATA | | 9009 | | 2000 | | | | | | | 0 | 0000 | | | | | | | | | | 5120 | | 5120 | | | 0000 | | | | | | | | | |---|--------------------------------|--------------------------|--------------------------|-----------------|---------|--------------------|----------|---------|---------|----------|----------------------|--------------------------|---------|----------|----------|---------|---------|-----------------|---------|---------|----------|-----------------|---------|-----------------|---------|-----------------|--------------------------|---------|----------|----------|----------|---------|----------|---|-----| | WATER
SURFACE
ELE VATION
IN FEET | | 246.4 | | 112.9 | 104.0 | 103.7 | 107.5 | 103.5 | 0.86 | | | 170.4 | 171.9 | 166.9 | 170.7 | 160.2 | 168.0 | 166.5 | 165.1 | 160.9 | • | 44.3 | 0 • 4 | | | 122 2 | 128.6 | 128.1 | 131.0 | 132.1 | 136.9 | 139.7 | , , , , | 140.4 | 1 | | JAD SUR
TO WATER
JH IN FEET | 5-22.42 | 36.6 | 5-22.43 | 99.1 | 108.0 | 108.3 | 104.5 | 108.5 | 114.0 | • | | 404 | 40.1 | 45.1 | 41.0 | 47.9 | 0.44 | 45.5 | 6.94 | 51.1 | • | 170.7 | 140 0 | | | 0 70 | 0 8
4 8
6 9
7 9 | 88.9 | 86.0 | 6.48 | 80.1 | 77.3 | | 72.0 | | | DATE | DIST | 5-21-63
6-18-63 | DIST | 7-20-62 | 9-18-62 | 10-20-62 | 12-15-62 | 1-23-63 | 3-18-63 | 4-20-63 | 7-30:-63 | 8-08-62 | 9-18-62 | 10-20-62 | 12-15-62 | 1-23-63 | 2-21-63 | 3-18-63 | 4-28-63 | 5-22-63 | | 10-10-62 | 60-00-7 | 10-11-62 | 2-07-63 | 7-21-41 | 8-23-61 | 9-20-61 | 10-16-61 | 11-16-61 | 12-21-61 | 1-18-62 | 79-77-7 | 29-61-6 | 100 | | GROUND
SURFACE
ELEVATION
IN FEET | BUENA VISTA WATER STORAGE DIST | 283.0 | SEMITROPIC WATER STORAGE | 212.0 | | | | | | | 0 010 | 0.212 | | | | | | | | | | 215.0 | | 209.0 | | 217.0 | 0 • 1 1 7 | | | | | | | | | | STATE WELL
NUMBER | BUENA VISTA | 315/25E-27F01 M
CONT. | SEMITROPIC W | 258/22E-02E01 M | | | | | | | 25C / 22E - 02NO 2 M | 233766E-U2NU2 FI | | | | | | | | | | 255/22E-14G01 M | | 25S/23E-03R01 M | | 255/23F=28001 M | E 10001 10001 | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | | | | | | | | 2000 | | | | | | | | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 198.5 | 223.6 | 225.3 | 219.6 | 223.1 | 220.1 | 220.5 | 221.8 | 224.2 | 226.5 | 228.5 | 228.4 | 227.0 | 215.2 | 216.2 | | 243.9 | | 233.0 | 224.9 | 26.0.2 | | 262.3 | 257.0 | 243.8 | 254.3 | 257.3 | 252.8 | 241.4 | 239.6 | 239.0 | 24.7 . 6 | * | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.42 | 83
603
7 | 0.00 u | 63.3 | 62.4 | 57.6 | 61.9 | 61.5 | 60.2 | 57.8 | 10 m
10 m
10 m | 0 0
0 0
0 0
0 0 | 53.6 | 55.0 | 000 | 65.0 | , | 39.1 | 0 | 50.0 | 58.1 | 22 B | | 20.7 | 26.0 | 20.0 | 28.7 | 25.7 | 30.2 | 41.6 | 43.4 | 0.44 | 24.0 | • • | | | DATE | 0157 | 8-21-61 | 11-14-61 | 1-16-62 | 3-14-62 | 4-10-62
5-16-62 | 6-19-62 | 7-17-62 | 9-18-62 | 10-13-62 | 11-23-62 | 1-23-63 | 2-19-63 | 3-17-63 | 5-21-63 | 6-18-63 | | 7-19-61 | 8-22-61 | 9-19-61 | 11-14-61 | 12-19-61 | 2-20-62 | 3-14-62 | 4-11-62 | 6-10-62 | 7-18-62 | 8-07-62 | 9-18-62 | 10-13-62 | 12-14-62 | 1-23-63 | 3-17-63 | 4-78-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | BUENA VISTA WATER STORAGE OIST | 282 • 0 | | | | | | | | | | | | | | | | 283.0 | | | | | | | | | | | | | | | | | | | STATE WELL
NUMBER | BUENA VISTA | 30S/24E-04C01 M
CONT. | | | | | | | | | | | | | | | | 31S/25E-27F01 M | | | | | | | | | | | | | | | | | | #### IADLE V-I | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | | | | | | | | | | 1009 | | | 2000 | | | | | | | | | | | 5120 | 3 | 0003 | | | | |---|-------------------------------|--------------------------|----------|---------|---------|----------|----------|---------------|---------|---------|---------|----------|----------|---------|---------|---------|----------|----------|----------|-----------------|---------|---------|-----------------|---------|----------|----------|----------|----------|----------|---------|---------|---------|---------|------------------|----------|-----------------|---------|---------|-------------| | WATER
SURFACE
ELEVATION
'N FEET | | 161.1 | 159.1 | 159.1 | 159.5 | 159.9 | 150.3 | 159.8 | 158.1 | 157.9 | 157.5 | 157.5 | 159.2 | 159.6 | 160.3 | 160.4 | 159.4 | 159.3 | 159.1 | | 87.9 | | 203.2 | 205.0 | 2000 | 206.7 | 204.8 | 204.9 | 205.2 | 204.5 | 203.5 | 204 • 8 | 204 • 5 | 210.8 | 201.5 | | 149.5 | | | | GRD SUR
TO WATER
SUR IN PEET | 5-22.43 | 86.9 | 88.9 | 88.9 | 88.5 | 000 | 000 | ~ ~ ~
0 00 | 6.68 | 90.1 | 90.5 | 90.5 | 00 co | 988 | 87.7 | 87.6 | 88.6 | 88.7 | 88.9 | E | 149.5 | | 40.8 | 0 1 1 | 27.5 | 37.3 | 39.2 | 39.1 | 38.8 | 39.5 | 40.5 | 39.2 | 39.5 | 26.2 | 35.5 | t | 75.5 | 13 1 | = | | DATE | DIST | 10-19-61 | 12-21-61 | 1-18-62 | 2-22-62 | 3-15-62 | 5-18-62 | 6-21-62 | 7-19-62 | 8-08-62 | 9-50-65 | 10-14-62 | 11-25-62 | 1-25-63 | 2-22-63 | 3-18-63 | 4-28-63 | 5-23-63 | 6-19-63 | 10-08-62 | 1-31-63 | , | 7-17-62 | 29-77-0 | 10-20-62 | 11-23-62 | 12-20-62 | 1-22-63 | 2-19-63 | 3-18-63 | 4-20-63 | 5-21-63 | 6-18-63 | 10-10-62 | 2-06-63 | 7-20-62 | 8-08-62 | 9-18-62 | 10-50-02 | | GROUND
SURFACE
ELEVATION
IN FEET | ATER STORAGE | 248.0 | | | | | | | | | | | | | | | | | | 237.4 | | | 244.0 | | | | | | | | | | | 237.0 | - | 225.0 | 1 | | | | STATE WELL
NUMBER | SEMITROPIC WATER STORAGE DIST | 255/24E-15H01 M
CONT. | | | | | | | | | | | | | | | | | | 255/24F-30H01 M | | | 265/21E-14E01 M | | | | | | | | | | | 265/21F-14.101 M | | 265727E-10G01 M | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | | | | 5000 | 6001 | | 2000 | | | | WATER
SURFACE
ELEVATION
IN FEET | | 142.8 | 135.6 | 131.1 | 159.1 | 126.9 | 134.2 | 138.0 | 139.4 | 140.5 | | 138.9 | 13/•8 | 14.9 | 6.5 | 5 • 0 | 21.4 | 45.3 | 67.6 | K • K / | 0.76 | 82.3 | 74.1 | 22.0 | 10.3 | 10.6 | 14.5 | 48.5 | 58.8 | 6-1-9 | 70.8 | 70.7 | 010 | 0 | 131.2 | 13% | 159.0 | 158.5 | 7 • 0 € 1 | | GRD SUR
TO WATER
SUR IN
FEET | 5-22.43 | 74.2 | 81.4 | 85.9 | 87.3 | 90.1 | 82.8 | 79.0 | 77.6 | 76.5 | | 78.1 | 7.61 | 202.1 | 210.5 | 212.0 | 195.6 | 171.7 | 149.4 | 10/01 | 120.0 | 134.7 | 142.9 | 161.4 | 206.7 | 206.4 | 202.5 | 168.5 | 158.2 | 149.1 | 146.2 | 146.3 | 155.3 | 155.4 | 96.8 | 0 • 6 8 | 0.68 | 89.5 | γ
•
γ | | DATE | F | 5-18-62 | 7-19-62 | 8-08-62 | 79-07-6 | 10-19-62 | 12-15-62 | 1-26-63 | 2-21-63 | 3-18-63 | 4-28-63 | 5-22-63 | 6-19-63 | 7-21-61 | 8-23-61 | 9-20-61 | 10-19-61 | 11-16-61 | 12-21-61 | 2-22-62 | 3-15-62 | 4-13-62 | 5-18-62 | 6-21-62 | 20-61-0 | 9-20-62 | 10-14-62 | 11-25-62 | 12-15-62 | 1-26-63 | 2-21-63 | 3-18-63 | 5-22-63 | 09-14-0 | 10-09-62 | 1-31-63 | 7-21-61 | 8-23-61 | 7-61-01 | | | 015 | GROUND
SURFACE
ELEVATION
N FEET | SEMITROPIC WATER STORAGE DIST | 217.0 | | | | | | | | | | | | 217.0 | 228.0 | | 248.0 | | | TABLE C-I | AGENCY
SUPPLYING
DATA | ο
Ο | 0000 | | 5120 | |---|---|--|---|---| | WATER
SURFACE
ELEVATION
IN FEET | 11 | 411474747474747474747474747474747474747 | 92.0
92.5
92.0
92.0
81.0
81.0
78.1 | 192.0
197.0
215.5
220.4
224.7 | | GRD SUR
TO WATER
SUR IN FEET | 5 0 0 0 0 0 0 0 0 0 | 22525
22452
22452
22040
22040
2040
2040 | 176.44
175.0
175.0
1178.0
1186.0
186.0 | 66.0
61.0
39.5
30.3 | | DATE | 015.T
6-21-6.2
7-19-6.2
9-08-6.2
10-14-6.2
11-15-6.2
12-6.6.3
12-6.6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26-6.3
1-26 |
7-21-61
9-23-61
9-23-61
10-19-61
11-16-61
11-16-62
11-16-63
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16-64
11-16- | 11.2-15-62
12-15-62
12-15-63
2-21-63
3-18-63
4-28-63
6-19-63 | 10-09-62
2-05-63
7-03-62
8-03-62
9-05-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SEMITROPIC WATER STORAGE DIST 9000 | 267.0 | | 258.0 | | STATE WELL
NUMBER | SEMITROPIC W. 275/23E-01R01 M CONT. | 275/23E-01R04 M | | 275/23E-06L01 M
285/23E-11E01 M | | AGENCY
SUPPLYING
DATA | 5000 | 8700 | 5120 | | | WATER
SURFACE
ELEVATION
IN FEET | 41196 6 8 8 8 8 9 7 7 8 8 8 8 8 8 9 7 9 9 9 9 9 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 203.8
200.5
200.5
156.3
157.2
158.0 | 1599.0
1699.0
1599.0
1599.0 | | GRD SUR
TO WATER
SUR IN FEET | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 | 661
661
672
673
673
673
673
673
673
673
673
673
673 | 107.08.1
106.03.1
107.05 | | DATE | D1S1
11-25-6-2
12-15-6-3
1-26-6-3
3-18-6-3
3-18-6-3
4-28-6-3
6-19-6-3
10-11-6-2
2-0-6-3
2-0-6-3
2-0-6-3 | 10-11-62
2-0-11-63
7-05-62
7-17-62
8-13-62
8-13-62
10-15-62
10-15-62
10-15-62
10-15-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-10-63
1-63
1-63
1-63 | 10-09-62
2-05-63
7-21-61
8-23-61
9-20-61
11-16-61 | 17-21-61
1-18-62
2-25-62
3-15-62
4-12-62
5-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | 225.0
225.0
253.0
253.0 | 295.5 | 265.0 | | | STATE WELL
NUMBER | 265/22E-10G01 M
CONT.
265/22E-35E01 M
265/23E-02R01 M | 265/23E-36F01 M | 275/22E-02001 M
275/23E-01R01 M | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | | | 5050 | | 2020 | 5050 | | 5050 | 5050 | | 5050 | 0 | 0006 | | | | | | | | | | 5050 | 5050 | 5050 | | 5050 | 2050 | |---|------------------------|-----------------|----------|----------|----------|---------|---------|---------|-----------|---------------|-----------------|----------|-----------------|-----------------|---------|-----------------|---------|---|-----------------|---------|-----------------|----------|----------|----------|----------|---------|---------|---------|---------|-----------------|------------------------|-----------------|------------------|---------|-----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 426.5 | 426.3 | 426.2 | 426.0 | 426.5 | 426.1 | 426.8 | 426.6 | 426.3 | 193.5 | | | 425.8 | | 505.2 | 1.25.7 | • | 316.9 | | 351.5 | 35266 | 25101 | 350.4 | 352.1 | 351.3 | 350.6 | 350.9 | 25.0 | 351.4 | 202.7 | 748.1 | 519.4 | | 706.8 | 526.0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.44 | 133.5 | 133.7 | 133.8 | 134.0 | 133.5 | 133.3 | 133 2 | 133.4 | 133.7 | 41.5 | | D | 44.2 | | 193.8 | 6 001 | 10% | 105.1 | | 128.5 | 127.8 | 120 0 | 129.6 | 127.9 | 128.7 | 129.4 | 129.1 | 129.0 | 128.6 | 65.3 | 161.9 | 165.6 | | 168.2 | 204.0 | | DATE | | 8-07-62 | 10-20-62 | 11-23-62 | 12-20-62 | 1-22-63 | 2-19-63 | 2-19-62 | 5-21-63 | 6-18-63 | 1-08-63 | | 1-08-63 | 1-08-63 | | 1-09-63 | 1-00-1 | T-04-02 | 1-09-63 | | 7-17-62 | 8-07-62 | 70-81-6 | 11-23-62 | 12-20-62 | 1-22-63 | 2-19-63 | 3-18-63 | 4-20-63 | 6-18-63 | 1-08-63 | 1-08-63 | 1-08-63 | | 1-09-63 | 1-09-63 | | GROUND
SURFACE
ELEVATION
IN FEET | TRICK AREA | 260.0 | | | | | | | | | 235.0 | | 267.0 | 470.0 | | 0.669 | 0 30 | 0.629 | 422.0 | ; | 480.0 | | | | | | | | | | 268.0 | 910.0 | 6.85.0 | | 875.0 | 730.0 | | STATE WELL
NUMBER | AVENAL-MCKITTRICK AREA | 235/18E-29E02 M | | | | | | | | | 235/19E-14R01 M | | 235/19E-26M01 M | 245/18E-11D01 M | | 245/18E-30D01 M | | 245/18E-33NOI M | 255/19E-15G01 M | | 255/19E-20002 M | | | | | | | | | | 255/20E-04C01 M | 265/17E-13L02 M | 245/18F-14H01 M | | 265/18E-19802 M | 265/18E-27F01 M | | AGENCY
SUPPLYING
DATA | | 0494 | | | | | | | | 0797 | 2120 | | 5050 | 4 | | | 0009 | | WATER
SURFACE
ELEVATION
IN FEET | | 224.1 | 225.2 | 224.7 | 227.0 | 227.3 | 225.7 | 6.977 | 0 • 0 1 7 | | 118.4 | | 128.9 | 147.6 | 153.7 | 159.6 | 147.1 | 0.661 | | | | 135.4 | 128.4 | 141.0 | 146.1 | 140.4 | | 137.6 | | 194.0 | | 102.2 | | | | 426.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.43 | 30.9 | 29.8 | 30.3 | 28.0 | 27.7 | 29.3 | 28 • I | 7.96 | 0 | 182.7 | | 172.2 | 153.5 | 147.4 | 141.5 | 154.0 | 148.1 | | п | п | 165.7 | 172.7 | 159.5 | 155.0 | 160.7 | п | 163.5 | | 0.86 | 5-22.44 | 152.8 | t |] *2: | | 133.4 | | DATE | 0151 | 10-04-62 | 12-08-62 | 1-03-63 | 2-05-63 | 3-02-63 | 4-02-63 | 29-10-6 | 0-10-10-0 | 7-06-61 |
8-02-61 | 10-03-61 | 11-02-61 | 12-02-61 | 2-02-62 | 3-02-62 | 4-03-62 | 5-02-02 | 7-03-62 | 8-03-62 | 9-05-62 | 10-04-62 | 11-02-62 | 1-03-62 | 2-05-63 | 3-02-63 | 4-02-63 | 6-04-63 | | 10-08-62 | | 1-08-63 | 1-00-63 | 1-09-63 | 1 | 7-17-62 | | GROUND
SURFACE
ELEVATION
IN FEET | ATER STORAGE DIST | 255.0 | | | | | | | | 301.1 | 290.0 | TRICK AREA | 255.0 | 0 776 | 0000 | | 0.095 | | STATE WELL
NUMBER | SEMITROPIC WAT | 285/23E-11E01 M | • 200 | | | | | | | S/24E-28A01 M | 295/24E-14R01 M | AVENAL-MCKITIRICK AREA | 225/19E-18P02 M | Z 10400 201, 200 | | | 235/18E-29E02 M | TABLE C-I | AGENCY
SUPPLYING
DATA | | 5050 | | | | | | | 5050 | | | | | | | | | | | | 5050 | | 2050 | | | | | | | | | 5050 | | | | | | |---|------------------------------|--|-----------------|-----------------------------|-----------------|---------|----------|----------|-----------------|---------|---------|----------|----------|------------------------|--------------------|---------|----------|----------|---------|-----------|-----------------|---------|-----------------|-----------------|----------|---------|----------|----------|----------|---------|---------|-----------------|----------|----------|----------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 140.7 | 139.3 | 134.0 | 133.6 | 138.5 | 137.2 | | 180.7 | 179.8 | 180.6 | 181.1 | 180.5 | 180.6 | 180.3 | 179.8 | 179.9 | 180.6 | 180.3 | 1 4 6 1 T | | | 154.0 | 151.1 | 150.8 | 151.1 | 150.9 | | 151.8 | 152.3 | 10001 | 164.9 | 172.3 | 173.6 | 174.7 | 172.7 | 172.3 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.46 | 66 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7.00 | 70.0 | 70.4 | 65.5 | 66.8 | | 15.8 | 16.3 | 15.9 | 15.4 | 16.0 | 15.9 | 15.0 | 16.7 | 16.6 | 15.9 | 16.2 | 0 • 0 1 | п | | 42.0 | 0 - 7 7 | 45.2 | 6.44 | 45.1 | ם | 44.2 | 43.7 | 0.04 | 36.1 | 28.7 | 27.4 | 26.3 | 28.3 | 28.7 | | DATE | ICT | 2-27-62 | 12-04-62 | 1-25-63 | 3-28-63 | 4-29-63 | 6-28-63 | | 7-02-62 | 8-03-62 | 9-27-62 | 11-05-62 | 12-04-62 | 12-28-62 | 2-14-63 | 3-04-63 | 3-28-63 | 4-29-63 | 5-31-63 | 69-07-0 | 2-14-63 | | 2-28-62 | 12-04-62 | 12-28-62 | 1-25-63 | 3-04-63 | 3-28-63 | 4-29-63 | 5-31-63 | 69-67-9 | 2-28-62 | 11-05-62 | 12-04-62 | 12-28-62 | 1-25-63 | 3-04-63 | | GROUND
SURFACE
ELEVATION
IN FEET | CORCORAN IRRIGATION DISTRICT | 204.0 | | | | | | | 196.5 | | | | | | | | | | | | 209.0 | | 196.0 | | | | | | | | | 0.100 | • • • • | | | | | | STATE WELL
NUMBER | CORCORAN IRRI | 215/22E-10J03 M | | | | | | | 215/22E-16001 M | | | | | | | | | | | | 215/22E-24K01 M | | 215/22E-27A01 M | | | | | | | | | 225/22F=01B02 M | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | | 2000 | | | | | _ | | | | 1 | 2000 | | | | | | | | | 0 | 0000 | | | | | _ | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 322.8 | 1183.8 | | | - 36.3 | | - 13.9 | - 34.1 | | | - 15.3 | | | | | - 37.5 | | | 0 | | - 33.8 | | 2 711 | 117.3 | 115.2 | 113.8 | 112.6 | 112.8 | 112.3 | 113.6 | 113.6 | 112.0 | 113.0 | • | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.44 | 207.2 | 36.2* | 5-22.45 | | 217.3 | 204.6 | 194.9 | 215.1 | 221.2 | 213.7 | 196.3 | 189.2 | ı | 0 1 | 223.7 | 215.5 | ם | | 2200 | 231.4 | 211.8 | 198.3 | 000 | 7.66 | 101.8 | 103.2 | 104.4 | 104.2 | 104.7 | 103.4 | 103.0 | 10201 | 104.0 | • | | | | DATE | | 1-09-63 | 1-09-63 | EA | 7-17-62 | 8-06-62 | 10-20-62 | 12-20-62 | 1-22-63 | 2-19-63 | 4-20-63 | 5-21-63 | 6-17-63 | | 1-11-62
8-04-62 | 9-17-62 | 10-20-62 | 12-20-62 | 1-22-63 | 2-19-63 | 4-20-63 | 5-21-63 | 6-17-63 | 7-17-62 | 8-07-62 | 9-18-62 | 10-20-62 | 11-23-62 | 12-20-62 | 1-22-63 | 2-19-63 | 4-20-63 | 5-21-63 | 6-18-63 | | | | | GROUND
SURFACE
ELEVATION
IN FEET | RICK AREA | 530.0 | 1220.0 | OST HILLS AR | 181.0 | | | | | | | | | 1 | 1/8•0 | | | | | | | | | 217.0 | | | | | | | | | | | | | | | STATE WELL
NUMBER | AVENAL-MCKITTRICK AREA | 265/19E-12L01 M | 275/18E-15R01 M | TULARE LAKE-LOST HILLS AREA | 21S/20E-12M01 M | | | | | | | | | 21 C / 20E - 27 / 01 H | 3/20E=2/AU1 M | | | | | | | | | 255/21F-22H01 M | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | 6001 | 6001 | 6001 | 6001 | 0009 | 5000 | | 200 | |---|------------------------------|---|--|---|---------------------------------|--|--|------------------------------------|--|-----------------| | WATER
SURFACE
ELEVATION
'N FEET | | 37.
38.
41.3
44.7
49.3 | 53.9 | 10 | - 4.6
177.4
178.0 | - 38°4
- 23°4 | 109.7 | , | 128-5
1318-6
135-6
135-0
135-1
135-1 | 185.2 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.46 | 154.0
152.7
149.7
146.3 | 137.1
5-22.47
256.7
301.0 | 171.6
192.8
222.3 | 215.6
5.6
5.0 | 260.4
245.3
@ | DRY
DRY
115.3 | п п | 20000000000000000000000000000000000000 | 62.8 | | DATE | IICT | 1-25-63
3-04-63
3-28-63
4-29-63
5-31-63 | 6-28-63 | 10-30-62 3-25-63 10-24-62 | 3-12-63
10-24-62
3-13-63 | 10-25-62
3-12-63
10-23-62 | 10-24-62
3-13-63
10-25-62
3-13-63 | 12-22-62 | 8-14-62
10-09-62
11-09-62
2-18-63
3-28-63
4-23-63
5-21-63
6-18-63 | 7-16-62 | | GROUND
SURFACE
ELEVATION
IN FEET | GATION DISTR | 191.0 | AREA
247.0 | 280.0 | 183.0 | 222.0 | 164.0 | 321.0 | | 248.0 | | STATE WELL
NUMBER | CORCORAN IRRIGATION DISTRICT | 22S/22E-15C01 M
CONT. | MENDOTA-HURON
135/12E-05001 M | 135/12E-22N01 M | | 135/13E-15R01 M
135/13E-33N01 M | 135/14E-09J01 M | 14S/13E-15M01 M | | 145/14E-28E02 M | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | | 5050 | | 5050 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 174.0
173.7
175.5
175.6 | 10.5
21.8
26.9 | 25.6
25.0
29.9 | 6.8
- 35.9
- 25.6 | 20.3
21.9
24.7
31.2 | | - 2.1
10.8
13.2 | 00000000000000000000000000000000000000 | 37.9 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.46 | 27.0
27.3
25.5
25.5 | 177.5
166.2
161.1 | 162.4
n
163.0
158.1 | 181.2
223.9
213.6 | | 152.0
200.8*
209.3
210.1 | | | | | DATE | 1167 | 3-28-63
4-29-63
5-31-63
6-28-63 | 3-19-62
11-05-62
12-04-62
12-28-62
1-25-63 | 3-04-63
3-28-63
4-29-63
5-31-63
6-28-63 | 3-19-62
11-05-62
12-04-62 | 1-25-63
1-25-63
3-04-63
3-28-63
4-29-63
5-31-63 | 6-28-63
7-24-61
8-30-61
9-27-61 | 11-29-61 11-29-61 12-28-61 1-26-62 | 2-20-62
4-27-62
4-27-62
5-31-62
7-02-62
8-03-62
8-30-62
9-27-62 | 12-28-62 | | GROUND
SURFACE
ELEVATION | GATION DISTR | 201.0 | 188.0 | | 188.0 | | 191.0 | | | | | STATE WELL
NUMBER | TOPODAN TREATION DISTRICT | 225/22E-01802 M
CONT. | 22S/22E-05L01 M | | 225/22E-08L01 M | | 225/22E-15C01 M | | | | #### TABLE C-I | AGENCY
SUPPLYING
DATA | | 2000 | 2000 | | 6 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 5 0 0 1 5 0 0 0 1 5 0 | |---|--------------------|--|--|-----------------
---| | WATER
SURFACE
ELEVATION
IN FEET | | 173.4
173.4
172.8
172.2
175.5
175.0 | | 70.3 | 55.0
- 54.6
- 64.6
- 64.6
- 64.6
- 102.7
- 112.7
- 112.7
- 112.7
- 112.7
- 110.2
- 100.2
- | | GRD SUR
TD WATER
SUR IN FEET | 5-22.47 | 622.4
63.2
661.0
661.0
661.0 | | 306.3 | | | DATE | | 11-24-62
1-23-63
2-18-63
3-18-63
4-21-63
5-20-63 | 7-18-61
8-21-61
9-18-61
10-16-61 | 1-15-62 | 2-17-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
10-18-6-2
1 | | GROUND
SURFACE
ELEVATION
IN FEET | N AREA | 236 • 0 | 236.0 | | 175.0 | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 155/14E-15E01 M
CONT. | 155/14E-15E04 M | | 15 \$/15 E - 22001 M | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 2000 | 000000000000000000000000000000000000000 | | WATER
SURFACE
ELEVATION
IN FEET | | 183.1
182.3
183.6
184.4
186.8
187.3 | 187.0
187.8
89.5
109.6 | | 4 8 4 4 6 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | GRD SUR
TO WATER
SUR. IN FEET | 5-22.47 | 665.7
667.7
667.6
60.7
60.7 | 61.0
60.2
71.5
51.4 | п | 0.000000000000000000000000000000000000 | | DATE | | 8-06-62
9-17-62
10-21-62
11-24-62
1-23-63
2-18-63 | 4-21-63
5-20-63
6-17-63
10-19-62
2-26-63 | 12-21-62 | 7-16-62
9-17-6-62
10-21-62
12-13-63
12-13-63
12-13-63
12-13-63
12-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13-13-63
13- | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 248。0 | 161.0 | 473.0 | 236.0 | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 145/14E-28E02 M
CONT. | 145/15E-35N01 M | 155/13E-26N01 M | 155/14E-07802 M | | AGENCY
SUPPLYING
DATA | | 1009 | 6001 | 2000 | 5050 | 2000 | | | | | | | | | | 2000 |---|--------------------|------------------|--------------------------|--------------------|--------------------------------|-----------------|---------|----------|----------|---------|----------|----------|--------------|---------|---------|-----------------|---------|---------|----------|-----------------|----------|-----------|----------|----------|----------|---------|---------|---------|---------|---------|----------|-----------------|---------|---------
------------------| | WATER
SURFACE
ELEVATION
:N FEET | | 146.0 | | | 6.6 | 39.2 | 40.4 | 46 • B | 62.8 | 61.9 | 63.7 | 9.99 | 74.0
73.4 | 59.4 | | 222 • 8 | 223.0 | 222.2 | 225.6 | 222.4 | 6.777 | 6 0 6 7 7 | | 22301 | 223.1 | 223.1 | 0.222 | 223 • B | 0.222 | 223 2 | 223.6 | 223.6 | 223.7 | 223.9 | 224.3 | | GRD SUR
TO WATER | 5-22.47 | 87.0 | DRY
• | п | 211.4
195.8 | 193.3 | 193.4 | 185.7 | 169.7 | 170.6 | 168.8 | 165.9 | 177.7 | 173.1 | 1 | 67.2 | 0.19 | 67.8 | 4.49 | 67.6 | 67.1 | 1.099 | 12 | 6.99 | 6 • 99 | 6.99 | 0.89 | 66.2 | 4.10 | 1 0 4 0 | 000 1 | 4 - 99 | 66.3 | 66.1 | 65.7 | | DATE | | 10-15-62 2-20-63 | 10-18-62 2-20-63 | 12-19-62 | 10-18-62 2-07-63 | 7-16-62 | 9-17-62 | 10-21-62 | 12-21-62 | 1-23-63 | 2-18-63 | 3-18-63 | 4-21-63 | 6-17-63 | | 7-18-61 | 8-21-61 | 9-18-61 | 10-16-61 | 11-13-61 | 12-18-61 | 1-15-62 | 2-19-62 | 3-12-62 | 4-09-62 | 5-15-62 | 6-18-62 | 7-16-62 | 8-06-62 | 9-11-62 | 11-23-62 | 12-20-62 | 1-23-63 | 2-18-63 | 3-18-63 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 233.0 | 235.0 | 457.0 | 218.0 | 232.5 | | | | | | | | | | 290.0 | STATE WELL
NUMBER | MENDOTA-HURON AREA | 165/16E-18N01 M | 165/16E-28M01 M | 175/14E-13R01 M | 175/16E-02E01 M | 175/16E-24R01 M | | | | | | | | | | 175/16F-30A02 M | AGENCY
SUPPLYING
DATA | | 2000 | 2000 | | | | | | | | | _ | | | | | | | 2000 | | | | | | | | | | | | | 6001 | | | 1000 | | WATER
SURFACE
ELEVATION
IN FEET | | 104.9 | 7.1 | . സ.ഗ

. സ.സ | 7.9
10.9
12.3 | 11.4 | 4.6 | 403 | | 1.3 | | | 6.1 | 8 • 2 | 6.0 | 7.99 - | 10°1 | 0 | 7 - 71 - | | 7 21.3 | | | | | 10.6 | | - 14.3 | | | | 124.5 | 130.5 | | 7.69 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.47 | 66.1 | 162.9 | 166.5 | 162.1
159.1
157.7 | 158.6 | 160.6 | 165.9 | 168.1 | 171.3 | 170.5 | 166.8 | 163.9 | 161.8 | 164.1 | 176.7 | 180.7 | 100.2 | 7 001 | 10% | 196.3 | 103.5 | 102.6 | 7001 | 19001 | 185.6 | | 189.3 | 189.3 | 188.1 | | 94.5 | 88.5* | | 125.8 | | DATE | | 6-18-63 | 7-18-61 8-21-61 9-18-61 | 10-16-61 | 12-18-61
1-15-62
2-19-62 | 3-12-62 | 5-14-62 | 7-16-62 | 8-06-62 | 9-17-62 | 10-21-62 | 12 21-62 | 1-23-63 | 2-18-63 | 3-18-63 | 4-21-63 | 5-20-63 | 6-17-63 | 1 10 7 | 79-61-1 | 0-10-62 | 10-00-62 | 11-06-62 | 12 03-62 | 12-03-02 | 2-26-63 | 67 00 0 | 4-23-63 | 5-21-63 | 6-18-63 | | 10-18-62 | 2-20-63 | | 10-15-62 2-07-63 | | GROUND
SURFACE
ELEVATION
N FEET | 4 | | 170.0 | | | | | | | | | | | | | | | | | 1/2.0 | | | | | | | | | | | | 219.0 | | | 191.0 | | STATE WELL
NUMBER | | 155/16E-20R01 M | CONT.
155/16E-28A04 M | | | | | | | | | | | | | | | | | 155/16E-34E01 M | | | | | | | | | | | | 165/15F-02N02 M | | | 165/16E-10N01 M | TABLE C-I | AGENCY
SUPPLY NG
DATA | | 2000 | 2000 | 6 | 0000 | 2000 | | | | | | | | | | | | 5000 | | 2000 | | |---|----------------------------|--------------------------|-----------------|-----------------------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|----------|----------|-----------|---------|---------|---------|---------|---------|-----------------|-----------------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------|-------|-----------------|---------|-----------------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | - 78.0 | 7 307 - 7 | | - 274.3 | - 272.6 | - 262.5 | | | - 296.9 | - 390.6 | | - 421.8 | - 429.5 | | 362.1 | | - 3219.5 | | - 314.9 | | | | 1 .69 - | - 143.0 | | 123.4 | | 0.40 | | | - 129.8 | - 128.3 | - 128.3 | - 126.0 | | | | - 73.2 | | | GRD SUR
TD WATER
SUR IN FEET | 5-22.47 | 304.0 | 736.7 | 723.5 | 703.3 | 701.6 | 691.5 | 690.5 | F03 2 | 725.9 | 819.6 | 834.0 | 850.8 | 858 5 | 818 3 | 791.1 | 6.761 | 1,00.4 | 738.3 | 743.9 | 725.3 | 734.3 | (| 322.1 | 510.0 | 516.4 | 4.064 | 2.404 | 400.0 | 478.0 | 509.1 | 496.8 | 495.3 | 495.3 | 403.0* | | п | | 354.2 | 359.3 | | DATE | | 6-30-63 | 7-18-61 | 9-18-61 | 10-16-61 | 11-13-61 | 12-18-61 | 1-15-62 | 2-13-62 | 4-09-62 | 5-15-62 | 6-18-62 | 7-16-62 | 8-06-62 | 9-17-62 | 10-21-62 | 11-62-02 | 79-07-71 | 3-18-63 | 4-21-63 | 5-20-63 | 6-17-63 | | 79-61-71 | 7-19-62 | 8-15-62 | 9-12-62 | 10-09-62 | 12-04-62 | 1-04-63 | 2-27-63 | 3-28-63 | 4-23-63 | 5-21-63 | 6-18-63 | | 12-20-62 | | 7-16-62 | 8-06-62 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 226.0 | 429.0 | 253.0 | 367.0 | | | | | | | | | | | | 274.0 | | 281.0 | | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 175/205 = 21NO2 M | 185/15E-02N01 M | 185/17E-12N01 M | 19S/17E-35N01 M | | | | | | | | | | | | 195/18E-15M01 M | | 195/18E-27M01 M | | | | | | | _ | _ | | | | _ | _ | _ | | | | _ | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | 0 | 2000 | | | | | | | | | | | | | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | 223.9 5000. | 0 | 163.9 | | - 151.3 | | - 82.5 | | | | | - 113.1 | | | 143.5 | | | 12303 | _ | | - 85.5 | 73.4 | | 80.6 | | | | | | | - 25.2 | | | | | - 62.1 | | - 59.3 | - 54.1 | | | 5-22.47 | | 0 | 163.9 | 1 | 1 | 1 | * | | ı | | ı | 1 | ŧ | ì | | | 1 | - | 1 | 1 | 1 | | 1 | - 80•6 | ţ | ı | 1 | | 1 1 | ı | ı | ł | 1 | 1 | 1 | 1 | 1 | 1 | | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.47 | 223.9 | | - 163.9 | 463.1 - | 441.3 - | 440.5 | 372.5* - | 1 | 367.2 | 363.7 - | 385.2 - | 403.1 - | 413,3 - | 431.6 | 433.5 | | 1 2 2 2 1 | 413.3 | 4.06.4 | 404.1 | 375.5 | ı | 7.006 | 306.6 - 80.6 | 308.5 | 303 • 8 | 1 | 20000 | 279.5 | 263.0 | 251.2 - | 292.0 - | 269.0 - | 274.6 | 276.9 | 288.1 - | 269.4 - | 285.3 - | 1 | | GRD SUR SURACE
TO WATER ELEVATION
SUR IN FEET IN FEET | MENDOTA-HURON AREA 5-22.47 | 66.1 223.9
72.9 217.1 | | 8+21-61 453.9 - 163.9 | 463.1 - | 441.3 - | - 6.044 | 372.5* - | 364.4 | 367.2 | 363.7 - | 385.2 - | 403.1 - | 413,3 - | 431.6 | 433.5 | 1 20064 | 1 2 2 2 1 | 413.3 | 4.06.4 | 404.1 | 375.5 | 363.4 - | 7.006 | 306.6 - 80.6 | 308.5 | 303 • 8 | 304.4 | 20000 | 279.5 | 263.0 | 251.2 - | 292.0 - | 269.0 - | 274.6 | 276.9 | 288.1 - | 269.4 - | 285 • 3 - | 280.1 - | | AGENCY
SUPPLYING
DATA | | 2000 | 5050 | 5050 | 5050 | | 5050 | 5050 | 2000 | | | | | | | | | | 5050 | | | 5529 | | | | | | | | | | | | | | | |---|--------------------|-----------------|-----------------|-----------------|--|---------|-----------------|-----------------|-----------------|----------|----------|----------|----------|---------|---------|---------|----------|---------|-----------------|----------|------------------------|-----------------|----------|---------|----------|----------|----------|---------|---------|----------|----------|---------|---------|---------|---------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | - 31.1 | 434.8 | 408.0 | | | | 400.1 | 37.4 | 35.00 | 37.0 | | 51.1 | 42.4 | 39.3 | 36.08 | 35.8 | 36.4 | 483.2 | | | 100.8 | | 104.1 | 102.7 | 101.8 | 101.0 | 100.8 | 102.5 | 1040 | 104 | • 004 | 102.7 | 91.8 | 103.4 | 102.6 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.47 | 291.1 | 188.2 | 162.0 | | ı | п | 125.9 | 322.6 | 324.0 | 323.0 | | 308.9 | 317.6 | 320.7 | 321.6 | 324.2 | 323.6 | 303.8 | | 04.477-6 | 9.2 | - | 5.9 | 7.3 | 8 • 2 | 0 * 6 | 7 • 6 | 7.5 | D 4 | 0 4 | 0 | 7 . 3 | 2 0 0 | 9.99 | 7.4 | | DATE | | 6-17-63 | 1-08-63 | 1-08-63 | 1-08-63 | | 1-08-63 | 1-08-63 | 7-17-62 | 29-01-07 | 10-20-62 | 11-24-62 | 12-20-62 | 1-22-63 | 2-19-63 | 4-20-63 | 5-21-63 | 6-17-63 | 1-08-63 | | אוני. | 7-21-61 | 8-18-61 | 9-12-61 | 10-16-61 | 11-14-61 | 12-13-61 | 1-12-62 | 2-15-62 | 20-11-6 | 5-10-62 | 6-10-62 | 7-10-62 | 8-15-62 | 9-14-62 | 10-23-62 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 260.0 | 623.0 | 570.0 | 634.0 | | 682.0 | 526.0 | 360.0 | | | | | | | | | | 787.0 | | | 110.0 | | | | | | | | | | | | | | | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 205/18E-36D01 M | 215/15E-01E01 M | 215/16E-02N01 M | 215/16F-07N01 M | | 215/16E-35D01 M | 215/17E-06N01 M | 21S/18E-28M02 M | | | | | | | | | | 22S/16E-12F01 M | | POSO SOIL CONSERVALION | 10S/13E-06R01 M | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | 5050 | | 0000 | | | | | | | 5000 | 0 | 0006 | | | | | | | | 2000 | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | | | 1 83 8 2 8 2 8 2 8 3 8 3 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 | | - 70.4 | 429.7 | | 400.1 | 461.4 | 460.2 | | 459.2 | 458.8 | 408.4 | - 152.0 | | - 160.5 | - 154.7 | 152.1 | | _ | - 136.0 | _ | | - 27.6 | | 29.4 | | | | 21.0 | | | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.47 | 354.9 | 349.0 | 358.8
361.7 | 364.2 | 369.2 | 351.4
345.2 | 189.3 | | 212 3 | 213.6 | 214.8 | п | 215.8 | 216.2 | 216.6 | 429.0 | | 449.0 | 424.7 | 422.5 | 435.0 | 421.3 | 406.0 | 418.0 | | 287.6 | 279.0 | 289.4 | 200.0 | 7 076 | 278.7 | 281.0 | 281.6 | 288.6 | 281.3 | | DATE | | 9-17-62 | 11-24-62 | 12-21-62 | 2-19-63 | 4-21-63 | 5-21-63 | 1-08-63 | | 10-10-62 | 11-06-62 | 2-27-63 | 3-28-63 | 4-24-63 | 5-22-63 | 6-18-63 | 12-21-62 | | 9-12-62 | 10-10-62 | 2-27-62 | 3-28-63 | 4-24-63 | 5-22-63 | 6-18-63 | | 7-17-62 | 8-06-62 | 9-18-62 | 11 24 42 | 12-20-62 | 1-22-62 | 2-10-63 | 3-18-63 | 4-20-63 | 5-21-63 | | 1 | GROUND
SURFACE
ELEVATION
IN FEET | MENDOTA-HURON AREA | 281.0 | | | | | | 619.0 | | 0 0 0 0 | | | | | | | 277.0 | i i | 7.0.0 | | | | | | | | 260.0 | | | | | | | | | | TABLE C-I | AGENCY
SUPPLYING
DATA | | 5529 | | 5529 | | | | | | | | | | | | | i i | 5256 | | | | | | | |---
---|---|-------------------------------|---|---------------------------------|---------|---------|---------|-----------|----------------------|----------|------------|---------|---------|---------|---------|-------|-----------------|---------|----------|----------|----------|------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | 111.9
110.2
1117.4
1117.5
1117.5
1118.5
119.1 | 120.3 | 115.8
114.6
113.8
116.5 | 116.5 | 117.0 | 117.5 | 115.8 | 1 | 116.6 | 116.3 | 116.5 | 116.5 | 116.8 | 118.0 | 117.3 | | | 125.3 | 127.0 | 129.6 | 129.7 | 129.7 | | | GRD SUR
TO WATER
SUR IN FEET | 5-22.48 | 11111111111111111111111111111111111111 | 7.7
8.3
11.4 | 10.2 | 2.00 | 9.0 | 9.5 | 10.2 | | 9,4 | 9.7 | ა.
თ. თ | 9.0 | 9.2 | 0 w | 8.7 | | 0 5 | 14.7 | 13.0 | 10.4 | 10.3 | 10.3 | | | DATE | STRICT | 8-15-62
9-14-62
10-23-62
11-25-62
12-26-62
1-22-63
2-27-63 | 4-19-63
5-20-63
6-20-63 | 7-20-61
8-18-61
9-12-61
10-16-61 | 11-14-61
12-13-61
1-12-62 | 2-15-62 | 4-21-62 | 6-19-62 | 8-15-62 | 9-14-62 | 11-25-62 | 12-26-62 | 2-27-63 | 3-19-63 | 5-20-63 | 6-21-63 | , | 8-18-61 | 9-12-61 | 10-16-61 | 11-14-61 | 12-13-61 | 1-12-62 | | | GROUND
SURFACE
ELEVATION
IN FEET | POSO SOIL CONSERVATION DISTRICT | 128.0 | | 126.0 | | | | | | | | | | | | | | 140.0 | | | | | | | | STATE WELL
NUMBER | POSO SOIL COM | 115/13E-26A01 M
CONT. | | 115/13E-33L01 M | | | | | | | | | | | | | | 125/13E-13J01 M | | | | | | | | [° | | 6 | 6 | | | | | | | | | | | 62 | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5529 | 5529 | | | | | | | | | | | 5529 | | | | | | | | | | | | WATER AGENCY SURFACE SUPPLYIN ELEVATION DATA | | 101.1
100.6
100.3
103.6
104.5
104.5
104.5 | 552 | 109.8
110.1
110.1
109.9 | 110.2 | | 109.7 | 110.2 | 109.7 | 109.6 | 110.6 | 111.4 | | | 110.6 | 113.1 | 117.4 | 117.5 | 118.3 | 118.7 | 111.5 | 113.8 | 110.5 | | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.48 | | 552 | 01001 | | | | | 7-3 109-7 | | | | | t o | | | | | | | | | 17.6 110.4 | | | WATER
SURFACE
ET ELEVATION
IN FEET | | 1001.000.000.000.0000.0000.0000.0000.0 | | 7001
1000 | 6 • 8
6 • 1
E | | | | 7 - 3 | | 4.9 | | | | | 14.9 | | 10.50 | 7.6 | 9.3 | 16.5 | | 17.6 | | | GRD SUR SURACE
TO WATER ELEVATION
SUR IN FEET IN FEET | POSO SOIL CONSERVATION DISTRICT 5-22.48 | 98.9
9.4
9.4
9.4
6.4
100.6
9.6
103.6
104.6
104.7
103.6
104.2
103.6
104.2 | וםם | 70001
10001 | 6 • 8
6 • 1
E | | 7.3 | 9 9 | 1.3 | + + + - - | 4.9 | 0 P | | | 17.4 | 14.9 | 10.6 | 10.50 | 7.6 | 9.3 | 16.5 | 14.2 | 17.6 | | | AGENCY
SUPPLYING
DATA | | 00005 | 6001 | 5050 | | 5050 | |---|------------------------|---|--|--|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 214.4
232.4
2545.0
2554.0
2554.0
2550.0
2566.7
2566.3
256.3 | 268.0
288.0 | 61.7
62.9
70.9
71.0 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GRD SUR
TO WATER
SUR IN FEET | 5-22.50 | 298.6
280.6
259.6
259.0
250.0
260.4
260.7 | 250.0
230.0
5-22.54 | 18.3 | 117.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 100.1 100.1 40.2 40.2 40.0 40.0 40.0 40.0 40.0 40.0 | | DATE | DISTRICT | 10-15-62
11-20-62
12-18-62
1-23-63
2-26-63
3-21-63
4-25-63
5-20-63 | 10-10-62 | 1-02-62
2-02-62
3-05-62
4-05-62 | 5-02-62
7-02-62
7-02-62
8-02-62
8-02-62
11-03-62
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
11-01-63
1 | 1-02-62
3-02-62
3-02-62
4-05-62
4-05-62
5-02-62
7-02-62
8-02-62
8-02-62
10-03-62 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DI | 513.0 | 518.0 | 0 0 0 | | o.
• o.
• o.
• o. | | STATE WELL
NUMBER | TERRA BELLA IRRIGATION | 225/27E-36N01 M | 235/27E-10H01 M MERCED BOTTOMS | 75/10E-23K01 M | | 75/10E-23K02 M | | AGENCY
SUPPLYING
DATA | | 5
5
6 | | | 0000 | 0000 | | WATER
SURFACE
ELEVATION
IN FEET | | 1286.5
1286.5
1286.5
1288.5
1288.5
1288.0 | 128.3
128.7
129.0
130.1 | 131•1 | 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 7000 0000 0000 0000 0000 0000 0000 000 | | GRD SUR
TO WATER
SUR, IN FEET | 5-22.48 | 112 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 111.0 | 8 • 9
8 • 9
5 – 2 2 • 5 0 |
1118.3
1118.3
1118.3
110.0
110.0
10.0
10.0
10.0
10.0
10.0 | 1114.0
1111.5
1123.7
1123.7
1123.7
1106.8
115.6
141.3
141.3
12.8 | | DATE | DISTRICT | 3-17-62
4-21-62
5-19-62
7-10-62
8-15-62
9-14-62
9-14-62
9-14-62 | 12-26-63
1-21-63
2-27-63
3-19-63
4-19-63 | 6-21-63
6-21-63
DISTRICT | 9-15-61
10-28-61
11-28-61
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-28-62
11-2 | 12-18-62
11-23-63
1-23-63
3-21-63
3-21-63
4-25-63
5-20-63
6-27-63
8-22-62
9-18-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SERVATION | 140.0 | | z | 0 * 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 513.0 | | STATE WELL
NUMBER | POSO SOIL CON | 125/13E-13JO1 M | | TERRA BELLA | 225/27E-25J03 M | 225/27E-36N01 M | TABLE C-I | AGENCY
SUPPLYING
CATA | | 5050 | | | |---|----------------|---|--|--| | WATER
SURFACE
ELEVATION
N FEET | | 148.7
151.0
150.9
150.3
149.3 | 116404 9 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | GRD SUR
TO WATER
SUR IN PEET | 5-22.54 | 31.
283
293
291
307 | 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | DATE | | 1-02-62
2-02-62
3-05-62
4-06-62
5-02-62
6-07-62 | 8-06-62
10-03-62
11-07-63
1-07-63
1-07-63
1-07-63
1-07-63
1-07-63
1-07-63
1-07-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | 4S | 180.0 | | | | STATE WELL
NUMBER | MERCED BOTTOMS | 95/14E-01B03 M | | | | AGENCY
SUPPLYING
DATA | | 5050 | 0906 | 0900 | | WATER
SURFACE
ELEVATION
IN FEET | | 72.9
78.1
77.9
77.9
77.0
76.6 | 1333
1333
1333
1333
1333
1333
1333
133 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GRD SUR
TO WATER
SUR IN FEET | 5~22.54 | 9977001
9977001 |
444440000800444440
 | 4 4 4 4 4 4 0 0 4 4 0 0 0 0 4 4 4 4 4 4 | | DATE | | 12-05-62
1-07-63
2-15-63
3-06-63
4-02-63
5-03-63 | 1-02-62
2-02-65
3-02-65
4-06-62
5-02-62
1-02-62
11-03-62
11-03-62
11-01-62
12-03-63
12-03-63
12-03-63
12-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63
13-03-63 | 1-02-62
3-05-62
3-05-62
5-06-62
6-07-62
6-07-62
10-03-62
11-03-62
11-03-62
11-03-62
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63
11-03-63 | | GROUND
SURFACE
ELEVATION | v | 0 | 1 80 • 0 | O • O O O O | | STATE WELL
NUMBER | MERCED BOTTOM | 75/10E-23K02 M
CONT. | 95/14E-01801 M | 95/14E-01802 M | #### APPENDIX D SURFACE WATER QUALITY #### TABLE OF CONTENTS | | PAGE | |-------------------|---| | INTRODUCTION | | | EXPLANATION OF TA | ABLES | | EXPLANATION OF P | LATES | | EXPLANATION OF T | ERMS AND ABBREVIATIONS | | | | | | LIST OF TABLES | | TABLE | | | D-1 | Sampling Station Data and Index for Surface Water | | D-2 to D-31 | Analyses of Surface Water | | D-32 | Spectrographic Analyses of Surface Water | | D-33 | Radioassays of Surface Water | | | | | | LIST OF PLATES | | | (Bound at end of volume) | | PLATE | | | D-1 | Surface Water Sampling and Recorder Stations | | D=2 | Weekly Mean Specific Conductance at Selected Stations | #### INTRODUCTION This appendix contains data pertaining to the quality of surface waters collected during the 1963 water year (October 1, 1962 to September 30, 1963). The data are presented as tables and graphs and represent the observed physical, chemical, and bacteriological characteristics of the waters collected at the surface water quality monitoring stations. The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past records, need, and the type of data required for each station. Samples collected and the field data obtained at the stations are as follows: - 1. Partial mineral analysis ½ gallon - 2. Bacteriological analyses (coliform) 2 samples in 4 oz., sterilized bottles - 3. Dissolved oxygen D.O. - 4. pH - 5. Temperature - 6. Gage Height - 7. Time - 8. Visual observation of water conditions In May and September, the partial mineral analysis is replaced by a complete mineral analysis and the following are added to the list above: - 1. Radiological analysis - 2. Phosphate, arsenic and detergents (ABS) - 3. Spectrographic analysis of heavy metals (for ten selected stations) Continuous conductivity recorders are installed at six of the surface water quality monitoring stations, as indicated on Plate D-1. The recorders measure specific electrical conductance, a characteristic of water which provides an approximation of the quantity of minerals in solution. #### EXPLANATION OF TABLES An alphabetical listing of all stations in the surface water monitoring program is found in Table D-1 along with information concerning station number and location, period of record, frequency of sampling, and agency responsible for collection of samples. Results of mineral analyses can be found in Tables D-2 to D-31, where mineral concentrations, dissolved oxygen, and ABS are expressed in parts per million (ppm). Discharges are expressed as cubic feet per second (cfs) and bacteriological determinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. Results of spectrographic analyses for heavy metals, found in Table D-32, are expressed as micrograms per liter or parts per billion. Table D-33 contains results of radiological analyses, expressed as picocuries per liter (pc/l). #### EXPLANATION OF PLATES Locations of surface water quality stations and recorder sites are found on Plate D-1. Plate D-2 presents, in graphical form, data obtained from electrical conductivity recorders in terms of mean weekly values of electrical conductivity (EC \times 10^6 micromhos) plotted against time (week). #### EXPLANATION OF TERMS AND ABBREVIATIONS Cubic foot per second (cfs) - the rate of discharge of water where a cubic foot of water passes a given point in one second. Dissolved oxygen (DO) - the amount of free oxygen contained in water. It is one of the most important indicators of the condition of a water supply. #### EXPLANATION OF TERMS AND ABBREVIATIONS (Continued) - Total dissolved solids (TDS) represents the dissolved mineral constituents in water. - Specific conductance a measure of the capacity of water to conduct a current of electricity. - Coliform a group of organisms, whose presence is a satisfactory bacteriological indicator of contamination or pollution in water. - Most probable number (MPN) an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests. - Hardness a characteristic of
water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather. #### TABLE D-I SAMPLING STATION DATA AND INDEX FOR SURFACE WATER | Station | Station
Number | Lacation | Periad
af
Record | Frequency c
af
Sampling | Sampled d
by | Analysis
an
page | |--|-------------------|------------|------------------------|-------------------------------|-----------------|---------------------------| | | 1 | | | | | | | Big Creek above Pine Flat Dam | 33d | 12S/25E-4 | July 1960 | М | USCE | D-8, D-39 | | Chowchilla River near Raymond | 114 | 8s/18E-1 | January 1962 | S | DWR | D -9, D-3 9 | | Delte-Mendota Canal near Mendota | 92 | 13S/15E-19 | July 1952 | М | DWR | D-10, D-39 | | Delta-Mendota Canal near Tracy | 93 | 1S/4E-30 | July 1952 | М | DWR | D-11, D-39 | | Freeno River near Daulton | 113 | 9S/19E-34 | January 1958 | S | DWR | D-12, D-39 | | Kaweah River below Terminus Dam | 35 | 17S/28E-33 | April 1951 | М | USCE | D-13, D-39 | | Kern River near Bakersfield | 36 | 29S/28E-9 | April 1951 | М | DWR | D-14, D-39 | | Kern River below Isabella Dam | 36a | 26S/33E-30 | September 1955 | Q | USCE | D-15, D-39 | | Kern River below Kernville | 36b | 25S/33E-15 | September 1955 | Q | USCE | D-16, D-39 | | Kings River below North Pork | 33c | 12S/26E-21 | September 1955 | Q | USCE | D-17, D-39 | | Kings River below Peoples Weir | 34 | 17S/22E-1 | April 1951 | м | DWR | D-18, D-39 | | Kings River below Pine Flat Dam | 33ъ | 13S/24E-2 | September 1955 | Q | USCE | D-19, D-39 | | Merced River below Exchequer Dam | 32a | 4S/15E-13 | April 1959 | Q | DWR | D-20, D-39 | | Merced River near Stevinson | 32 | 6s/9E-36 | April 1951 | М | DWR | D-21, D-39 | | Salt Slough at San Luis Ranch | 24c | 9S/11E-7 | November 1958 | М | DWR | D-22, D-40 | | San Joaquin River at Crows Land Bridge | 26ъ | 6s/9E-7 | January 1962 | М | DWR | D-23, D-40 | | San Joaquin River at Fremont Ford Bridge | 25c | 7S/9E-24 | July 1955 | М | DWR | D-24, D-40 | | San Joaquin River et Friant Dam | 24 | 11S/21E-7 | April 1951 | Q | DWR | D-25, D-40 | | San Joaquin River near Grayson | 26 | 4s/7E-24 | April 1959 | М | SF | D-26, D-40 | | San Joaquin River at Hills Ferry Bridge | 25ъ | 7S/9E-3 | October 1958e | М | DWR | D-27, D-40 | | San Joaquin River at Maze Road Bridge | 26a | 3S/7E-33 | April 1951 | М | SF | D-28, D-40 | | San Joaquin River near Mendota | 25 | 13S/15E-7 | April 1951 | М | DWR | D-29, D-40 | | San Joaquin River at Petterson Bridge | 27a | 5S/8E-15 | January 1962 | М | DWR | D-30, D-40 | | San Joaquin River near Vernalis | 27 | 3S/6E-13 | April 1951 | М | DWR | D-31, D-40 | | Stanislaus River near Mouth | 29 | 3S/7E-17 | April 1951 | М | DWR | D-32, D-40 | | Stanialaus River below Tulloch Dam | 29a | 1S/12E-1 | July 1956 | Q | DWR | D-33, D-40 | | Tule River below Success Dam | 91 | 17S/27E-26 | July 1952 | М | USCE | D-34, D-41 | | Tuolumne River below Don Pedro Dam | 31a | 3S/14E-20 | April 1951 | Q | SF | D-35, D-41 | | Tuolumne River at Hickman-Waterford Bridge | 30 | 3S/11E-34 | April 1951 | м | SF | D-36, D-41 | | | 31 | 4S/8E-12 | | м | SF | | | Tuolumne River at Tuolumne City | 31 | 4s/8e-12 | April 1951 | М | SF | D-37, D-41 | | | | | | | | | a. Locations are in reference to Mt. L.ablo Base and Meridian b. Beginning of record c. M. - Monthly, B. - Bimonthly, Q. - Quarterly, S. - Semiannually DWR - Department of Water Resources USCE - United States Corps of Engineers SF - City & County of San Francisco e. Discontinued as of July 1, 1963 ANALYSES OF SURFACE WATER TABLE D-2 BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d) | | Anolyzed by 1 | | Ungs | | | | | | | | | | | | | | | |-------------------|--|---------------|--------|-------------------|-------------|-------------|-----------------------|-------------|------|------|------------------------|------|------|-------|----------|------|--| | | Hardness bid - Coliformh os CoCO ₃ ify MPN/mi | | Median | Max Imum
7000. | 5.3 | | | | | | | | | | | | | | _ | - pid
- y | | | 9 | - | | | 8 | Cu | 5 | m | C) | O. | CI | C4 | | | | | 00 | o E | | - | 0 | 0 | | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Hord
os C | Tatal | | 740 | 39 | 33 | | 777 | 25 | 92 | 53 | 22 | Ö | 27 | 36 | | | | | Cent
Bod | | | 07 | 0.7 | 33 | | 31 | 34 | 35 | 31 | 34 | 21 | 71.1 | 34 | | | | Toto | e olide
Bolved | E 00 E | | 135 ^e | 1186 | 115e | | 9 99 | 80 | 67 | ₹ij. | 72° | 22 | 916 | 100 | | | | | Other canstituents d | | | | | | | | | | FO ₁ , 0,00 | | | 6 | ABS 0.00 | | | | | Silico | 2010 | | | | - | | | | | 5] | | | | क्ष | | | | 8 | 1 5 | 6 | | 0:0 | 1,0 | 0.0 | | 0.1 | 0: | 0.0 | 0 | 0.0 | 0.0 | 0 | 11 | | | | r million | Fluo-B | | | | | | | | - | | 000 | | | - | 0.03 | | | | parts per million | Ni- | | | | | | | | | | 0,0 | | | | 2000 |
 | | | a d | Chlo- | \rightarrow | | 0.56 | 15 | 0.37 | n - dry | 2.7 | 0.13 | 0.05 | 0.07 | 0.12 | 0.03 | 0.0 | 0.25 |
 | | | <u> </u> | Sul - | | | | | | No sample taken - dry | | | | 3.0 | | | | 3.0 | | | | constituents | Bicor- | - 1 | | 0.00 | 5.3
0.57 | 52 | No sang | 34 | 1,4 | 37 | 36 | 36 | 0,70 | 00.00 | 52 | | | | | Corbon – | (600) | | 0000 | 0 8 | 000 | | 0.00 | 000 | 0.00 | 0.00 | 0 0 | 0.00 | 0 0 | 00.0 | | | | Mineral | Potos- | (K) | | | | | | | | | 1.5 | | _ | | 2.1 | | | | | Sodium | (0 N) | | 17,0 | 12 | 111
0.48 | | 5.0 | 6.7 | 2.5 | 5.0 | 75.0 | 0.05 | 0.37 | 0.0 | | | | | Mogne- | | | | | | | | | | 0.0 | | | | 0.10 | | | | | Calcium | (00) | | 0.92 | 0.78 | 0.76 | | 67.0 | 0.57 | 0.51 | 0.3 | 0.53 | 61.0 | 0.54 | 11 c | | | | | Q Ha | | | 7.2 | 5.7 | 7.3 | | 6.7 | 7.2 | 7.2 | 7.7 | 2.2 | 6.7 | 7.3 | 7.3 | | | | | Specific
conductance
(micrambos
or 250 C) | | | 158 | 138 | 1.35 | | 77 | 44 | 22 | 70 | 75 | 98 | 201 | وال | | | | | D = | %Sot | | 116 | 23 | 33 | _ | 5 | 78 | 89 | 107 | 108 | 101 | 122 | 123 | | | | | Dissolved | bom % | | 10.14 | 10.2 | 10.7 | | 10.0 | 10.0 | 10.2 | 10.4 | 10.6 | 10.1 | 10.0 | 10.1 | | | | | | | | 20 | 23 | 148 | | 55 | 94 | 3 | 29 | 19 | \$ | 78 | 92 | | | | | Dischorge Temp
in cfs in 0F | | | ı | - | 1 | | 113 | 28 | 83 | 501 | ı | 30 | 1 | 4 | | | | | ond time | P.S.T. | 1.62 | 10/1 | 11/5 | 12/3 | 1963 | 2/1) | 3/4 | 1,11 | 5/6 | 1120 | 7/8 | 8/12 | 5/12 | | | a Field pH b Labaratory pH. d Arsenic (As), alkyl benzena sulfanate (ABS), and phosphata (PO. c Sum of calcium and magnesium in epm. e Derived from canductivity vs TDS curves h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labornianies, at United States Public Health Service. i Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior Survey and Power (USBR); United States Department of the Interior (RAPED): Metabolities Water Branch California (WND); Las Angeles Department of Water and Power (LADMP); City of Lang Beach, Department of Carlon States and Public Health (LADPH); City of Lang Beach, Department of Management of Management of Carlon States and Public Health (LADPH); City of Lang Beach, Department of Management of Management of Carlon States and Management of Mana f Determined by addition of analyzed constituents. g Gravimetric determination. #### ANALYSES OF SURFACE WATER TABLE D-3 CHOWCHILLA RIVER NEAR RAYMOND (STA. NO. 114) | _ | _ | 9 | _ | | _ | | | | | | | | | | | | |
 |
 | |-------------------|-------------------------|---|--------------------|--------|----------------------|-----------------|------------------|------|-------|------------|---------|---------|----------------------|------|-----------|-----------|-----------|------|------| | | | Anolyze
by 1 | | USGS | | | | | | | | | | | | | | | | | | 4 | ds CoCO ₃ ity MPN/mi by i | | Median | Maximum | Minimum
0.23 | | | | | | | | | | | | | | | | T or | - 5- c | : | | | Н | ri | | CU CU | 9 | m | cu | 150 | cu . | | | | | | | Г | Ť | | O E | | | 72 | 17 | | 745 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | # P C C C C C C C C C C C C C C C C C C | Total N.C. | | | 170 | 163 | | 140 | 58 | 61 | 84 | 39 | 617 | | | | | | | L | Per | e od | | | | 4 | £, | | 75 | 39 | 82 | 33 | 32 | 37 | | | |
 | | | L | Total | solids con - | E 00 L | | | 395e | 387 ^e | | 331e | 126e | 127° | 916 | 10. | 976 | | | | | | | | | Other ronatitions | | | | | | | | | | | PO ₄ 0.20 | | | | | | | | | | Silico | igoic. | - | | | | | | | | | 53 | | | | | |
 | | | lo l | Boron | j (g | | | 0.0 | 0:0 | | 0.0 | 0.2 | 0,0 | 0:0 | 0.0 | 0:0 | | | | | | | million | ar mill | F100- | | | | | | | | | | | 0,1 | | | | | |
 | | ports per million | ents p | - i N | | | | | | | | | | | 2.2 | | | | | | | | a | aquivolents per million | Chlo- | _ | | n - dry | 136
3.84 | 137
3.86 | | 3.05 | 25
0.71 | 25 0.62 | 8.8 | 5.0 | 0.34 | - ÇPa | - pa | - pa | | | | | Ì | Sul - | - | | le taker | | | | | | | | 3.0 | | scheduled | scheduled | scheduled | |
 | | 1 | Mineral constituents in | Bicar- | | | No sample taken - dr | 1.95 | 1.84 | | 116 | 71 | 1.41 | 69 | 0.98 | 1.26 | - Not | - Not | - Not | | | | | au cons | - 1 | (co ₃) | | | 0.00 | 0.00 | | 0.00 | 0.0 | 0.00 | 0.00 | 0.0 | 0.00 | | | | | | | 2 | | Potos- C | | | | | | | | | | | 1.7 | | | | | | | | | İ | Sodium | (ON) | | | 54
2.35 | 2544 | | 5.00 | 17 0 74 | 17 0.74 | 11 0.48 | 8.8 | 0.57 | | | | | | | | | Magne- | (6Mg) | | | | | | | | | | 2.8
0.23 | | | | | | | | | | alcium | (00) | | | 3.40 | 3.27 | | 2.80 | 1.16 | 1.22 | 0.97° | 0.55 | 0.99 | | | |
 | | | | | o H | | | | 8.0 | 8.0 | | 8.1 | 7.8 | 8,2 | 0.8 | 7.5 | 0.0 | | | | | | | | Specific | (micromhos PH D C | | | | 640 | 929 | | 538 | 201 | 902 | 147 | 118 |
158 | | | | | | | | | D | %Sof | | | 107 | % | | 8 | 82 | 1 | 86 | 91 | 16 | | | | | | | | | Dissolvs d | wdd | | | 10.1 | 10.8 | | 13.1 | 9.7 | 10.9 | 9.5 | 0.6 | 7.9 | | | | | | | | | in OF | | | | 69 | 20 | | 39 | 147 | | 63 | 61 | 73 | | | | | | | | | Dischorge Temp
in ofs in OF | | | | No | co | | 21.6 | 107 | 34 | 349 | 359 | 51 | | | | | | | | | ond time | P.S.T. | 1962 | ; | 11/8 | 12/6 | 1963 | 1/9 | 2/7 | 3/6 | 1,4/3 | 5/9 | 6/3 | 1 | ; | ; | | | b Laborotary pH. o Field pH. c Sum of colcium and magnessum in apm. d Arsenic (As), alkyl benzene sulfonate (ABS), and plosphate (PO.) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Grovimetric determination. h Annual medion and range, respectively. Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Internal States Department of Reclamation (USBR); United States Department of Water Branch (USBR); United States Department of Public Health States Department of Public Health States Department of Public Health (LEDPH); City of Long Beach, Department of Public Health (LEDPH); City of Long Beach, Department of States DELTA-MENDOTA CAMAL HEAR MINIOTA (STA. NO. 92) ANALYSES OF SURFACE WATER TABLE D-4 | | D. | | | _ | | | | | | | | | | | | | 7 | |-------------------------|----------------------------------|-----------------------|------|-------------------|----------------|------|------|------|-------------|-------------|----------|--------------|-------------|-------|-------------|-------------------|---| | | Analyzed
by i | | USGS | | | | | | | | | | | | | | | | - | bid - Coliform ⁿ | | S3. | Marchana
2400. | Minimum
.05 | | | | | | | | | | | | | | 1 | - Neg | | _ | 8 | 25 | 10 | | 8 | 15 | 25 | <u>9</u> | ٩ | 8 | 8 | 65 | KC | | | | Hardness
as CaCO ₃ | Tatol N.C.
ppm ppm | | 55 | 1 L | T. | | 88 | 89 | 32 | 98 | 82 | 6 | 1/2 | 83 | ₽ | | | | Hara
Program | | | 907 | 4 | 189 | | 178 | 808 | 103 | 170 | 92 | 45 | 83 | 93 | 11,5 | | | Par | sod - | | | 53 | 42 | 5 | | 53 | 22 | 22 | 51 | 32 | 3 | Lą | <u>\$</u> | 54 | | | Tatol | solved
solids | mdd ri | | 560 | 500e | 1480 | | 95¶ | 557 | 280 | 10te | 1856 | 316 | 184 | 368 | 2736 | | | | D. September of | | | | | | | | | | | Poh = 0.30 | | | 3 | ANS 0.01 | | | | Silica | (S:0g) | | | | | | | | | | | | | | | | | lion | Baran | <u>@</u> | | 0.1 | 1 | 0.5 | | 0.3 | 9.0 | 4.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | | | million | Flua- | (F) | | | | | | | | | | 0.2 | | | | 0.1 | | | squivolents per million | ž | (NO ₃) | | | | | | | | | | 0.02 | | | | 0.07 | | | equive | Chla- | (CI) | | 2.03 | 146 | 36 | | 3.81 | 164 | 38.1 | 2.91 | 36 | 0.51 | 24.68 | 32 | 62 | | | 5 | Sul - | (SO ₄) | | | | | | | | | | 34.0 | | | | 41
0.85 | | | constituents | -Joole | (HCO ₃) | | 102 | 146
2.39 | 2.36 | | 13th | 145
2.38 | 87 | 1.67 | 8F | 1.4
0.72 | 72 | 87
1.43 | 1.75 | | | Mineral con | | (CO3) | | 0.00 | 0.0 | 0.00 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.00 | 0.0 | | | Mine | Patas- C | (X) | | | | | | | | | | 2.0 | | | | 0.00 | | | | | (0 N) | | 2.35 | 106 | 102 | | 48. | 5.00 | 2.35 | 3.5 | 33 | 16
0.70 | 34 | 28 | 1.91 | | | | Mogns- | (Mg) | | | | | | | | | | 8.0 | | | | $\frac{14}{1.15}$ | | | | Calcium | (Co) | | 2.12 | 3.88 | 3.78 | | 3.56 | 4.16 | 2.07 | 3.40 | 0.90 | °8. | 1.66 | 1.86 | 23 | | | | Q H C | | | 7-7 | 8.2 | 8.1 | | 8,2 | 8.0 | 7.6 | 8.0 | 7.3 | 7.9 | 7.7 | 80 | 8.0 | | | 9 | canductance
(micramhas | at 25°C) | | 794 | 885 | 850 | | 808 | 88 | 964 | 716 | 303 | 173 | 340 | 297 | 194 | | | | p p s v | %Sat | | 46 | 86 | 92 | | 122 | 077 | 92 | 104 | 76 | 88 | 87 | 78 | 42 | | | | Dissgived | E dd | | 8.5 | 9.6 | 10.0 | | 14.5 | 1.11 | 9.1 | 10.6 | 9.1 | 8.0 | 7.5 | 7.0 | 6.9 | | | | | | | 88 | 62 | 53 1 | | 94 | 57 | 58 | 85 | 99 | 98 | 7.4 | 78 | 73 | | | | Discharge Tamp | | | 1 | : | 1 | | : | ; | : | 1 | : | : | 1 | 1 | : | | | | | P.S.T. | 1962 | 10/5 | 11/9 | 12/7 | 1963 | 1/10 | 2/8
1030 | 3/8
1330 | 1,72 | 5/10
0830 | 6/3 | 1/9 | 8/8
1345 | 9/10
0410 | | o Field pH b Lobarotary pH. c Sum of colcium and magnessum in epm. Derived from conductivity vs TDS curves g Gravimetric determination. h Amuol medion and range, respectively, Calculated from molyyses of duplicate monthly sampless made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. (USCHS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Capacity of Water Branch (USCS); United States Department of the Interior of Water Branch (USCS); United States Department of Water and Power (LADMP); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Canifornia (WADP); City of Lang Beach, Department of Mater and Power (LADMP); City of Lang Beach, Department of Mater and Mater and Power (LADMP); City of Lang Beach, Department of Mater and Mater and Mater and Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Mater and Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Department of Public Health (LADPH); City of Lang Beach, Department of Material Research Researc Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO,1) Determined by addition of analyzed constituents. #### ANALYSES OF SURFACE WATER TABLE D-5 DELIA-MENDOTA CANAL NEAR TRACY (STA. NO. 93) | Γ | | 2 | 1 | | | | _ | | | | | | | | | | | |-------------------|-------------------------|--|--------|------------------|-------|-------|------|-------|------------------|------|------|----------|--------------|------------|---------------------------------------|----------|------| | | | Analyzed
by i | USGS | | | | | | | | | | | | | | | | | 4 | bid - Coiform | Median | Maximum
7000. | 2.3 | | | | | | | | | | | | | | r | Tur | - pid
- pid
- pid
- pid | | 9 | 200 | 15 | | 5 | 92 | 8 | 52 | 52 | | 54 | 09 | 8 | | | | | 000
000
000
000
000
000 | | 35 | 67 | 777 | | ₹. | 7, | ₫ | 8 | 18 | | 13 | 15 | 17 | | | | | Hordness
es CoCO _S
Total N.C. | | 150 | 188 | 148 | | 154 | 55 | 149 | 107 | 25 | | 69 | 81 | 503 | | | | 4 | - 00 | | 53 | 54 | 55 | | 55 | 53 | 52 | 64 | 917 | | 24 | ħ. | 20 | | | | Totol | solids
In ppm | | 374° | 474 e | 412e | | 4 10° | 136 ^e | 388 | 549€ | 1746 | | 135e | 131 | 5276 | | | | | Other consistuents | | | | | | | | | Š. | ABS 0.00 | | | · · · · · · · · · · · · · · · · · · · | ABS 0.01 | | | | | Silico
(SiO ₂) | | | | | | | | | | 排 | | | | 티 | | | | LO | € | | 1:0 | 2.0 | 5.5 | | 0.5 | 0.2 | 5.0 | 2.0 | 0.0 | | 0.1 | 1.0 | 2.0 | | | million | aquivolents per million | -0ul-
abr
(F) | - | | | | | | | | | 0.0 | | | | 0.2 | | | parts per million | ants p | Ni-
trote
(NO ₃) | | - | | | | | | | | 0.8 | | | | 4.3 | | | 00 | squivo | Chio- | | 3.13 | 3.95 | 3.39 | | 3.39 | 31 | 2.79 | 1.66 | 38 | taken | 15 | 23 | 153 |
 | | | Ē | Sul -
fate
(SO ₄) | | | | | | | | | | 09.00 | sample taken | | | 68 | | | | lituants | Brear-
bonate
(HCO ₃) | | 2.29 | 148 | 2.08 | | 2.00 | 50.82 | 104 | 92 | 1.13 | - No | 63
1,03 | 1.31 | 168 |
 | | | Minarol constituents | Corbon-
Ote
(CO ₃) | | 000 | 0.0 | 0000 | | 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | | 0.0 | 0.0 | 0.00 | | | Ì | Mine | Potos-
(X) | | | | | | | | | | 1.9 | | | | 8.4 | | | | | Sodium
(No) | | 3.39 | 5.0 | 83 | | 3.74 | 1.22 | 3.38 | 1.96 | 30 | | 250 | 19 | 99 | | | | | Mogns-
sum
(Mg) | | | | | | | | | | 7.9 | | | | 1.93 | | | | | Calcium
(Ca) | | 3.01 | 1.08 | 2.96 | | 3.08 | 1.10 | 2.98 | 2.08 | 0.85 | | 1.30 | 1.61 | 2,25 | | | | | Q. | | 7.7 | 7.7 | 7.8 | | 7.8 | 7.1 | 7.6 | 7.5 | 7.2 | | 7.8 | 8,1 | 7.9 | | | | Spacific | conductance
(micromhos
of 25°C) | | 662 | 840 | 729 | | 729 | 241 | 689 | 142 | 297 | | 240 | 232 | 910 | | | 1 | | gen (r | | 100 | 93 | 19 | | 02 | 76 | 82 | 35 | 103 | | 16 | E | 777 | | | | | Disso | | 9.1 | 9.2 | 7.5 | | 8.1 | 8,1 | 8.5 | 9.5 | 9.6 | | 7.9 | 6.5 | 9.6 | | | - | | Ten or | | 89 | 19 | 51 | | 87 | 55 | 57 | 62 | L 9 | | 7.7 | 75 | 92 | | | - | | Discharge Temp
in cts in of | | 1700 | 980 | , | | , | 870 | 1660 | 865 | 1720 | | 3308 | 41.85 | 1720 | | | | | ond time
sompled
P.S.T. | 1962 | 10/4 | 11/11 | 12/11 | 1963 | 1/7 | 2/7 | 3/12 | 1315 | 5/7 | : | 1/10 | 8/7 | 9/10 | | o Field pH. b Laborotory pH. Arsenic (As), olkyl benzene sulfanote (ABS), and phosphate (PO.) c Sym of calcium and magnesium in epm. Determined by addition of analyzed constituents. a Darived from conductivity vs TDS curves Grovimetric determination. Minned analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States County Fload Control District (SECFCD); Mercopalition Water District of Southern California (MWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobaratores, or United States Public Health Service.
ANALYSES OF SURFACE WATER TABLE D-6 FRESNO RIVER NEAR DAULION (STA. NO. 113) | Γ | | oyzed
by i | | USGS | | | | _ | | | | | | | | | | | | | |-------------------|-------------------------|-------------------------------------|----------|------|-----------------------|-----------------|------------|------|--------|--|--------------|------------|----------|------|-----------------|-------------|--------------------|---|---|------| | - | £ | e CoCO ₃ ity MPN/mi by i | + | | mum. | .62
.62 | | | _ | | | | | | | | | | | | | L | | N E | _ | Med1 | Mex 1 | Minimum
0.62 | | | | | | | | 4 | | | | | | | | L | , L | P C | (E | | | 2 | 2 | | 0 | 0 15 | 0 15 | 0 35 | 9 0 | 0 | | | | | _ |
 | | | | Caco | ppm ppm | _ | | 25 | 51 | _ | 94 | 34 | 35 | 77 | 35 | 77. | _ | | | | |
 | | - | 1 | | o 8 | | _ | | 52 5 | | 25 | 143 | 17 | 36 | 36 | 36 | | | | | _ |
 | | \vdash | 10. | Bolved God - | | | | 180° 56 | 156 | | 147e 5 | ************************************** | 77
998 | 926 | 388 | 26 | _ | | | _ | |
 | | H | ا
ا | | - 1 | | _ | 7 | - | _ | - | | | | _ | | - | | | | |
 | | | | Other constituents ^d | - 1 | | | | | | | | | | PO4 0.10 | | | | | | | | | | | Sitica | 2 | | | | | | | | | | 23 | | | | | | | | | | le ou | Boron | 9 | | | 0.0 | 0,1 | | 0.1 | 0.8 | 0.0 | 0 | 0,1 | 0 | | | | | | | | million | er mi | Fluo- | | | | | | | | | | | 0.01 | | | | | | | | | ports per million | equivalents per million | 1 N - | | | | | | | | | | | 0,02 | | | | | | | | | ă | equivo | Chlo- | (C) | | No sample taken - dry | 1.38 | 1,10 | | 37 | 14
0.39 | 0.34 | 0.21 | 6.0 | 7.4 | led - | scheduled - | led ³ - | | | | | | u. | Sul - | | | ple tak | | | | | | | | 0.0 | | Not scheduled - | schedu | Not scheduled | | | | | | efituent | Bicar- | (HCO3) | | No sam | 58 | 56
0.92 | | 0.92 | 0.72 | 0.78 | 59
0.97 | 58 | 37 | - Not | - Not | No. | | | | | | Mineral constituents | Carbon- | (00) | | | 0.0 | 0.0 | | 0.0 | 0.00 | 000 | 0.0 | 0.00 | 0.0 | | | | | | | | | Min. | Potos- | Œ | | | | | | | | | | 1.5 | | | | | | | | | | | Sodium | (0 N) | | | 30 | 1.09 | | 23 | 12 | 11 0.48 | 11 | 9.5 | 6.4 | | | | | | | | | | Mogne- | (Mg) | | | | | | | | | | 2.4 | | | | | | | | | | | Calcium Mogna- | (2) | | | 1.04 | 1.02 | | 0.92 | 99.0 | 0 <u>.70</u> | 0.87 | 0.50 | 0.49 | | | | | | | | | | Q. H | | | | 7.8 | 7.7 | | 7.8 | 7.5 | 7.8 | 7.8 | 7.6 | 7.8 | | | | | | | | | Soon in | Conductonce (micromhos | | | | 362 | 22T | | 215 | 128 | 125 | 133 | 114 | 81 | | | | | | | | 1 | | 9 4 | %Sat | | | 100 | 85 | | 66 | 8 | , | 66 | 16 | 75 | | | | | | | | | Temo | Dissolved | ppm %Sat | | | 9.1 | 0,11 | | 12,0 | 7.6 | 11.0 | 7.6 | 9.1 | 8.6 | | | | | | | | - | | Temp
In OF | | | | - 89 | 51 | | 54 | 777 | ' | 62 | 09 | 89 | | | | | | | | | | Discharge Temp
in cfs in 0F | | | | 9 | п | | टा | 100 | 89 | 079 | 413 | 100 | | | | | | | | | | ond time | P.S.T. | 1962 | 1 | 11/8 | 12/6 | 1963 | 1/9 | 2/7 | 3/6 | 1615 | 5/6 | 6/3 | ; | ; | 1 | | | | a Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzone sulfanate (ABS), and phasphate (PO.) Derived from canductivity vs TDS curves. Determined by addition of analyzed constituents. h Amool median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Dublic Health Service. Marcel analyses made by United States Geological Survey, Quality of Water States March (USS), Linited States Calculated States Geological Survey, Quality of Water States Geological Survey, Quality of Water (WMD), Los Anageles, Department of Water and Power (LDOWP), City of Los Angeles, Department of Water States (WMD), Los Angeles, Department of Water States (WMD), Los Angeles, Department of Water States (WMD), as indicated. Public Health (LDOPH), Terminal Institution Laboratories, Inc. (TLL), or Caldianna Department of Water Resources (DWR), as indicated. #### TABLE D-7 KAMEAR RIVER BELOW TERMINOUS DAM (STA. NO. 35) ANALYSES OF SURFACE WATER | | _ | Anolyzed
by i | | | 0303 | _ | | _ | | | | | | | | | | | |-------------------|-------------------------|----------------------|---------|------|--------------|-----------------|-----------------|------|-----------------|-----------|------|-------------------------|-----------------|------|-------------|-------------------------------|--------------|--| | | _ | bid - Coliform A | + | | Maddan U | Maximum
2400 | Minimum
0.13 | | | | | | | | | | | | | H | - 10 | - A E | | | 15 | m | - | | - | 10 | ۳ | c _v | 7 | N N | N. | .2 | m | | | | | 000 | zà | | 0 | 0 | 0 | | 0 | O. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Totol | | 4 | 94 | 52 | | 55 | 15 | 29 | % | 30 | 16 | 16 | 8 | 36 | | | | Par | Sod - | | | 55 | 53 | 55 | | ₹ | 23 | ส | 53 | ส | 8 | 22 | 55 | 18 | | | | Total | solved
solves | E 66 | | 989 | 926 | 76° | | 93 ⁸ | 436 | 638 | 808 | 63 ⁸ | 338 | 328 | 1 ⁴ 6 ⁸ | 638 | | | | | Other constituents d | | | | | | | | | | PO _{1, =} 0.00 | | | | Po _{tt} = 0.15 | ABS = 0.0 | | | | | Silica | 200 | | | | | | | | | | 18 | | | | 9.6 | | | | ion | Boron | (9) | | 0.1 | 0.0 | 0.0 | | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | | | million | lim nei | Fluo- | | | | | | | | | | | 000 | | | | 0.0 | | | ports per million | equivalents per million | - in | | | | | | | | | | | 000 | | | | 2.6
0.04 | | | bod | equival | Chlo- | (5) | | 7.6 | 55
516 | 6.0 | | 8.2 | 1.4 | 0.08 | 0.03 | 0.07 | 0.03 | 0.03 | 1.5 | 8.8
80.08 | | | | č | Sul - | (\$0\$) | | | | | | | | | | 0.0 | | | | 0.08 | | | | stituents | Bicor- | (нсоз) | | 26.0
0.92 | 86. | % I.08 | | 75
1.23 | 0.28 | 39 | 38 | 9.6 | 0.34 | 8.3 | 0.43 | ₹.0
.7. | | | | Mineral constituents | Corban- | | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | | | : | Mine | Potos- | (K) | | | | | | | | | | 1.4 | | | | 0.05 | | | | | Sodium | (0 N) | | 8.50
0.18 | 6.1 | 6.6 | | 8.0 | 0.09 | 3.7 | 3.8 | 3.8 | 0.08 | 0.09 | 2.6 | 0.17 | | | | | Mogne- | (Mg) | | | | | | | | | | 0.10 | | | | 0.12 | | | | | Colcium | (0) | | 0.89 | 0.92 | 1.04 | | °E: | .3
0.3 | 0.39 | 0.56 | or 00.50 | 0.32 | 0.32 | 0.10 | 0.60 | | | L | | a E | | | 7.6 | 8.0 | 7.7 | | 7.6 | 6.5 | 4. | 6.9 | 7.2 | 6.8 | 6.8 | 6.7 | 8.9 | | | | Spacific | (micromhos pH | 2 | | 17. | 122 | 139 | | 150 | 45 | 85 | F | 18 | 141 | 17 | 57 | 35 | | | | | D C | %Sat | | 81 | 121 | 8 | | F | 16 | 92 | 48 | 98 | \$ | 112 | 8 | 81 | | | | | Dissolvs d | ₩ dd | | 7.5 | 11.6 | 11.0 | | 9.5 | 0.11 | 11.0 | 10.0 | 7.6 | 9.5 | 0.11 | 8.3 | 7.5 | | | - | | | | | 67 | 76 | 8 | | 143 | 45 | 94 | 3 | 8% | 62 | 62 | 65 | 72 | | | | | Discharge Temp | | | œ | 9 | 16 | | 1425 | 4472 | 350 | 625 | 1297 | 446 | 1540 | 898 | 8 | | | | | ond time | P.S.T. | 1962 | 10/2 | 11/1 | 12/5
1245 | 1963 | 1/7 | 2/5 | 3/5 | 14/2 | 5/6 | 6/3 | 7/1
1240 | 8/8 | 9/11
07%0 | | Laboratory pH. Arsenic (As), olkyl benzene sulfonate (ABS), and phosphote (PO.) Sum of calcium and magnessum in epm. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Gravimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples most by California Department of Public Health, Duvason of Lobaratories, or United States. Public Health & Service Maneal analyses, made by United States Geological Survey, Quality of Wares Bornel (USE). United States and Propertment of Maneal analyses, made by United States Public Health & Service (USPHS), 5an Bennadino County Flood Count Dustrier (SEGCO), Mempalator Character Obstact of States (MAPHS). Cary of Los Angeles, Department of Mater Resources (DWR), as indicated Public Health (LBDPH), Terminal Festing Laboratores, Inc. (TLL), and California Oppariment of Water Resources (DWR), as indicated ANALYSES OF SURFACE WATER TABLE D-8 KERN RIVER HEAR BAKERSFIKED (SEA, NO. 36) | | | Anolyzed
by i | | SDSD | | | | | | | | | | | | | | | |----------------|--------------|----------------------------------|---------------------|---------------|------------------|-----------------|------------|------|-----------|--------------|------|-------------------------|-----------|-----------------|--------------|-------------|------------------------------------|--| | | | Coliform MPN/ml | | Median
6.2 | Martmum
1300. | Minimum
0.23 | | | | | | | | | | | | | | | | - P. | 1 | | 91 | 0 | 2 | | 2 | 2.7 | 9 | Я | ۵ | C) | m | 7 | 7 | | | | | Hardness
as CaCO ₃ | D E G | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Totol | | 917 | 84 | 54 | | 96 | 54 | 24 | 94 | 7 4 | 36 | 98 | 33 | 34 | | | | | sod - | 5 | | 38 | 517 | 775 | | 717 | 143 | 04 | 36 | 82 | 37 | 3,4 | 33 | 33 | | | | Tatal | spilos | in ppm | | 91e | 118e | 125e | | 135e | 129e | 8 | 97e | 958 | 19 _e | 55e | 62° | 989 | | | | | g g | | | | | | | | | | PO _{lt} = 0.15 | ABS = 0.0 | | | ABS = 0.0 | A6 = 0.2
PO ₁ = 0.01 | | | | 1 | Silic | (\$005) | | | | | | | | | | | | | | | | | | million | Boron | | | 0.1 | 0.2 | 0.2 | | 0.1 | 0.2 | 0.1 | 0.2 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | | | 100 | por | P. Loo | (F) | | | | | | | | | | 0.0 | | | | 0.02 | | | and and alling | aquivolents | ž | (NO ₃) | | | | | | | | | | 0.7 | | | | 3.6 | | | 1 | oviupe | Chio- | (CI) | | 0.24 | 8.8 | 0.25 | | 0.28 | 11.0
0.31 | 0.30 | 6.0 | 6.2 | 5.2 | 3.6 | 3.0 | 3.5 | | | 1 | ē | Sul - | (SO ₄) | | | | | | | | | | 0.27 | | | | 5.0 | | | | constituents | Bicor- | (HCO ₃) | | 86 | 1.21 | 1.34 | | 1.54 | 98
1.45 | 1,00 | 1.05 | 1.02 | 950 | ₹9.0
14.0 | 0.70 | 51 | | | | Wineral cal | | (CO ₃) | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | | | | ž | Potos- | E(X) | | | | | | | | | | 0.00 | | | | | | | | | Sodium | (NO) | | 0.57 | 18
0.78 | 18
0.18 | | %
0.87 | 0.83 | 0.57 | 0.92 | 0.57 | 9.6 | 6.3 | 7.2 | 0.36 | | | | | Magne- | (Mg) | | |
| | | | | | | 0.08 | | | | 2.2
0.18 | | | | | Eoiole | (Ca) | | 0.92 | 0.96° | 1.08 | | 1.13 | 1.08 | 0.84 | 0.92 | 0.80 | 0.72 | 0.53 | 0.62 | 0.50 | | | - | | A
H | - | | 7.7 | 8.0 | 7.8 | | 8.1 | 8,2 | 7.7 | 7.9 | 7.5 | 1:1 | 7.6 | 4.7 | 7.6 | | | | Spacific | conductance
(micromhos | 0.62.10 | | 241 | 183 | 195 | | 210 | 300 | 150 | 151 | 151 | 118 | 85 | % | 109 | | | | | Dissolvsdoxygen | %Sat | | 92 | ま | B9 | | 87 | 46 | : | 102 | % | 95 | 91 | B3 | 101 | | | | | | Edd | | 7.4 | 9.6 | 9.1 | | 11.3 | 11.1 | 10.5 | 7.01 | 9.3 | 0.6 | 8.2 | 7.2 | 8.1 | | | - | | Temp
in of | | | 99 | 58 | 84 | | 9 | 36 7 | 1 | 55 1 | 65 | 69 | 7 | 13 | 7 | | | | | Dischorge Temp | | | 383 | 64 | TIZ | | 184 | 777 | 717 | 598 | 920 | 735 | 2033 | 1966 | 981 | | | | | and time | P.S.T. | 1962 | 10/4 | 11/1 | 12/5 | 1963 | 1/4 | 1/31 | 3/5 | 4/2 | 5/8 | 6/4
1005 | 7/8
1115 | 8/8
1115 | 9/16 | | Field pH. Sum at calcium and magnesium in epm. Laboratory pH Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Gravimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate manshly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Mineral analyses made by United States Geological Survey, Chairly of Water Borneth (1955), United States Borneth (1955), United States Public Health Survice (USPHS); San Bernardina County Flood Control District (195ECD), Survey Chairly of States #### ANALYSES OF SURFACE WATER TABLE D-9 KERN RIVER BELOW ISABELLA DAM (STA. NO. 36A) | _ |-----------|-------------------------|---|--------|------------------|------------|------|------|------|------------|-------------|--------|-----------------------|-----------------|------|--------------------|--------------------|------|--| | | | Analyzed
by i | USGS | | | | | | | | | | | | | | | | | | - | ec CoCO ₃ Ity MPN/mi
Total N.C. | Median | Meximum
7000. | 60. | | | | | | | | | | | | | | | Γ | Tur | - E 6 | | 15 | cu | CV . | | m | Я | 35 | 30 | -7 | cv | т | | | | | | | | SOU NO | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | Total N.C. | | 32 | 36 | 39 | | 71 | 39 | 1,1 | 45 | 01 | 32 | ₹ | | | | | | | Per- | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 143 | 33 | 35 | | ₹. | 36 | 24 | 33 | 34 | ₹ | 33 | | | | | | | Toto | solved cont | | 19L | 77. | 10 | | 83 | 8 | 15 e | 83 | 898 | 95 _e | *6* | | | | | | | | Other constituents | | | | | | | | | | PO _{1, 0,10} | | | | | | | | | Ì | Silico
(SiO ₂) | | | | | | | | | | 왜 | | | | | | | | | i o | Boron
(B) | | 0.3 | 1:0 | 0.2 | | 1 | 0:0 | 0.1 | 0.1 | 0.1 | 0: | 0: | | | | | | million | Br mil | Fluo-
ride
(F) | | | | | | | | | | 0.1 | | | | | | | | ports per | equivolents per million | 1 rote
(NO ₃) | | | | | | | | | | 0.0 | | | | |
 | | | å | equivo | Chlo-
ride
(CI) | | 8.5 | 0.11 | 3.2 | | 5.2 | 6.0 | 5.5 | 2.9 | 5.2 | 0.11 | 3.5 | led ^j - | led ^j - | | | | | ٤ | Sul -
fore
(SO ₄) | | | | | | | | | | 7.0 | | | scheduled | scheduled | | | | | constituente | Bicor-
bonote
(HCO ₃) | | 0.82 | 54
0.89 | 62 | | 1.08 | 57
0.93 | 61 | 64 | 62 | 148 | 34 | - Not | - Not | | | | | Minerol con | Corbon-
ote
(CO ₃) | | 000 | 000 | 000 | | 0.0 | 000 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | | | | | | 1 | Min | Sium
(X) | | | 1.08 | | | | | | | 2.0 | | | | | | | | | | Sodium
(No) | | 0.48 | 8.3 | 9.6 | | 0.44 | 0.14 | 0.31 | 010 | 10 | 7.6 | 5.5 | | | | | | | | Mogne-
stum
(Mg) | | | | | | | | | | 1.9 | | | | | | | | | | alcium
(Co) | | 0.64 | 0.72 | 0.78 | | 0.87 | 0.78 | 0.82 | ° 68.0 | 13 | 19.0 | 248 | | | | | | 1 | | Q.H. | | 6.9 | 7.1 | 6.7 | | 7.7 | 6.9 | 7.3 | 7.4 | 7.3 | 7.2 | 7.2 | | | | | | | Specific | (micromhos pH b c at 25°C) | | 120 | 113 | 125 | | 132 | 127 | 119 | 132 | 125 | 103 | 77 | | | | | | 1 | | yed (m | - | 83 | 98 | 16 | | 8 | 8. | 8 | 98 | 87 | 89 | 93 | | | | | | | | Dissolved
oxygen
ppm %Sat | | 7.6 | 8.4 | 10.0 | | 0,11 | 10.0 | 7.6 | 10.2 | 10.0 | 0.01 | 9.5 | | | | | | - | | Temp
In of | | 89 | 62 | 52 | | 42 | 51 | 53 | 917 | 84 | 20 | 57 | | | | | | | | Dischorge Temp
in cfs in PF | | 911 | 1 | 14 | | 77 | O. | CV . | CV. | 09 | 250 | 1563 | | | | | | - | | ond time
sompled | 1962 | 10/1 | 11/1 | 12/3 | 1963 | 1/2 | 2/4 | 3/1 | 17/5 | 5/1 | 6/6 | 1/2 | ; | 1 | | | b Labarotory pH. 1 Arsenic (As), olkyl benzene sulfonate (ABS), and phosphata (PO.) c Sum of colcium and magnesium in epm. Derived from canductivity vs TDS curves Determined by addition of analyzed constituents. i Minerol analyses made by United Strates Geniagical Survey, Quality of Waiter Branch (USGS), United States Department of the Interior, Survey of Reclamation (USBR), United States Destruct of Survey, Quality of Waiter Bristian (SACECD); Metropolition Water District (SACECD); Metropolition Water District of Survey, California (MSP), Los Apparement of Waiter and Power (LADWR); City of Los Angeles, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meachin (LADPH); City of Long Basch, Department of Public Meaching (LADPH); City of Long Meaching (LADPH); City of Long Basch, Department of Public Meaching (LADPH); City of Long LadPH); City of Long Meaching (LADPH); City of LadPH); Cit h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Public Health Service Gravimetric determination ANALYSES OF SURFACE WATER TABLE D-10 | | | Analyzed
by 1 | nses | | | | _ | | | | | | | | _ | | | | |--------------------------------------|---------------------------------------|---|-------|------------------|--------------|-------|------|--------|-------|--------|-------|--|------------|-------|--------------------|-------------|--|---| | | 4 | € E | | 5 1 | M e | | | | | | | | | | | | | | | | | Hordness bid - Coliform" os CoCO ₃ ily MPN/mi Tatal N.C. ppm ppm | Media | Meximum
1300. | Arning
2. | | | | | | | | | | | | | | | | ,
5 | - pid
Light | | ю | т | | | · · | 7 | ~ | ~ | m | CU . | - | | | | | | | | Hordness
os CoCO _S
Tatal N.C.
ppm ppm | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | 04 | 39 | 747 | | 62 | 38 27 | 35 | 35 | 8 | 35 13 | 38 12 | | | | | | - | - | - pon | | 926 42 | 102 45 | 1200 | | 123 37 | 63 | 784 40 | 79 37 | 74.8 | 362 | 36 | | | | | | - | ا
ا | solide
in ppm | | | — | ,
 | | н | | | | <u>. </u> | | | | _ | | | | | | Other constituents d | | | | | | | | | | PO _{1, 0.00} | | | | | | | | | | Silica
(SiO ₂) | | | | | | | | | | ଥା | | | | | | | | | lion | Boron
(B) | | 2.0 | 0.1 | 0.0 | | 0.1 | 0:0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | | | | | | | per million | Fluo-
ride
(F) | | | | | | | | | | 0.1 | | | | | | | | TA. 36 | ports per million
volents per mill | | | | | | | - | | | | 0.00 | | | | | | | | VILLE (S | equivolents | Chia-
ride
(Ci) | | 8.0 | 6.2 | 0.50 | | 8.4 | 0.11 | 5.2 | 3.2 | 3.8 | 2.0 | 2.5 | Led ¹ - | red - | | | | R KERW | ē | Sul -
fors
(SO ₄) | -7 | | | | | | | | | 5.0 | | | scheduled | scheduled - | | | | ncern river near kernville (sta. 36b | |
Bicor-
bonote
(HCO ₃) | | 58 | 66
1.08 | 1.26 | | 34 | 99.0 | 0.90 | 57 | 47
0.777 | 80.33 | 16 | - Not | - Not | | | | KERN R | Mineral constituents | Carbon-
cos
(COs) | | 0.0 | 0000 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.0 | 0.00 | | | | | | | Mine | Potas-
sum
(K) | | | | | _ | | | | | 1.4 | | | | | | _ | | | | Sodium
(No) | | 13 | 15 | 27 | | 17 | 0.33 | 9.6 | 9.5 | 0.33 | 3.2 | 3.2 | | | | | | | | Magns-
s:um
(Mg) | | | | | | | | | | 0.14 | | | | | | | | | | (Ca) | | 08.0 | 0.78 | 0.74 | | 1.24 | 0.54 | 0.64 | 0.70 | 9.0 | 0.26 | 0.23 | | | | | | Ì | | o Ha | | 7.2 | 7.5 | 7.4 | | 7.6 | 6.8 | 7.h | 7.4 | 7: | 6.6 | 6.7 | | | | _ | | | Specific | conductance pH b at 250 C) | | -32 | 147 | 172 | | 11.1 | 50 | 112 | 113 | 93 | 1,2 | 38 | | | | | | Ì | | gan
%Sat | | 4. | 88 | 87 | | 87 | 87 | 16 | 87 | 9 | 8 | 3 | | | | | | | | Oxygan
ppm %Sat | | 5.5 | 9.6 | 17.1 | | 5.3 | 11.0 | 5.11 | 12.2 | 10.2 | 10.4 | 8.0 | | | | | | | | | | 55 | ٤ر | 17 | | 35 | 742 | 17 | % | C77 | 7.8 | 75 | | | | | | | | Dischorge Temp | | , | | 1 | | 166 | 1787 | 946 | 761 | 1137 | 5912 | 2019h | | | | | | | | ond time
sompled
P S.T. | 1 102 | 10/1 | 11/1 | 12/3 | .963 | /2 | 2/4 | 3/1 | 1030 | 5/1 | 9/9
9/9 | 7/2 | 1 | 1 | | | o Field pH Gravimetric determination. Annul median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interior, Surreau of Reclamation (USCR), United States Geological Survey, Quality of Water Branch (USCR), United States Department of Reclamation (USCR), United States Geological Survey, Quality of Water Branch States Department of Public Health (LEDPH). Time Control of Survey, Quality of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Public Health (LEDPH). City of Lana Beach, Department of Survey and Control of Survey Surv b Labaratory pH. c Sum of colcium and magnesium in epm. d. Arsenic (As), alkyl banzone sulfonate (ABS), and phosphate (PO_4) e. Derived from conductivity vs TDS curves. Determined by addition of onalyzed constituents. #### ANALYSES OF SURFACE WATER KINGS RIVER BELOW NORTH FORK (STA. NO. 33c) | | _ | Analyzed
by i | USGS | | | | | | | | | | | | | | | | |-------------------|-------------------------|---|--------|-----------------|-----------------|-------------------|------|------|------|------|------------|----------|------|-------|------------------------|--------------------|--|---| | - | - | Hordness bid - Coliform as CoCO ₃ ity MPN/mi
Total N C. ppm | Median | Maximum
500. | Minimum
0.62 | | | | | | | | | | _ | | | | | | 1 | - Pidd | | 15 | н | 7 | | 0.0 | 0\ | CV. | 5 | m | | ٦ | | | | | | | | N O N E dd | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | Hordness
es CoCO ₃
Totol N.C.
ppm ppm | | 97 | 18 | 8 | | 8 | 114 | 15 | 16 | 17 | 00 | 9 | | | | | | r | | e od - | | 33 | 31 | 30 | | 62 | 33 | 53 | 53 | 77 | 75 | 53 | | | | | | | Total | solved cont
solids cont
in ppm | | 3₹ | 39e | 1 ⁴ 3e | | 11Be | 33 | 32e | 33 | 18 | 16 | 12e | | | | | | | | Other constituents d | | | | | | | | | | PO, 0.00 | | | | | | | | | | Silica
(SiO ₂) | | | | | | | | | | 엙 | | | | | | | | | lion | Boron
(B) | | 0.0 | 0,0 | | | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | mellion. | E B | Fluo-
ride
(F) | _ | | | | | | | | | 000 | | | | | | | | ports per million | equivolents per million | rote
(NO ₃) | | | | | | | | | | 0.00 | | | | | | | | od . | equivo | Chio-
ride
(CI) | | 2.4 | 0.07 | 2.8 | | 3.8 | 2.7 | 0.04 | 0.0 | 0.03 | 0.03 | 1.6 | led 5 - | led ^j - | | | | | <u>-</u> | Sul -
fots
(SO ₄) | | | | | | | | | | 0.0 | | | scheduled ^j | . scheduled | | | | | stituents | Bicor-
bonote
(HCO ₃) | | 20 | 24 | 0.41 | | 97.0 | 0.31 | 0.33 | 21
0.34 | 0.36 | 0.18 | 0.13 | - Not | - Not | | | | | Mineral constituents | Corbon-
ote
(CO ₃) | | 0.00 | 0 0 | 0.00 | | 0.0 | 00 | 0.00 | 0.0 | 0.00 | 0.00 | 000 | | | | | | : | Min | Potos-
sium
(K) | | | | | | | | | | 0.02 | | | | | | | | | | Sodium
(No) | | 3.3 | 3.6 | 3.8 | | 0.18 | 3.2 | 2.7 | 3.0 | 0.11 | 0.05 | 0.05 | | | | | | | | Mogne-
sium
(Mg) | | | | | | | | | | 0.0 | | | | | | | | | | Calcium
(Co) | | 0.31 | 0.36 | 01.0 | | 77.0 | 0.29 | 0.30 | 0.32 | 0.29 | 0,16 | 0.12 | | | | | | Γ | | E. | | 6.9 | 7.7 | 6.9 | | 7.6 | 6.9 | 7.0 | 7.1 | 7.6 | 7.0 | 6.8 | | | | | | | Specific | conductance p.H.
(m.cromhos p.H.
at 25°C) | | 64 | 95 | 29 | | 89 | 74 | 917 | 74 | 777 | 53 | 17 | | | | | | | | gen (n | | 111 | 8 | 98 | | 82 | 107 | 78 | 75 | 83 | 700 | 103 | | | | _ | | | | Dissolved
osygen
ppm %Sot | | 10.5 | 10.0 | 10.2 | | 10.6 | 12.5 | 10.2 | 10.7 | 10.4 | 10.5 | 10.3 | | | | | | | | | | 99 | 28 | 94 | | 140 | 84 | 77 | L+7 | 75 | 55 | 59 | | | | | | | | Dischorge Temp
in cfs in of | | 272 | 18 | , | | 1.35 | 1852 | 976 | 1450 | 4238 | | 5200 | | | | | | | | ond time
compled
P.S.T. | 1962 | 10/1 | 11/5 | 12/3 | 1963 | 1/2 | 2/11 | 3/4 | 1030 | 5/6 | 0221 | 1,300 | 1 | 1 | | | o Field pH. b Laboratory pH. Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.) c Sum of colcium and magnesium in epm. Derived from canductivity vs TDS curves. Determined by addition of analyzed constituents. Grovimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Ceological Survey, Quality of Water Branch (USDR). Lass Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LBDPH); Emminal Testing Lebaratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.) Effective July 1963, this station sampled only in January, May, July and October. KINGS RIVER BELOW PROPLES WEIR (STA. NO. 34) ANALYSES OF SURFACE WATER | | | | | | | | | | | | | | | _ | | | | |-------------------|---------------------------|-------------------------------|------|--------------|-----------------|-----------------|------|------------|------|-------------|-------------------------|-------------|------|-----------------|-------------------------|-------------|---| | | Analyzed | by I | | USGB | | | | | | | | | | | | | | | | Tur-
bid-Coliformh | MYN/E | | Median
23 | Maxteus
620. | Minimum
0.62 | | | | | | | | | | | | | | - pid | mgg u | | ន | m | 60 | | cu . | Q. | -4 | ٧. | п | | N | m | m | | | | Hordness | N E G | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | ۰ | | | | | | | 8 | 57 | 39 | | 38 | 8 | 57 | 75 | % | 18 | ន | # | 12 | | | | Cent | E | | 92 | 25 | 23 | | % | % | - 33 | 24 | 23 | 8 | 33 | 33 | 19 | | | - | drs- | solids
in ppm | | 1 3 a | 106 | 71 ^e | | 72° | μr | 105 | 80 | 51. | 35e | 19 ^e | 30 | 32 6 | | | | | Other constituents | | | | | | | | | Po _{1,} = 0.40 | Also = 0.0 | | | PO _{1, = 0.20} | ABS = 0.0 | | | | | (SiO ₂) | | | | | | | | | | 9 | | | | 6.8 | | | | | Boron
(B) | | 0.0 | 0.0 | 0.0 | | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | - | | million | | - ds (F) | | | | | | | | | | 0.2
0.01 | | | | 0.00 | | | ports per million | ents
G | trote
(NO ₃) | | | | | | | | | - | 0.02 | | | | 1.4
0.02 | | | od | 0400 | - ag: (C) | | 2.6
0.07 | 0.13 | 0.00 | | 3.6 | 0.23 | 5.5
6.16 | 3.4 | 3.0 | 0.00 | 0.04 | 0.03 | 0.03 | | | Ē | | fote
(\$0 ₄) | | | | | | | | | | 0.09 | | | | 0.02 | | | constituents | | bonote
(HCO ₃) | | 8 P | 38 | 52
0.85 | | 52
0.85 | 74 | 76 | 0.90 | 0.57 | 0.38 | 0.21 | 80.33 | 0.25 | | | Mineral con | | (CO.5) | | 0.0 | 0.0 | 000 | | 000 | 000 | 000 | 0.0 | 0.0 | 0.00 | 000 | 0.0 | 0.0 | | | M | | Stum
(K) | | | | | | | | | | 0.03 | | | | 0.08 | | | | | Sodium
(Na) | | 3.3 | 0.39 | 5.4 | | 0.25 | 9.5 | 7.9 | 6.2 | 4.2
0.18 | 0.12 | 0.10 | 2.6 | 0.06 | | | | | Sium
Sium
(Mg) | | | | | | | | | | 0.16 | | | | 0.08 | | | | | (Ca) Sium
(Ca) (Mg) | | 0.40 | 1.14 | 0.78 | | 0.76 | 1.19 | 1.14 | 0.84 | 8.1 | 0.36 | °.8 | 0.22 | 3.0 | - | | | o H o | | | 7.3 | 8.0 | 7.5 | | 8.0 | 7.8 | 7.8 | 7.7 | 7.5 | 7.6 | 7.1 | 7.3 | 7.2 | | | | Spacific conductonce of b | at 25°C) | | 62 | 154 | 104 | | 105 | 171 | 153 | 911 | 47 | 51 | % | 143 | 32 | | | | 9 | %Sat | | 79 | 46 | 82 | | 93 | 74 | ; | 4¢ | 96 | 93 | 89 | 8 | 84 | | | | Dissolved | ppm
ppm | | 8.9 | 9.1 | 8.9 | | 10.6 | 8.6 | 10.4 | 4.6 | 8.5 | 8.7 | 8.3 | 8.9 | 8.6 | | | | | | | 67 | 63 | 4 | | 64 | 84 | 1 | -8 | 69 | 99 | 65 | 61 | 65 | | | | Dischorge Tamp | S C C | | 435 | 39 | OI. | | Ħ | 8. | 011 | 163 | 0£ 17 | 1310 | 2225 | 2375 | 1648 | | | | Data
Sund time | | 1962 | 10/4 | 11/7 | 12/5 | 1963 | 1/4 | 2/6 | 3/5 | 4/2
1520 | 5/8 | 6/4 | 7/8
1410 | 8/8
0815 | 9/16 | | b Laboratory pH Sum of calcium and magnesium in epm. Arsonic (As), alkyl banzone sulfanote (ABS), and phosphote (PO_k) Determined by addition of onalyzed constituents. Derived from canductivity vs TDS curves. Gravimetric determination. Amenol onlyses made by United States Geological Survey, Quality of Water Bronch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bennadino County Flood Cannol District (SBCECD), Materiophical Water District of Suchem Coliforna (MMD); Las Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Water Resources (DWR); as indicated. Public Health
(LBDPH); Terminal Testing Loboratories, Inc. (TLL); or California Department of Water Resources (DWR); as indicated. Amusal median and range, respectively. Calculated from analyses of duplicate manify samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service. KINGS RIVER BELOW PINE FIAT DAM (STA. NO. 33b) | _ | _ | | | | | | | | | | | | | | | | |
 | | |-------------|-------------------------|---------------------------------|-----------------------|--------|--------------------------|-----------------|-------------|------|-------------|-------|------|------------|-----------------------|------|--|-----------|-----------|------|--| | | | Anciyzed
by § | | USGS | | | | | | | | | | | | | | | | | | 4 | de CaCO ₃ 11y MPN/mi | | Median | .3.
Max Imum
2400. | Minimum
0.0€ | | | | | | | | | | | | | | | | Tur- | - bid
- yt- r | | | 9 | Cı | - | | Cu | 0.7 | т | 10 | m | 1 | -1 | | | | | | Γ | | 000 | S E | | 0 | 0 | 0 | | 0 | CV . | 0 | - | 0 | 0 | 0 | | | | | | | | Hord
9e Co | Total N.C.
ppm ppm | | 10 | 10 | 9 | | 12 | 57 | 18 | 15 | 57 | 97 | 00 | | | | | | Γ | Per | 1 P S | | | % | % | 25 | | 23 | 242 | 22 | 23 | 5 | % | 75 | | | | | | | Total | solved | Edd c | | 23° | 22° | 23 | | 25° | 51e | 140° | 32° | 418 | 336 | 17 ^e | | _ | | | | | | Other constituents d | | | | | | | | | | | PO _{1,} 0.00 | | | | | | | | | | Silico | 13010 | | | | | | | | | | 7.7 | | | | |
 | | | | 60 | Boron | 6 | | 0.0 | 0,0 | 0:0 | | 0.1 | 0.1 | 7: | 0.0 | 0.0 | 0.0 | 0.0 | | _ |
 | | | million | i mil | Fluo- | | | | | | | | | | | 000 | | | | |
 | | | ports per m | equivolents per million | Ni - | \rightarrow | | | | | | | | | | 0.0 | | | | | | | | pod | equival | Chio- | | | 0.03 | 0.03 | 0.0 | | 0.3 | 1, 1, | 2.0 | 0.0 | 0.03 | 0.04 | 0.0 | - (p= | - qu |
 | | | | <u> </u> | Sul - | (80%) | | | | | | | | | | 2.4 | | | scheduled | scheduled |
 | | | | #11fusnts | Bicor- | (HCO ₃) | | 14
0.23 | 14 | 13 | | 18 | 277 | 24 | 17
0.28 | 18 | 25 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | - Not | - Not | | | | | Mineral constituents | Carban | (co) | | 000 | 0.00 | 0.00 | | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Wine | Potos- | (¥) | | | | | | | | | | 0.03 | | | | | | | | | | Sodium | (0 N) | | 0.07 | 1.4 | 1.6
0.07 | | 1.6
0.07 | 3.4 | 2.4 | 0.00 | 0.00 | 2.6 | 0.05 | | | | | | | | Mogne- | (Mg) | | | | | | | | | | 0.7 | 0.05 | | | | | | | | | Eniolo: | (20) | | 8 | 0.21 | 0.21 | | 0.23 | 0.48 | 0.37 | 0.30 | 10.24 | 0.33 | 0.16 | | | | | | | | DH. | | | 6.9 | 6.7 | 7.4 | | 7.0 | 7.1 | 7.0 | 9*9 | 6.9 | 6.7 | 6.7 | | | | | | | Specific | (micromhos pH b | | | 33 | 30 | 31 | | 75. | 69 | 77 | 143 | 70 | 4.5 | 23 | | | | | | | | p u | %Sat | | 110 | 118 | 102 | | 97 | 93 | 96 | 66 | 98 | 109 | 102 | | | | | | | | Dis | , шаа | | 10.0 | 11.0 | 11.2 | | 10.4 | 9.5 | 10.8 | 10.9 | 10.5 | 10.6 | 10.2 | | | | | | | | Temp
in OF | | | 89 | 99 | 09 | | 14.5 | 58 | 55 | 84 | 77 | 62 | 9 | | | | | | | | Discharge Temp
in cfs in oF | | | 1038 | 90 | , | | 502 | 21 | 1771 | 7776 | 1270 | , | 6880 | | | | | | | | ond time | P.S.T | 1962 | 10/1 | 11/5 | 12/3 | 1963 | 1/4 | 2/11 | 3/4 | 1350 | 5/6 | 6/4 | 7/8 | 1 | ; | | | Leborotory pH. Field pH Sum of colcium and magnessium in epm. Arsenic (As), alkyl benzene sulfanote (ABS), and phasphate (PO_4) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Growinseric determination. Annual median and rougs, respectively, Calculared from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Annual median and rougs, respectively, Calculared States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), Son Bennardine Caunty Flood Cannol District States Seculated States California (MMD). Las Angeles Department of Mene and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles Department of Mene Resources (DMR), as indicated. Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TLL), or California Department of Mene Resources (DMR), as indicated. Exerctive July 1:963, this station sampled only in January, May, July and October. MERCED RIVER BELOW EXCHEQUER DAM (STA. NO. 32a) | | pe z | | 92 | | | | | | | | | | | | _ | | | |------------------------|----------------------------------|-----------------------|--------|------------------|-------|----------------|------|------|-------------|-------------|------|-----------------------|------|------|-----------|--------------------|---| | | Analyzed | | USGS | | | | | | | | | | | | | | | | | bid - Coliform | | Median | Meximum
2400. | 0.23 | | | | | | | | | | | | | | , | pid - bid | | | 8 | | 7 | | 10 | \$45 | 35 | 30 | 5 | C) | Q | | | | | | Hardness to as CoCO ₃ | P.C. | | т | 0 | c ₂ | | ٦ | 0 | ٦ | C/ | ٦ | ı | 0 | | | | | | Horo
os C | Total N.C.
ppm ppm | | 28 | 30 | 30 | | 33 | 15 | 18 | 25 | 56 | 18 | 11 | | | | | - | 00 m | | | 15 | 18 | 17 | | 15 | 19 | 19 | 19 | 18 | 55 | 24 | | | | | Total | solved
solids | E dd u | | 1,3e | 164 | 506 | | 516 | 25e | 326 | 38 | 548 | 8 | 19e | | | | | | Dather constituents d | | | | | | | | | | | Po _{1, 0.05} | | | | | | | | Silico | (SOIS) | | _ | | | | | | | | 왜 | | | | | _ | | Lon | 5 | Ē. | | 0.0 | 0.0 | 0 | | 0.2 | 0.1 | 0:0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | million
per million | Fluo- | | | | | | | | | | | 0.0 | | | | | | | | N) - | | | | | | | | | | | 0.5 | | | | | | | equivolents | Chlo- | | | 2.8 | 3.0 | 2.5 | | 3.4 | 1.8 | 0.04 | 0.0 | 2.8 | 2.5 | 0.04 | ed1 - | led ³ - | | | <u>=</u> | Sul - | - | | | | | | | | | | 0.10 | | | scheduled | scheduled | | | Mineral constituents | Bicar- | (HCO3) | | 30 | 36 | 34 | | 33 | 19 | 21 0.34 | 25 | 30 | 0.34 | 0.23 | - Not | Not | | | rol con | Corbon | (co) | | 0.00 | 0.0 | 0.00 | | 0.00 | 000 | 0.00 | 0.0 | 000 | 0.00 | 0.00 | | | | | Mine | Potos- C | 3 | | | _ 10 | | | - 10 | | | | 0.02 | | | | | | | | Sodium | 0 2 | | 2.4 | 2.9 | 2.7 | | 2.8 | 1.7
0.07 | 1.7
0.07 | 0.10 | 2.8 | 0.12 | 1.6 | | | | | | Magne- | (Mg) | | | | | | | | | | 0.12 | | | | | | | | Colcium | (0) | | 26.0 | 965.0 | 09.00 | | 29.0 | 0.30 | 0.36 | 0.45 | 8.0 | 0.35 | 0.22 | | | | | | a d | | | 7.3 | 7.4 | 9.7 | _ | 7.4 | 7.0 | 7.3 | 7.3 | 7.7 | , | 7.1 | - | | | | | Conductonce PHb (micromhos phb) | | | 39 | 75 | 77 | | 78 | 38 | 64 | 58 | 65 | 777 | 62 | | | | | | D s v | %Sot | | ŝ | 97 | 76 | | 103 | ę | 78 | 74 | 8: | 5 | 103 | | | | | | Dissolvs d
oxygen | mod | | 7.7 | 5.2 | 10.0 | | 11.3 | 10,8 | 8.8 | 3.6 | 10.4 | 10.1 | 10.7 | | | | | | | | | 70 | 69 | 52 1 | | 52 | 50 1 | 50 | 20 | 55 1 | 26 1 | 56 1 | | | | | | Dischorge Temp
in cfs in of | | | 36 | 20 | 7,5 | | | 1537 | 730 | 1551 | 0019 | 4032 | 1960 | | | | | | | P S.T. | 204 | 0/5 | 1/9 | 2/7 | 1963 | 1/8 | 2/8 | 3/8 | 4/3 | 5/ | 6/3 | 7/8 | ; | : | | o Freid pH. Sum of calcium and magnesium in eom. b Laboratory pH. Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PQ.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. h Amuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calculation Department of Public Health, Division of Laboratories, or United States Public Health Service. Marcel notices made by United States Geological Survey, Quinty of Water Bronch (USSS), United States Calculated States Public Health Service (USPHS), San Bernardina Canany Flood Council District, (SEPC), United States Department of Southern (WID), Las Angeles, Department of Matter and Power (LADWP), City of Las Angeles, Department of Matter Calculated States and Canany States (SEPC), City of Las Angeles, Department of Matter Calculated States and Canany States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), City of Las Angeles, Department of Matter Calculated States (SEPC), Cit | 32 | |-----------| | NO. | | (STA. | | STEVINSON | | MEAR | | RIVER | | ERCED | | _ | | | | | | | | | | | | | | | | | | |-------------------|-------------------------|--------------------------------|-----------------------|--------|------------------------|----------------|---------|------|------|-------|------------------|------|----------|-----------------|------------------|------------------|--| | | | Anolyzed
by 1 | | USGS | | | | | | | | | | | | | | | | , | bid - Coliform | | Median | 23.
Max1mum
620. | Minimum
2.3 | | | | | | | | | | | | |
| Tur | - A - C | | | 15 | -# | cu | | Θ. | 15 | 10 | 25 | 20 | 10 | 9 | -3 | N | | | | Hardnass
as CaCOs | Totol N.C.
ppm ppm | | 0 | 0 | 0 | | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | | | | Hord
Os C | Tatol | | 89 | ま | 92 | | 85 | 72 | 52 | 31 | 30 | 25 | 65 | 63 | 67 | | | P | sod - | | | 39 | 77 | 143 | | 143 | 75 | 35 | 20 | 21 | 50 | 177 | 517 | 24 | | | Total | solved
solids | E dd c | | 135e | 306° | 200 | | 194° | 164° | 109 ^e | 50e | 598 | 37 ^e | 129 ^e | 152 ^e | 1568 | | | | Other constituents | | | | | | | | | | | POL 0.10 | | | | PO ₁₁ 0.35
AS 0.00
ABS 0.00 | | | Ì | Silica | 2010 | | | | | | | | | | 12 | | | | 52 | | | uon | Boron | 0 | | 0:0 | 0.0 | 0.0 | | 0:0 | 0.0 | 0:0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0,0 | | noillin | ile si | Fivo- | | | | | | | | | | | 0.0 | | | | 0.0 | | ports per million | equivalents par million | - IN | \neg | | | | | | | | | | 0.0 | | | | 4.4
0.07 | | 8 | equiva | Chlo- | (C) | | 0.39 | 1.9 | 19 0.54 | | 18 | 16 | 0.20 | 0.0 | 1.6 | 0.04 | 0.31 | 0.45 | 0.45 | | - 1 | ٤ | Sul - | (80%) | | | | | | | | | | 0.08 | | | | 0.19 | | | constituents | Bicor- | (HCO ₃) | | 1.59 | 2.46 | 2.34 | | 2.33 | 11.82 | 1.31 | 33 | 36 | 0.44 | 1.56 | 1.70 | 106 | | | Minaral con | | (co³) | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0 0 | 0 8 | 0.0 | 0.0 | 0.0 | 000 | 0.0 | | | Min | Potos- | (X | | | | - " | | | | | | 0.0 | | | | 2.1
0.05 | | | | Sodium | (0.01) | | 20
0.87 | 2 <u>1.1</u> | 32 | | 30 | 1.04 | 13 | 3.5 | 3.7 | 2.6 | 0.83 | 1.04 | 1.00 | | | | Mogne- | (Mg) | | | | | | | | | | 0.16 | | | | 0.0 | | | | Calcium | (0) | | 1.36 | 1.88 | 1.84 | | 1.70 | 1.45 | 1.04 | 0.61 | 8.8 | 0.44 | 1.18 | 1.26 | 0.85 | | | | P. | | | 7.9 | 7.9 | 8.0 | | 8.2 | 7.1 | 7.7 | 7.1 | 7.4 | 7.9 | 7.8 | 8.1 | 6. | | | Spacific | (micromhos p | | | 509 | 320 | 324 | | 305 | 254 | 169 | 111 | 78 | 57 | 500 | 236 | C 770 | | | | D | %Sot | | 102 | 112 | 95 | | 76 | 83 | 88 | 100 | 110 | 96 | 96 | 88 | & | | | | Disso | mdd | | 4.6 | 0.11 | 10.2 | | 10.8 | 8.6 | 8.8 | 10.2 | 10.8 | 9.5 | 0.6 | 7.5 | 7.8 | | | | Tem
in OF | | | 19 | 62 | 75 | | 94 | 54 | 8 | 58 | 79 | 3 | 69 | 22 | 72 | | | | Dischorgs Temp
in cfs in 9F | | | 173 | 120 | 112 | | 130 | 158 | 314 | 566 | 1619 | 3290 | 360 | 240 | 219 | | | | | P.S.T. | 1962 | 10/5 | 11/8 | 12/6 | 1963 | 1/10 | 2/7 | 3/7 | 14/1 | 5/8 | 6/3 | 1/8 | 8/8
1050 | 9/10 | a Field pH b Labaratary pH Arsenic (As), olkyl benzene sulfonote (ABS), and phosphate (PO. c Sum of colcium and magnesium in apm. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. g Gravimatric determination. h Annual madian and range, respectively. Calculated from analyses of duplicate manhly samples made by Califamia Department of Public Health, Division of Laboratories, or United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), United States Caelograd Survey, Quality of Water Branch (USCS), Water Branch Survey (USCS), Mattrad Institut (SECPOR), Mempaulton Water Branch Californ Californ of Department of Water Laboratory, Cryp of Los Angeles, Department of Water Branch Caelograd, Bra SALT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c) | | | Analyzed
by i | uscs | | | | _ | | | - | | | | | | | |-------------------|-------------|---|------|-------------------|----------------|----------------|------|-------------------|-------------------|-------------------|-----------------------|------|------------------|------------------|---|-------------------| | | 4 | bid - Caliform" ity MPN/mi | | 230. | 70.00
70.00 | Manimum
13. | | | | | | | - | | | | | | T or - | - bid
- 13
mpgm | | 15 | 25 | 15 | | 52 | 25 | 50 | 30 | 170 | 20 | 100 | 0, | 0.4 | | | | N COS | | 172 | 177 | 224 | | 234 | 383 | 340 | 256 | 180 | 109 | 96 | 97 | 116 | | | | | | 350 | 369 | 425 | | 455 | 579 | 532 | 420 | 228 | 220 | 216 | 228 | 267 | | | Per | sod - | | 61 | 65 | 09 | | 99 | 19 | 3 | 58 | 95 | 26 | 75 | 55 | 53 | | L | Total | solids
solids
in ppm | | 1052 ^e | 1058° | 1310e | | 1376 ^e | 1719 ^e | 1593 ^e | 1274° | 878 | 643 ^e | 607 ^e | 649 _e | 8069 | | | | Other constituents d | | | | | | | | | PO _{1, 0.70} | | | | PO ₁₄ 0.55
As 0.01
Abs 0.0 | | | | 1 | (201S) | | | | | | | | | | 19 | | - | | 27 | | | ion | Boron (8) | | 9.0 | 1.1 | 9.6 | | 0.0 | 3.4 | 3.7 | 2.1 | 1.5 | | | | 0.5 | | million | per million | Fluo-
ride
(F) | | | | | | | | | | 0.0 | | | | 0.0
0.0
0.0 | | ports per million | ants p | trota
(NO ₃) | | | | | | | | | | 6.5 | | | | 0.15 | | od | squivolents | Chlo-
rids
(Ci) | | 353 | 303 | 12.98 | | 367 | 13.77 | 11.51 | 304 | 5.70 | 174 | 157 | 205
5.78 | 5.92 | | | | Sul -
fote
(SO ₄) | | 203 | 5.33 | 229 | | \$03
8.52 | 624
12.99 | 12.26 | 392 | 580 | 158 | 132 | | 2.44 | | 9.00 | 8111001118 | Bicar-
bonate
(HCO ₃) | | 3.56 | 3.84 | 3.88 | | 270 | 3.92 | 234
3.84 | 3.28 | 132 | 135 | 2.52 | 160 | 3.02 | | Money | | Carbon-
ats
(CO ₃) | | 0.0 | 0.0 | 0.13 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.00 | 0.00 | | N N | | Potos-
(x) | | | | | | | | | | | | | | | | | Ì | Sodium
(No) | | 250 | 248 | 294
12.79 | | 320
13.92 | 18.49 | 372
16.18 | 270 | 172 | 131 | 5.13 | 130 | 140
6.09 | | | | Mogne-
stum
(Mg) | | | | | | | | | | 32 | | | | 2.60 | | | | Calcium
(Ca) | | 6.99 | 7.38 | 8.90 | | 9.10 | 11.58 | 10.64 | 8.40 | 3.8 | 07.1 | 4.32 | 1.56 | 2.74 | | | | QHd | | 80 | 7.9 | 8.3 | | 7.9 | 8.0 | 8.1 | 8.0 | 7.8 | 8.0 | 8.1 | 4.8 | 8.5 | | | Specific | conductonce
(micromhos
of 25°C) | | 1750 | 1760 | 2180 | | 2290 | 2860 | 2650 | 2120 | 1390 | 1070 | 1010 | 1080 | 1180 | | | | gen (r | | 101 | 15 | 110 | | 3 | 69 | 82 | 87 | 85 | 99 | 78 | 62 | 79 | | | | Disso | | 9.6 | 7.1 | 11.8 | | 5.4 | 6.8 | 8.0 | 9.6 | 7.9 | 6.2 | 6.5 | 5.3 | 0.0 | | | | E o ri | | 69 | 65 | 75 | | 84 | 61 | 8 | 19 | 8 | 99 | = | 4/- | 70 | | | | Dischorge Tsmp | | 25 | 15 | 18 | | 114 | 101 | 142 | 220 | 165 | 159 | 108 | 3 | 8 | | | | and time
sompled
P S.T. | 1962 | 10/5 | 11/9 | 12/7 | 1963 | 1/10 | 2/8 | 3/8
1500 | 4/1
1500 | 5/8 | 6/3 | 7/8
1330 | 8/8
1210 | 9/10 | o Field pH b Laboratory pH c Sum of calcium and magnesium in epm. d Arsanic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.) Derived from canductivity vs TDS curves Annual median and arrays, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division and Laboratories, or United States Public Health Service Minied States Geological Survey, Quality of Water Branch (1955); United States Department of the Interior, Surceau of Reclamation (1958); United States Cooling (19745), 5 on Bernardine County Flood Cantel District States (19746); Managerian Engineer of States California Angeles (19746), State California Department of Water District States (19746); City of Long Boach, Department of Public Health (LADPH); City of Long Boach, Department of Public Interior Indianatures, Inc. (TLL) or California Department of West, case indicated. Determined by addition of analyzed constituents. Gravimetric determination. SAM JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. NO. 26b) | Γ | | Analyzed
by 1 | | nags | | | | | | | | | | | | | | | |-------------------|-------------------------|----------------------------------|------------|------|-------------|------------------|----------------|------|------|------|---------------|-------------|------------|----------------|-------------------|------------------|-------|---| | \mid | | ity MPN/mi | | | | Maximum
2400. | Minimum
2.4 | | | | | | | | | | | | | - | į | - brad | - | | 15 | x
2 | <u> </u> | | 52 | 170 | 55 | 8 | 55 | 52 | 15 | 35 | 04 | | | r | F | .00 | O E G | _ | 3 | 88 | 137 | | 82 | 35 | 125 | 24 | 9 | # | 54 | 54 | 87 | | | | | Hordness
os CaCO ₃ | Tatal N.C. | | 174 | 250 | 306 | | 252 | 144 | 912 | 123 | 130 | 14 | 154 | 188 | 178 | | | | - | tug - En | | | 57 | 59 | 59 | | 59 | 59 | 3 | 55 | 55 | 54 | 96 | 77 | 52 | | | | Totol | solos
spilos | Edd | | 4918 | 916 | 932 | | 1968 | 458E | 9208 | 3296 | 3778 | 1106 | 1,29 ⁸ | 556 ⁸ | 180 E | | | | | Other constituents d | | | | | | | | | | ol o | }
! | | | PO4 = 0.60 | 0.00 | | | | | Silico | 200 | | | | | | | - | | | 17 | | | | 55 | , | | | lion | Boron | j | | 0.2 | 4.0 | 0.7 | | 0.7 | 9.0 | 1.4 | 7.0 | 0.5 | 0,1 | 0.3 | 0.3 | 0.2 | | | million | er mi | Fluo- | (£) | | | | | | | | | | 0.2 | | | | 0.2 | | | parts per million | equivalents per million | Nin
trote | | | | | | | | | | | 2.9 | | | | 4.3 | | | bod | equival | Chlo- | - | | 136
3.84 | 196 | 255
7.19 | | 5.50 | 2.65 | 22th | 1.97 | 2.54 | 00.50 | 3.10 | 152 | 3.16 | | | | r. | Sul - | (80%) | | | | | | | | | | 89
1.85 | | | | 1.64 | | | | constituents | Brcar- | (HCO3) | | 2.67 | 3.64 | 3.58 | | 3.88 | 133 | 3.02 | 1.62 | 100 | 0.72 | 133
2.18 | 164 | 2.21 | | | | Mineral con | Carbon- | (00) | | 0.0 | 000 | 0.00 | | 0.0 | 0.00 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.00 | 0.37 | | | | Min | Potas- | (K) | | | | | | | | | | 0.06 | | | | 30 | | | | | Sodium | (ON) | | 108 | 166 | 202
8.79 | | 170 | 93 | 188
8.18 | 62
2.70 | 3.31 | 18 | 3.96 | 114 | 3.92 | | | | | Magns- | (Mg) | | | | | | | | | | 1:30 | | | | 1.71 | | | | | Mula lo | (00) | | 3.48 | | | | 5.04 | 2.87 | 5. 3 2 | 2.#3. | 1.40 | 0.94 | 3.08 | 3.76 | 37 | | | | | QHd | | | 7.9 | 8,2 | 8.2 | | 8.1 | 7.9 | 8.1 | 7.6 | 8.0 | 7.6 | 8.0 | 8,2 | 8.5 | | | | Specific | (micromhas pH b | | | 836 | 1210 | 1540 | | 1280 | 718 | 1460 | 551 | 638 | 186 | 138 | 956 | 77.3 | | | | | p c c | %Sot | | 001 | 91 | 91 | | 75 | 70 | 986 | 103 | 101 | 93 | 8 | 89 | 107 | | | | | Dissolved | mdd | | 9.5 | 9.1 | 9.8 | | о.ц | 7.3
 8.9 | 10.3 | 7.6 | 8.9 | 9.8 | 7.5 | 9.5 | | | - | | | | | 8 | 8 | 55 | | 74 | 96 | 57 | 8 | †9 | † ₉ | 75 | | 7.14 | | | | | Discharge Temp | | | 1 | 1 | : | | 1 | 1 | 1 | ; | ; | ; | í | : | 1 | | | | | ond firms | P.S.T. | 1962 | 10/4 | 11/8 | 12/6 | 1963 | 1/10 | 2/7 | 3/7 | 4/1
1200 | 5/8 | 6/3 | 7/8 | 8/8 | 9/10 | | a Field pH b Labarotary pH. c Sum of colcium and magnesium in epm. Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Gravimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service ANALYSES OF SURFACE WATER TABLE D-18 SAN JOAQUIN AT FREMONT FORD BRIDGE (STA. NO. 25c) | | | as CaCO _S ity MPN/mi by i | | USGS | | | | | | | | | | | | | | |-------------------|----------------------|--------------------------------------|--------|--------|-------------------|-----------------|-------------|------|-------------|-------------|--------------|-------------|--|-------------|------|------|---| | | 4 | MPN/mi | | Median | Maximum
24:00. | Minimum
0.62 | | | | | | | | | | | | | | Tur | bid-
ity
n ppm | I | | 15 | 10 | 15 | | 88 | 8 | 10 | 017 | 35 | 70 | 20 | 04 | 52 | | | | 200° | P C | | 181 | 257 | 656 | | 97 | 19 | 347 | 76 | 155 | 8 | 75 | 157 | 122 | | | | Hard
Os C | Ppm | | 350 | 436 | 192 | | 305 | 184 | 542 | 185 | 762 | 185 | 200 | 308 | 284 | | | Par | sod - | | | 58 | 59 | 8 | | 59 | 58 | 3 | 57 | 95 | 55 | ₹ | 56 | 56 | | | Total | pevios | E DO | | 985 | 1265° | 2239° | | 90f | 543 | 1551 | p 664 | 8448 | 1,95 | 543 | 840 | 799 | | | | Other constituents d | | | | | | | | | | | PO ₄ 0.60
AS 0.01
ABS 0.0 | | | | PO ₄ 0.40
AS 0.00
ABS 0.00 | | | | Silico | 130IC) | | | | | | | | | | ಸ | | | | 52 | | | Hon | Baron | 9 | | 0.3 | 0.5 | 0.9 | | 1.1 | 0.8 | 2.8 | 0.6 | 1.1 | 0.5 | 0.4 | 0.2 | 4.0 | | million. | per million | Fluo- | | | | | | | | | | | 0.02 | | | | 0.0 | | porte per million | equivalents | N | (NO3) | | | | | | | | | | 6.4 | | | | 3.9 | | 2 | Bquiva | Chia- | (0) | | 354 9.99 | 452 | 885 | | 224
6.32 | 3.44 | 455
12.84 | 3.22 | 223
6.29 | 3.67 | 148 | 280 | 240
6.77 | | | · · | Sul - | (\$05) | | 3.41 | 224
4.66 | 430
8.95 | | 238 | 3.08 | 508 | 8.8 | 1.62 | 2.23 | | | 2.83 | | | ituents | Bicar- | - 1 | | 3.38 | 3.57 | 250 | | 240
3.93 | 143
2.34 | 238
3.90 | 133
2.18 | 170
2.79 | 145
2.38 | 152 | 3.02 | 3.23 | | | Mineral constituents | Corbon – B | (\$00 | | 0.0 | 0.0 | 0.0 | | 0.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 0 | | | Miner | Potos- Co | Ŷ. | | | | | | | | | | 0.10 | | | | 0.11 | | | | Sodium | (0 N) | | 228
9.92 | 292 | 52.62 | | 8.96 | 5.13 | 368 | 111 | 17.74 | 104 | 110 | 178 | 7.35 | | | | Magne- | (Mg) | | | | | | | | | | 2.50 | | | | 2.78 | | | | Calcium | (00) | | 6.99 | 8.72 | 15.28 | | 6.10 | 3.68 | 10.84 | 3.70 | 3.39 | 3.70 | 1.00 | 6.16 | 58
2.89 | | Ī | | ФН | | | 8.1 | 7.9 | 7.8 | | 4.8 | 7.8 | 8.0 | 7.9 | 7.9 | 8.0 | 7.9 | 7.8 | 8.0 | | | Chinack | conductance
(micramhas | | | 1690 | 2170 | 3840 | | 1550 | 931 | 2660 | 856 | 1390 | 648 | 932 | 1440 | 1340 | | - | | | %Sat | | 86 | 16 | đ | | 85 | 1/2 | 105 | 104 | 132 | 103 | 130 | 86 | 8 | | | | Dissolved | ppm 6 | | 8.9 | 9.0 | 9.0 | | 10.9 | 7.1 | 10.1 | 10.4 | 11.7 | 9.3 | 11.0 | 8.1 | 7.1 | | 1 | | Temp
n oF | | | 88 | 19 | 53 | | 04 | 8 | 62 | 99 | 17 | 69 | 76 | 11 | 02 | | | | Discharge Temp | | | 63 | 38 | 23 | | 273 | 156 | 251 | 865 | 353 | 507 | 245 | 119 | 267 | | | | Date
ond time | P.S.T | 1962 | 10/4 | 11/8 | 12/7 | 1963 | 1/11 | 2/8 | 3/8 | 1,41 | 5/8 | 6/3 | 1/8 | 8/8 | 9/10 | Labaratory pH Sum of calcium and magnessum in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and pliasphate (PO_4) Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves Gravimetric determination Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Mineral analyses made by United States Geological Survey, Dagity of Water Bronder, USSSP, Harder States Public Health Service (USPHS); Son Bernadino County Flood Control District (SEPCP), Leuropoliton West Passeria of Southern California (AMD); Las Angeles, Department of West and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of West Resources (DWR); as indicated. SAN JOAQUIN RIVER AT FRIANT (STA. NO. 24) | _ | | | | | | | | | | | | | | | | | |
 | | |-------------------|-------------------------|---|-----------------------|--------|-------------------|----------------|------|------|------|------|------|------|----------------------|------|------|----------------------|---------------------|-------|--| | | | Analyzed
by i | | nsgs | | | | | | | | | | | | | | | | | | | Hordness bid - Coliform os CoCO ₃ ity MPN/mi | | Median | Maximum
2400. | Minimum
1.3 | | | | | | | | | | | | | | | | Į. | - piq | | | 8 | т | m | | 4 | 8 | ω | 7 | 10 | 30 | -7 | | | | | | | | 000 g | Total N.C.
ppm ppm | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | 15 | 15 | 77 | | 13 | 17 | 12 | 77 | 16 | 12 | I | | | | | | | | 500 | | | 87 | 4.1 | 773 | | 38 | 37 | 39 | 39 | 37 | 017 | 39 | | | | | | L | Total | solios
solios | | | 7 [†] 8e | 111 e | 41e | | 39e | 50° | 38 | 1,2e | 1,58 | 358 | 336 | | | | | | | | Other cooststuants d | - 1 | | | | | | | | | | Po ₄ 0.25 | | | | | | | | | | Silico | (2 0(5) | | | | | | | | | | 91 | | | | | | | | | lion | Boron | <u>(a)</u> | | 0:1 | 0,0 | 0.0 | | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | | | | | | million | Jer mil | Fluo- | | | | | | | | | | | 0.1 | | | | | | | | parts per million | equivolents per million | Ni- | (NO.) | | | | | | | | | | 2.5 | | | | | | | | 0 | equivo | Chlo- | (5) | | 6.0 | 0,11 | 3.4 | | 3.9 | 5.8 | 3.8 | 77.0 | 3.8 | 3.5 | 3.0 | | | | | | | ë | Sul - | (804) | | - | | | | | | | | 0.02 | | | luled ^j - | uled ^j - | | | | | stituents | Bicor- | (HCO ₃) | | 0.33 | 25 | 0.33 | | 0.31 | 23 | 18 | 0.33 | 0.36 | 0.36 | 0.25 | ot scheduled | Not scheduled | | | | | Mineral constituents | | (00) | | 0.00 | 0.0 | 0.0 | | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 000 | ř | 1 | | | | | Mine | Potos- | (¥ | | | | | | | | | | | | | | |
_ | | | | | Sodium | (0 N) | | 6.4 | 0.21 | 0.30 | | 3.7 | 2.0 | 3.5 | 0.18 | 2.0 | 3.6 | 3.3 | | | | | | | | Magna- | | | | | | | | | | | 0.11 | | | | | | | | | | muio)o | 9 | | 0.30 | 0.30 | 0.27 | | 0.8 | 0.34 | 0.23 | 0.28 | 0.21 | 0.24 | 0.22 | | | | | | | | QHd | | | 7.1 | 7.1 | 7.5 | | 7.2 | 7.1 | 7.3 | 7.3 | 6.7 | 7.6 | 7.1 | | | | | | | Soucific | (micromhos pH b | | | 09 | 55 | 51 | | 84 | 62 | L+1 | 52 | 59 | 773 | 41 | | | | | | | | p u | %Sot | | 711 | 83 | 102 | | 108 | 98 | , | 132 | 89 | 95 | 68 | | | | | | | | Disso | mød | | 12.3 | 9.5 | 12,3 | | 12,1 | 11.0 | 11.0 | 13.7 | 7.7 | 10.4 | 9.1 | | | | | | | | Te and | | | 96 | 67 | 45 | | 51 | 177 | ' | 57 | 50 | 52 | 67 | | | | | | | | Discharge Temp
in cfs in PF | | | 91 | 62 | 69 | | 63 | 20 | 4L | 61 | 63 | 138 | 153 | | | | | | | | ond time | P.S.T. | 1962 | 10/5 | 11/8 | 12/6 | 1963 | 1/9 | 2/7 | 3/6 | 4/4 | 5/9 | 6/3 | 2/9 | ; | ; | | | Minaral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR), United States Public Health Sevice (USFHS), San Bennardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MMD), Los Angeles, Department of Water and Power (LADWP), City of Los Angeles, Department of Public Health (LBDPH); Terminal Tasting Laboratories, Inc. (TTL); or California Department of Mater Resources (DWR); as indicated. Amusl medion and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Dapariment of Public Health, Division of Laboratories, or United Steese Public Mealth Service Effected July 1963, this station sampled only in January, May, July and October. Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.) Laborotory pH. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Sum of colcium and magnesium in epm. Gravimetric determination. ## TABLE D-20 ANALYSES OF SURFACE WATER SAN JOAQUIN RIVER NEAR GRAYSON (STA. NO. 26) | | - | | | | | | | | | | | | | | | | | |--|---------------------------------|---------------|---------------|------------------|-----------------|------------|------|-------------|-----------|----------|-------------|-----------|------|------|----------|---------|------| | | Analyzed
by i | | USGS | | | | | | | | | | | | | | | | | os CoCO ₃ ity MPN/mi | | Median
70. | Maximum
7000. | 6.2 | | | | | | | | | | | | | | Tur | - bid
- ty
mpgm | | | 15 | | 9 | | -7 | 140 | 15 | 30 | 300 | 35 | 10 | 25 | 50 | | | | 0000 | P C | | 74 | | 159 | | 180 | | 123 | 07 | 33 | 17 | 61 | 81 | 53 | | | | Hord
os Co | Tatol | | 549 | | 371 | | 324 | 79 | 284 | 124 | 117 | 7/2 | 169 | 34. | 300 | | | 9 | cent
cod | | | 65 | | 55 | | 57 | 55 | 3 | 54 | 52 | 1.4 | -2 | 25 | 96 | | | Total | solved
solids | mdd u | | 707 | | 1022 | | 927 | 222 | 843 | 337 | 3126 | 175 | 951 | 969 | 5528 | | | | Other constituents ^d | | | | | | | | | | | PO1, 0.50 | | | Ş | ABS 0.0 | | | | Silico | (a) |
| | | | _ | | | | | 17 | | | | 8 | | | le | | ê) | |
 | | 9.0 | | D.7 | 0.1 | 1,1 | 0.3 | 0.3 | 0.1 | 0.3 | 0.3 | 0.2 | | | per million
s per mill | Fluo- | | | | | | | | | | | 0.2 | | | | 70.0 | | | ports per
valents p | - i do | \rightarrow | | | | | | | | | | 3.3 | | | | 5.2 | | | ports per million
equivalents per million | Chio- | \rightarrow | | 208
5.87 | ken | 282
7.% | - | 309
8.72 | 1.18 | 5.92 | 2.09 | 70 | 37 | 3.22 | 168 | 148 | | | Ē | Sul - | | | | No sample taken | | | | | | | 1.42 | | | | 2.04 | | | | Bicar - S | - 1 | | 3.51 | No sa | 258 | | 236
3.87 | 1,44 | 3.21 | 103 | 1.69 | 1.15 | 132 | 3.34 | 3.05 | | | Mineral constituents | 1 | (CO3) | | 0000 | | 0.00 | | 0000 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 000 | 000 | 0.00 |
 | | Minero | | - | | 010 | | 010 | | 010 | 010 | 010 | 010 | 0.00 | 010 | 010 | 010 | 3.5 | | | | Potos- | | | Id. | | ICI | | lo. | l-i | Lt | No. | | IO | 10 | 片 | | | | | Sodium | 2 | | 7.31 | | 9.22 | | 8.70 | 1.91 | 194 8.44 | 89
2.% | 2.61 | 1.30 | 3.96 | 215 | 5.26 | | | | Mogns- | (Mg) | | | | | | | | | | 1.29 | | | | 1.47 | | | | Colcium | (00) | | 1.99 | | 7.42 | | 64.9 | 1.58 | 5.68 | 2,48 | 1.05 | 1.48 | 3.38 | 96.4 | 2.15 | | | | ,a
I | | | 8.0 | | 7.9 | | 8.2 | 7.5 | 7.8 | 7.5 | 7.5 | 7.9 | 8.0 | 7.9 | 7.5 | | | Charles | conductance
(micramhos | | | 811 | | 1720 | | 1560 | 373 | 1420 | 568 | 531 | 295 | 767 | 1070 | 242 | | | | p us | %Sot | | 62 | | 7.t | | 85 | T3 | 75 | 87 | 2 | 29 | 98 | \$: | 93 |
 | | | Discolvs d | mdd | | 0.9 | | 6.7 | | 8.6 | 7.7 | 7.4 | 9.1 | 4.9 | 0.9 | 7.3 | 8.3 | 8.9 | | | | | | | 62 | | 55 | | 8 | 95 | 61 | 95 | 69 | 2 | 75 | 76 | 92 | | | | Orschorge Temp | | | 425 | | 225 | | 375 | 1,885 | 75 | 2140 | 50502 | 3050 | 1150 | 720 | 580 | | | | ond time | P.S.T. | 1962 | 10/18 | ; | 12/10 | 1963 | 1/7 | 2/15 0955 | 3/8 | 4/3
1345 | 5/6 | 6/7 | 7/1 | 8/1 0950 | 9/6 | | o Field pH. b Laboratory pH. c. Sum of colcium and magnesium in epm. d. Assenic (As), olkyl benzene sulfanote (ABS), and phasphate (PD_a) e Derived from conductivity vs TDS curves f Determined by addition of analyzed constituents. Determined by addition of analyzed Gravimatric determination. h Annol median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calculana of Department of Hobits Health, Division of Laborianses, or United Stores Public Health Service i Mineral analyses made by United Stores Canalyses and the Stores Public Health Service (USPHS), San Bernardina Calculant of Stores Public Responses (USPHS), San Bernardina Calculant of Stores Public Responses (USPHS), San Bernardina Calculant Calculant Calculant Calculant Calculant Calculant Calculant Department of Water (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Los Beach, Department of Public Health (LADPH); City of Los Beach, Department of Public Health (LADPH); City of Los Beach, Department of Market Resources (DMR), as indicated. SAN JOAQUIN RIVER AT HILLS FERRY BRIDGE (STA. NO. 25b) | | | P | | | | | _ | | | | | | | |
 | _ | _ | |----------------------|-------------------------|---|--------|--------------------|-------------|-------------|------|-------------|-------------|--------------|----------------------|-------------|------------|-----------------------|------|---|---| | | | Anolyzed
by 1 | USGS | | | | | | | | | | | | | | | | | | Hordnasa bid - Coliform" as CaCO _S ity MPN/ml Totol N C. n ppm | Median | Max 1 mum
7000. | 6.2
6.2 | | | | | | | | | | | | | | | Tur | bid-
ity
nppm | | 3 | 25 | 15 | | 50 | 100 | 25 | 30 | 8 | 55 | | | | | | | | S CO CO | S | ? | 93 | 15 | | 81 | 8 | 263 | 85 | 135 | 37 | | | | | | | | | G F | 3 | 276 | 314 | | 297 | 183 | 924 | 205 | 251 | ま | | | | | | | Per | B a Cant | a
u | | 65 | 9, | _ | 19
e | 95 | 8 | 8 | 58 | 77. | |
 | | | | | Tota | pevios
solids
in ppm | 9.0 | <u> </u> | 780° | 937 | | 885° | #65e | 1461 | 563 | 786 | 255e | | | | | | | | Other constituents d | | | | | | | | | PO ₄ 0.55 | | | | | | | | | 1 | Sifico
(SiO ₂) | | | | | | | | | | 118 | | | | | | | | lion | Boron
(B) | 0 | y] | 0.5 | 9.0 | | 1.0 | 6:0 | 2.7 | 9.0 | 1.0 | 0.3 | | | | | | FILLOR | E JE | Fiuo-
ride
(F) | | | | | | | | | | 0.0 | | | | | | | ports par million | squivolents par million | Ni-
trate
(NO ₃) | | | | | | | | | | 3.6 | | | | | | | Õ | Squivo | Chio-
ride
(CI) | 11.3 | 4.03 | 226
6.38 | 274
7.73 | | 240
6.77 | 3.39 | 422
11.90 | 3.75 | 202
5.70 | 62
1.75 | -Discontinued 7-1-63- | | | | | 5 | | Sul -
fats
(SO ₄) | ng. | 1.7 | 3.08 | 196 | | 218 | 128
2.66 | 465
9.68 | 3.54 | 219 | 1.29 | tinued | | | | | 11.1.00.11 | | Bicar-
bonate
(HCO ₃) | 11/2 | 2.43 | 3.65 | 3.34 | | 252 | 147 | 260 | 2.39 | 141
2.31 | 113 | Disco | | | | | Mineral constituents | | Corbon-
ote
(CO ₃) | 0 | 8 | 0.0 | 0.0 | | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | W | | Potas-
sum
(K) | | | | | | | | | | 0.10 | | | | | | | | Ì | Sodium
(No) | 1 | 96:1 | 3.00 | 206
8.96 | | 212 | 108 | 360 | 141
6.13 | 164 | 50
2.18 | | | | | | | | Magne-
sium
(Mg) | | | | | | | | | | 31 | | | | | | | | | Colcium
(Ca) | c | 3.59 | 5.52 | 6.28 | | 5.9g | 3.65 | 9.52 | 1.10 c | 2.45 | 1.88 | | · | | | | | | ° _E | | 8.1 | 8.0 | 7.9 | | 8.1 | 8.0 | 8.2 | 7.9 | 8.0 | 7.4 | | | | | | | Specific | (micrambos
at 25°C) | | 678 | 1340 | 1610 | | 1520 | 84.5 | 2510 | 196 | 1260 | 438 | | | | | | | | Dissolvad
oxygen
ppm %Sat | | 108 | 98 | 103 | | \$ | 70 | 88 | 96 | 108 | 100 | | | | | | | | Disso
oxy
oxy | | 9.6 | 8.5 | 4.6 | | 11.0 | 7.3 | 9.0 | 9.7 | 10.1 | 8.9 | | | | | | | | Ts or | | \$ | 19 | 57 | | ħŢ | 26 | 58 | 61 | 99 | % | | | | | | | | Otschorge Tamp
in cfs in oF | | 315 | 260 | 220 | | 650 | 1750 | 738 | 2045 | 1720 | 3700 | | | | | | | | sompled
P.S.T | 1962 | 10/4 | 11/8 | 12/6 | 1963 | 1/10 | 2/7
1240 | 3/7 | 1315 | 5/6 | 6/3 | | | | | b Laboratory pH. Sum of calcium and magnessum in epm. Arsenic (As), olkyl benzene sulfonata (ABS), and phosphata (PO. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by Caldurana Department of Public Health, Division of Laboratories, or United States Public Health Service. Mineral analyses made by United States Geological Survey, Capity of Water Booker, (USSS), United States Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Management of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Nation Resources (DWR), as indicated. Gravimetric determination ANALYSES OF SURFACE WATER TABLE D-22 SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 264) | | | Anolyzed
by i | USGS | | | | | | | | | | | | |-------------------|-------------------------|--|------------------------------------|---------------|------|---------|--------------|---------------|----------------------|-------------|------|-------------|--------------|-------------------------------| | | | Hordness bid - Coinform's os CoCO _S ity MPN/mil Total N C ppm ppm | Redien
830.
Meximum
7000. | 2.3 | | | | | | | | | | | | | Tur | n ppm | 91 | C) | | - | 360 | 15 | 8 | 22 | 38 | Я | 8 | n | | | | S C C C C C C C C C C C C C C C C C C C | 20 | 77 | Ų | <u></u> | œ | 4 | 2 | 83 | 17 | 82 | \$ | 6 | | | | | 147 | Ħ | | 8 | 61 | 182 | 26 | 89 | \$ | 102 | 234 | 216 | | | Per | e od - Fui | 26 | 22 | | 3 | 64 | 8% | 2 | 7 | 177 | 23 | 23 | ₹. | | | Total | peylos
peylos
upd uj | 390¢ | 3762 | | \$ 32 | 146 | #3 <i>h</i> e | Š | 2216 | 154 | 259e | 586 | 570 8 | | | | Other constituented | | | | | | | PO _k 0.35 | | | | | No. 65
AB 0.00
ABS 0.00 | | | 1 | Silico
(SiO ₂) | | | | | | | | 17 | | | | & | | | lion | Boron
(B) | 0,2 | 0.1 | | 2.0 | 0.1 | 9.0 | 0.2 | 0.2 | 0.0 | 0.1 | 0.2 | 0.1 | | million | lie re | Fluo-
ride
(F) | | | | | | | | 0.1 | | | | 0.02 | | parts per million | equivolents per million | rote
(NO ₃) | | | | | | | | 2.3 | | | | 0.00 | | SQ. | equivo | Chio-
ride
(CI) | 3.41 | 86 | | 3.70 | 31 | 3.84 | 1.50 | 50 | 38 | 2.12 | 30th
5.75 | 5.05 | | 9 | | Sul -
fote
(SO ₄) | | | | | | | | 39
0.81 | | | | 1.48 | | opost theore | BOLLE | Bicor-
bonote
(HCO ₃) | 11.93 | 1.28 | | 1.93 | 1.07 | 132 | 1.3 | 82
1.34 | 1.05 | 1.38 | 2.80 | 2.92 | | Mineral con | 100 | Corbon-
ote
(CO ₃) | 0.00 | 0.0 | | 000 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | | N C | | Potos-
Sum
(X) | | | | | | | | 1.8 | | | | 0.12 | | | | Sodium
(No) | 87
3.78 | 56
2.44 | | 3.92 | 27
1.17 | 111 | 1.83 | 38 | 8 2 | 52 28 | 5.22 | 5.13 | | | | Mogne-
sium
(Mg) | | | | | | | | 9.5 | | | · | 23
1.92 | | | | (Co) | 2.94 | 2.22 | | 3.2 | 1.22 | 3.64 | 1.61 | %
1.00 | 1.38 | 2.03 | £.68 | 2.40
2.40 | | L | | 4 | 7.8 | 7.5 | | - | 6.9 | 7.6 | 7.2 | 7.5 | 7.6 | 7.2 | 7.6 | 7.5 | | | Spacific | conductonce
(micromhos
of 25°C) | 669 | 527 | | # J. J. | 261 | 891 | η0η | 379 | 576 | 1465 | 1050 | 976 | | | | lved (| 57 | 7 | | 91 | 4 | 92 | な | 92 | | 62 | 901 | 68 | | | | Diesolved
oxygen
ppm %Sot | 5.5 | 8.0 | | 1.6 | 7.8 | 7.7 | 4.6 | 8.7 | 6.2 | 5.5 | 0.6 | 7.5 | | - | | | 62 | 75 | | 9 | 55 | 59 | 8 | 99 | 8 | 7 | 75 | 92 | | | | Dischorge Temp | | | | | | | | | | | | | | | | sompled
P.S.T. | 1962
10/18
1045 | 12/10
1610 | 1963 | 1/7 |
2/14
1540 | 3/8 | 1410 | 5/6
0715 | 6/7 | 7/1
1315 | 8/1 0900 | 9/6
1255 | b Loborotory pH o Field pH d Arsenic (As), olkyl benzene sulfonote (ABS), and phosphote (PO.) c Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves Grovimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Mineral analyses made by United States Geological Survey, Quality of Water Branch States Department of the Interior, Survey United States Control District (SBCFCD), White States Control States Survey Analyses and Public Health (LADPH), City of Lang Beach, Department of Control District (SBCFCD), White Public Health (LADPH), City of Lang Beach, Department of Control States Control States SAM JOAQUIN RIVER WEAR MENDOTA (STA. NO. 25) ANALYSES OF SURFACE WATER IABLE D-23 | Г | 3 | 2 | Π. | | | | | | | | | | | | | | |----------------------|------------|---|------|----------------|------------------------|-----------------|------|---------------------------------|------------------|-------------|-------------------------|--------------|-------------|------|------------------|---| | L | A | by i | | nsgs | | | | | | | | | | | | | | | dan to the | n pam | | Median
23.0 | Мах іши
7000 | Minimum
0.62 | | | | | | | | | | | | | 157 | , - u | | 8 | 15 | 15 | | 25 | 15 | 25 | 15 | 100 | 22 | 55 | 55 | 8 | | Г | *** | SON S | | # | 78 | 20 | | 54 | % | 31 | 107 | 23 | 7 | 35 | 90 | 36 | | | | | | 162 | 203 | 183 | | 166 | 88 | 104 | 232 | 78 | 64 | 111 | 8 | 129 | | | P . | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 54 | 55 | 52 | | 52 | 54 | 55 | 55 | 54 | 77 | 20 | 14 | 4 | | 3 | 0.0 | eolids
in ppm | | 422e | 525e | 473° | | 1430 e | 532 ^e | 290 | 613 ^e | 1958 | II. | a†LZ | 162 ^e | 285 | | | | Other constituents ^d | | | | | | | | | Po _{lt} = 0.25 | | | | | PO _{tt} = 0.50
ABS = 0.0
As = 0.01 | | | | Silica
(SiO ₂) | | | | | | | | | | 15 | | | | 15 | | 1 | 5 | Boron (B) | | 0.2 | 4.0 | 0.5 | | 0.2 | 9.0 | 7.0 | 6.0 | 0.2 | 0.0 | 0.1 | 0.1 | ٥. ٥ | | million | | rids
(F) | | | | | | | | | | 0.2 | | | | 0.01 | | 1 = 1 | - 1 | rote
No ₃ | | | | | | | | | | 2.5 | | | | 0.03 | | ports pe | DAID B | Chio- | | 3.44 | 154 | 3.75 | | 3.47 | 158 | 70 | 1.94 | 36 | 22 | 2.00 | 31 | 22.14 | | | - | Sul -
fors
(SO ₄) | | | | | | | | | | FE C | | | | 41
0.85 | | fuents | 1 | Bicor-
bonote
(HCO ₃) | | 2.36 | 2.49 | 2.28 | | 145
2.38 | 137
2.25 | | 152
2.49 | 1.15 | 146
0.75 | 93 | 85
1.39 | 1.87 | | Mineral constituents | r | Carbon – B | | 0.00 | 0.00 | 0.00 | | 0.07 | 0.00 | 0.0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | | Minero | ŀ | Potos- Co | | 010 | 010 | 010 | | | | 010 | 010 | 1.7 | 010 | 010 | 910 | 00.00 | | | - | Sodium Po
(Na) | | B6
3.74 | 11.87 | 3.92 | | 3.65 | 11.
1.38 | 58
2.52 | 5.57 | 1.30 | 18 | 50 | %
[.13 | 2.09 | | | ŀ | Mogne-So | | le. 1 | | | | | - H | je. | - NO. | 1111 | | je. | | 1.23 | | | - | Colcium (Co) | | 3.23 | 7.06
7.06 | 3.66 | | 3.32 | 4.15° | 2.08 | 1.64
1.64 | 9.2 | 0.9g | 2.22 |
1.60 | 1.35 | | - | - | ī | | 8.2 | 8.2 | 9. | _ | £. 80 | 8.1 | 9. | 7.9 | 4.7 | 7.7 | 0.0 | 7.4 | 6.7
I | | | ductonce | (micromhos
ot 25°C) | | 730 | 8 | 819 | | 1 ¹ / ₁ 1 | 8 | 502 | 1060 | 323 | 192 | 474 | 98 | 203 | | H | S S | gen (mit | | 103 | 130 | 109 | | 8 | 123 | 113 | 139 | 96 | 93 | 87 | η6 | 99 | | | Siesolva | osygen
gpm %Sat | | 9.6 | 12.6 | n.8 | | 1.7 | 12.8 1 | 10.9 | 14.2 | 9.3 | 8.3 | 4.7 | 7.7 | 7. | | - | | | | 29 | 79 | 53 | | 1,5 | 57 | 75 | 28 | 63 | 0, | 75 | 42 | 72 | | | Tacharas | in cfa | | 125 | 84 | 131 | | 77. | 8. | 162 | 156 | 381 | 415 | 8भूग | Tha | 156 | | | | sompled
P.S.T. | 1962 | 10/5 | 11/9 | 12/7 | 1963 | 1/10 | 2/8
1045 | 3/8
1345 | 4/2
0915 | 5/14
0725 | 6/3 | 7/9 | 8/8
1400 | 9/10 0750 | Laboratory pH. Sum of calcium and magnesium in epm. Arsanic (As), alkyl benzene sulfanote (ABS), and phosphote (PO.) Determined by addition of analyzed constituents. Darived from conductivity vs TDS curves. Grovimetric determination. Mineral analyses made by United States Geological Survey, Quality at Water Branch (USGS): United States Department of the Interior, Survey of Reclamation (USBR), United States Could be an advanced (AWD), Los Angeles Department of Water and Power (LADMP); City at Los Angeles, Department of Water District of Survey, Quality of Reach, Department of Water Resources (UWR), or indicated. Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), or indicated. Annual median and range, respectively. Calculated from analyses of dupticate manuhly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. SAN JOAQUIN RIVER AT PATTERSON BRIDGE (STA. NO. 278) | Γ | | 9 | | | | | _ | | | | | _ | | | | | | | |----------------------|-------------------------|---------------------------------------|--------|---------------------------|--------------|------|------|------|------|-------------|------------------|-----------------------|------|-------------|------------------|--------------------------------|---|---| | | | Angiyzed
by 1 | nscs | | | | | | | | | | | | | | | | | | | bid - Coliform' | Median | 1300.
Maximum
7000. | Minimum
7 | | | | | | | | | | | | | | | | Tur | - piq
- lity
mpgan | | 15 | 2 | 10 | | 15 | 95 | 8 | 35 | 8 | 8 | 6 | 25 | 8 | | | | | | ds CoCO ₃ In
Total N.C. | Edd | 31 | 78 | 140 | | 61 | 23 | 113 | 35 | 96 | 6 | 14 | 611 | 35 | | | | | | | E | 174 | 270 | 312 | | 258 | 137 | 261 | 112 | 154 | 20 | 164 | 190 | 169 | | | | | Par- | e od – | | 59 | 59 | 59 | | 8 | 57 | 8 | 50 | 56 | 77 | 96 | 57 | 4₹ | | | | | Totol | solved
salids
in ppm | | 9067 | 807e | 945e | | 8198 | 4128 | 8516 | 308 ⁶ | 459 ⁸ | 117 | 1448 B | 552 ⁸ | 4538 | | | | | | Other constituents ^d | | | | | | | | | | PO _{1, 0.45} | | | | FO ₄ 0.8
AS 0.01 | | | | | | Silica
(SiO ₂) | | | | | | | | | | 18 | | | | 52 | | | | 1 | uo | Boron S
(B) (9 | | 0.5 | 7.0 | 0.7 | | 8.0 | 9.0 | 1.2 | 7.0 | 0.5 | 0.1 | 0.5 | 0.3 | 0.5 | | | | million | equivalents per million | Fluo-B | - | | | | | | | | | 0.0 | | | | 0.0 | | _ | | ports per million | ents | trote
(NO.) | + | - | | | | | | | | 3.3 | | | - | 6.4 | | | | å | equiva | Chlo-
ride
(CI) | | 3.67 | 6.23 | 7.67 | | 5.50 | 2.43 | 208
5.87 | 1.83 | 3.13 | 0.62 | 3.22 | 150 | 3.22 | | | | 5 | | Sul -
fats
(SO.) | | | | | | | | | | 2.13 | | | | 76
1.58 | | | | et ituente | | Brcar-
bonate
(HCOs) | | 174 | 3.84 | 3.4 | | 3.72 | 2.11 | 181
2.97 | 1.54 | 119 | 50 | 2.34 | 2.82 | 164 | | | | Mineral constituents | | Corbon- | | 0.00 | 0.0 | 0.0 | | 0.0 | 0.00 | 0.0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.0 | | | | M | | Potos- | | | | | | | | | | 2.6 | | | | 3.0 | | | | | Ì | Sodium
(No) | | 1.14 | 1.80 | 9.09 | | 178 | 3.65 | 182 | 2.26 | 93 | 18 | 95 | 5.09 | 92 | | | | | | Magne-
sium
(Ma) | | | | | | | - | | | 1.48 | | | | 1.53 | | | | | | Colcium Magne- | | 3.44 | 5.40 | 6.24 | | 5.16 | 6.38 | 5.22 | 2.24 | 32 | 1.00 | 3.28 | 3.80 | 37 | | | | | | , I | | 8.0 | 8.1 | 7.8 | | 4.8 | 7.6 | 8.0 | 7.7 | 7.6 | 7.5 | 7.9 | 7.6 | 7.8 | | | | | Specific | (micromhos pH c | | 820 | 1340 | 1570 | | 1310 | 2899 | 1380 | 513 | 762 | 197 | 7774 | 937 | 7776 | | | | | | pen (0 | | 83 | 58 | 19 | | 98 | 8 | 76 | 96 | 96 | 16 | 87 | 8 | 86 | | | | | | Oresolved
oxygen | | 7.7 | 5.8 | 7.1 | | 10.6 | 7.2 | 8.0 | 9.6 | 4.6 | 9.6 | 80. | 7.5 | 8.5 | | | | - | | | | 19 | 8 | 55 | | 143 | 55 | 96 | 8 | 3 | 69 | ₫ | 92 | 73 | | | | | | Oischorge Temp | | | | | | 099 | 2075 | 056 | 5200 | 1475 | 3700 | 760 | | | Ī | | | | | and time
sompled | 1962 | 1000 | 11/8 | 12/6 | 1963 | 1/11 | 2/7 | 3/7 | 4/1 | 5/8 | 6/3 | 7/8
0910 | 8/8 | 9/10 | | | o Field pH b Laboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfanote (ABS), and phasphote (PO. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. g Gravimetric determination. h Amual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. I Maneal analyses smale by United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States Geological Survey, Quality of Water Branch (USCS), United States of Public Health Service (USPHS); San Bernedine Maneau of Control District (SECFOD), Memoratorial Maneau California (WIMS); Les Angeles, Department of Water States (MSCS), and Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health Maneau of Public Health (LADPH); City of Lang Beach, Department of Public Maneau of Public Health Maneau of Public Health Maneau of Maneau of Maneau Resources (DMR); as indicated. SAN JOAQUIN RIVER NEAR VERNALIS (STA, NO. 27) | _ |-------------------|----------------------|----------------------------------|-----------------------|--------|------------------|----------------|------------|------|------------------|------------|------|------------|---------------------|-------------|-------------|------------------|---|---| | | | Anolyzed
by i | | USGS | | | | | | | | | | | | | | | | | | bid - Coliform | | Median |
Max1mum
7000. | Minimum
13. | | | | | | | | | | | | | | | Tur | - pid | | | 15 | 91 | 15 | | 10 | 120 | 20 | 25 | 50 | 52 | 15 | 35 | 50 | | | | | Hordness
os CoCO ₃ | Tatol N.C.
ppm ppm | | 58 | 52 | 28 | | 30 | _ | 57 | œ | 11 | 11 | 53 | 29 | 53 | | | | | | | | 506 | 160 | ౙ | | 139 | 141 | 159 | 74 | る | 54 | 160 | 208 | 188 | | | | 9 | - POS | | | 96 | 75 | 52 | | 55 | 84 | 75 | 77 | 41 | 39 | 50 | 52 | 51 | | | | Total | solids
solids | E dd u | | 514 ^e | 410e | 225° | | 375 ^e | at. | 430e | 103 | 1416 | 91e | 38te | 517 ^e | 4718 | | | | | Other constituents d | | | | | | | | | | | PO, 0.25
ABS 0.0 | | | | PO ₄ 0.60
A.S 0.00
A.B.S 0.1 | | | | | Silica | (2015) | | | | | | | | | | 15 | | | | ₹. | | | | uoi | Boron | <u>0</u> | | 0.2 | 0.5 | 0.2 | | 0.2 | 0.1 | 4.0 | 0.0 | 0.1 | 0.0 | 0.5 | 0.2 | 2.0 | | | million | per million | Fluo- | | | | | | | | | | | 0.0 | | | | 0.0 | | | ports per million | equivalents p | -in | - | | | | | | | | | | 0.00 | | | | 6.6 | Ī | | ı | equiva | Chio- | (C) | | 161 | 3.44 | 1.81 | | 3.05 | 20 | 3.22 | 20 0.56 | 26 | 19 | 3.07 | 167 | 3.67 | | | | 5 | Sul - | (80%) | | | | | | | | | | 21
0.44 | | | | 56 | | | | stituents | Bicor - | (нсоэ) | | 181
2.97 | 132 | 1:11 | | 132 | 42 | 2.05 | 48 | 65 | 42 | 131
2.15 | 2.82 | 2.70 | | | | Minsral constituents | S | (00) | | 0.0 | 0.00 | 0.00 | | 0.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | | | : | - W | Potos- | Œ | | | | | | | | | | 1.6 | | | | 3.9 | | | | | Sodium | | | 5.22 | 3.83 | 42
1.83 | | 3.44 | 17
0.74 | 3.74 | 17
0.74 | 21 0.91 | 13 | 3.22 | 102 | 91
3.96 | | | | | Mogne- | (Mg) | | | | | | | | | | 5.8 | | | | 1.31 | | | L | | Colcium | (0) | | 4.12 | 3.20 | 1.68 | | 2.78 | 0.81 | 3.18 | 0.94 | 0.80 | 0.90 | 3.2 | 1.16 | 2.45 | | | L | | a. | | | 8.0 | 7.8 | 7.6 | | 8.3 | 7.1 | 7.5 | 7.6 | 7.7 | 7.7 | 7.7 | 8.1 | 7.8 | | | | Specific | (micromhos | | | 915 | 727 | 399 | | 999 | 167 | 763 | 183 | 237 | 162 | 681 | 916 | 816 | | | | | D | %Sot | | 18 | 81 | 82 | | 82 | 11 | 62 | 98 | 93 | ಹೆ | 98 | 116 | 83 | | | | | Dissolved | E dd | | 7.2 | 8.1 | 8.7 | | 9.1 | 8.2 | 4.8 | 10.6 | 9.5 | 8.0 | 9.8 | 9.6 | 7.9 | | | | | Tamp
In of | | | 19 | 8 | 55 | | 94 | 55 | 55 | 75 | 58 | ₫ | 73 | 92 | 75 | | | | | Oischorge Temp
in cfs in of | | | 1000 | 1250 | 2200 | | 2020 | 11,110 | 2543 | 8709 | 7180 | 11,700 | 2100 | 1235 | 1340 | | | | | ond time | P.S.T. | 1962 | 10/4 | 11/8 | 12/6 | 1963 | 1/11 | 2/7 | 3/7 | 1/1 | 5/8 | 6/3
0715 | 7/10 | 8/7 | 9/10 | | Loborotory pH. Sum of colcium and magnesium in epm. Arsenic (As), olkył benzene sulfanate (ABS), and phasphate (PO₄) Derivod from conductivity vs TDS curves. Determined by addition of analyzed constituents. Grovimetric determination. Annual majon and range, respectively. Calculated from analyses of duplicate manthly samples made by Californa Department of Public Health, Division of Laboratories, or United Stores Public Health Service (USPHS), San Bernadina Caunty Flood Mined analyses made by United Stores Ceological Survey, Quality of Water Stores Meeting (USPHS), San Bernadina Caunty Flood Control Stores (USPHS), San Bernadina Chifanna (MMD), Las Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Meeting Laboratories, Inc. (TLL), or California Department of Water Resources (DMR), as indicated. ANALYSES OF SURFACE WATER TABLE D-26 STANISLAUS RIVER NEAR MOUTH (STA. NO. 29) | | Analyzed
by 1 | | USGS | | | | | | | | | | | | | | |----------------------|----------------------|-------------------------------|--------|------------------|----------------|------|------|----------|------|--------|----------|--|---------|------------|-----------|--| | | bid - Coliform | | Median | Maximum
7000. | Minimum
0.3 | | | | | | | | | | | | | 1 | - A | 2 | | 30 | m | 2 | | 5 | 70 | 9 | 35 | 25 | 25 | <i>=</i> # | 9 | (V | | | Hardness
as CoCO3 | O E dd | | 0 | 0 | 0 | | 0 | 0 | 0 | N | N | 0 | 0 | 0 | 0 | | | Hard
OB C | Total | | 8 | 8 | 100 | | 88 | 30 | 119 | 36 | 33 | 75 | 98 | 96 | 8 | | | Pos
1 pos | E . | | 27 | 23 | 23 | | 23 | 18 | 25 | 13 | 15 | 56 | 23 | 25 | 55 | | Total | solved
paylos | mad ni | | 1668 | 134° | 173° | | 152e | 53 | 2Πe | 576 | 618 | \$ 5 to | 169 | 178° | 1448 | | | - | | | | | | | | | | | PO ₁ 0.15
AS 0.01
ABS 0.0 | | | | PO ₄ 0.15
AS 0.01
ABS 0.0 | | | - Silico | (8:02) | | | | | | | | | | 15 | | | | 27 | | 00 | 1 5 | (8) | | 0,1 | 0:0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0:0 | 0.0 | 0.0 | 0.0 | 0:0 | 0;0 | | nullion | Fluo- | (F) | | | | | | | | | | 0.0 | | | | 0.0 | | ports per million | ı | trats
(NO ₃) | | | | | | | | | | 4.0 | | | | 3.1 | | gours per | - Phia- | (CI) | | 0.31 | 4.8 | 0.21 | | 7.8 | 1.5 | 0.34 | 0.0 | 1.5 | 1.8 | 8.8 | 0.25 | 0.17 | | č | - | fote
(SO ₄) | | | | | | | | | | 6.2 | | | | 0.19 | | Minaral constituents | | bonota
(HCO ₃) | | 2.16 | 1.80 | 2.15 | | 121 | 37.0 | 2.57 | 69.0 | 38 | 32 | 132 | 2.33 | 1.93 | | al cons | rbon - | (co ₃) | | 0 0 | 0 8 | 0.0 | | 0.00 | 0.00 | 0 0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Minar | otos- Co | (X) | | | | | | | | | | 0.08 | | | | 0.07 | | | 9 | (0 N) | | 16 | 11
0.48 | 0.61 | | 0.52 | 0.15 | 18 | 0.11 | 0.12 | 0.17 | 0.52 | 0.65 | 0.52 | | | Dane- | (Mg) | | 410 | -10 | -10 | | 710 | MIO | 710 | 1410 | 2.4 | 10 | .,,0 | ., 0 | 0.68 | | | N N | (Co) sium | | 1.80 | 1.60 | 2.00 | | 1.75 | 0.61 | 2.38 | 0.72 | 0.42 | 0.48 | 1.97 | 0
1.96 | 1.10 | | | , F | | | ω. | 8.0 | 7.9 | | 8.3 | 7.1 | ω
α | 7.9 | 7.5 | 7.7 | 7.6 | 7.5 | 7.5 | | | conductance | of 25°C) | | 246 | 198 | 257 | | 225 | 82 | 312 | ಕೆ | 11 | * | 250 | 264 | 230 | | | D 0 | %Sot | | 8 | 68 | 88 | | \$ | 93 | 85 | 66 | 96 | 88 | 106 | 156 | 86 | | | Devioeso | 6 mdd | | 7.5 | 9.1 | 9.3 | | 10.9 | 9.6 | 8, | 10.8 | 10.0 | 80 | 4.6 | 13.2 | 7.7 | | | | - 1 | | 99 | 28 | 55 | | <u>1</u> | 55 | 57 | 53 | 55 | 9 | 72 | 16 | 7.2 | | | Oscharge Temp | | | 131 | 185 | 95 | | 181 | 3931 | 250 | 2897 | 1,830 | 4879 | 595 | 214 | 243 | | | Dote and time | | 1962 | 10/3 | 11/9 | 12/6 | 1963 | 1/11 | 2/7 | 3/7 | 4/1 0915 | 5/8
0830 | 6/3 | 7/10 | 8/7 | 9/10 | b Laboratory pH. a Field pH. Sum of colcium and magnesium in epm. Arsanic (As), alkyl benzene sulfonate (ABS), and phosphote (PO.) Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); Son Bernadino County Flood Mineral analyses, made by United States Geological Survey, Opality of Water Branch (USDS), United States Department of Mater and Power (LADMP); City of Los Angeles, Department of Supering and Power (LADMP); City of Los Angeles, Department of Supering and Power (LADMP); City of Los Angeles, Department of Supering California (MMD); Les Angeles Department of Mater Order (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Supering (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Supering (MMD); Los Angeles Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of Mater Order (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MMD); City of Long Beach, Department of MMD (MMD); City of Long Beach, Department of MM D-32 STANISLAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a) | | Anolyzad
by i | USGS | | | | | | | | | | | | | | | |-------------------------|--|--------|-------------------------|-----------------|------|------|---------|-------------|------|-------|-----------------------|------|-------|-----------|-----------|--| | | Hordness bid Colliform os CoCO ₃ ity MPN/ml | Wedian | 21.0
Maximum
620. | Minimum
0.23 | | | | | | | | | | | | | | | o - pid
i pp | 1 | 8 | ~ | CV . | | cu | 071 | 10 | 15 | m | m | CI. | | | | | | 200 Z | 600 | 0 | 0 | m | | 0 | | 0 | ٦ | 0 | 0 | 0 | | | | | | Hordness
os CoCO ₃
Totol N.C. | E | 22 | 22 | 32 | | % | 67 | 97 | 2/4 | 25 | 17 | 16 | | | | | | 2 P S | 1 | 8 | 15 | 97 | | 15 | 16 | 23 | 16 | 16 | 23 | 22 | | | | | Total | solids
in ppm | | | | | | | | | | 718 g | | | | | | | | Other constituents d | | | | | | | | | | PO _{1, 0,00} | | | | | | | | Silico
(SiO ₂) | 1 | | | | - | | | | | 13 | | | | | | | 6 | 5 | | 0.0 | 0.0 | 0:0 | | 0:0 | 0,1 | 0:0 | 0:0 | 0.0 | 0.0 | 0:0 | | | | | HION IN | Fluo-
ride
(F) | + | | | | | | | | | 0.00 | | | | | | | equivalents per million | rate (NO.) | | | | | | | | | | 4.0 | | | | | | | ivalen | ZZZ | - | 10 | _ lm | _ lm | | [0 | _ lm | | Je | | | , Lat | 1 | 1 | | | 90 | Chio
Giga | | 3.6 | 1.2 | 0.03 | | 0.0 | 0.03 | 0.05 | 0.0 | 1.6 | 0.04 | 1.5 | uledj | | | | <u>e</u> | Sui -
fate
(SO ₄) | | | | | | | | | | 3.4 | | | scheduled | scheduled | | | Mineral constituents |
Bicor-
banata
(HCO ₄) | | 28 | 28 | 35 | | 34 0.56 | 0.36 | 0.39 | 97.0 | 32 | 24 | 0.30 | - Not | - Not | | | eral con | Corbon-
ota
(CO ₃) | | 000 | 000 | 0.0 | | 0.00 | 000 | 000 | 0.00 | 0.0 | 0.0 | 000 | | | | | ¥ | Potas-
sium
(K) | Ī | | | | | | | | | 0.0 | | | | | | | | Sodium (No) | | 2.5 | 0.08 | 2.7 | _ | 0.09 | 1.7
0.07 | 0.10 | 2.1 | 0.10 | 2.1 | 0.09 | | | | | | Mogns-
Sum
Sum
(Mg) | | (10) | . 10 | | | | | | | 0.14 | | | | | | | | Calcium (Ca) | | 0.14 | | | | 0.52 | 0.38 | 0.37 | 0.49° | 0.36 | 0.34 | 0.32 | | | | | | Q.H. | 1 | 7.1 | 7.0 | 7.3 | | 7.7 | 6.9 | 7.2 | 7.5 | 1.9 | 7.5 | 7.2 | | | | | - Constitution | Conductance pH b (micramhos of 25°C) | | 26 | 54 | 778 | | 3 | 149 | 51 | 57 | 59 | 1,44 | 1,2 | | | | | | gen (n | | 8 | 82 | 83 | | 91 | 95 | 105 | 95 | 115 | 107 | 76 | | | | | | Dissolved
osygen
opp %Sot | - | 8.3 | 8,2 | 9.3 | | 10.6 | 10.6 | 10.8 | 9.8 | 12.1 | 10.7 | 7.6 | | | | | | | - | 63 | | 20 | | 1 17 | 1 12 | 26 1 | - 22 | | 99 | 9 | | | | | | Dischorge Temp
in ofs in of | | , | 145 | • | | ' | 878 | 1 | 1840 | 9006 | 7505 | 1800 | | | | | | Dote
ond time
sompled
P.S.T. | 1962 | 10/5 | 11/9 | 12/7 | 1963 | 1/8 | 2/15 | 3/11 | 4/3 | 5/13 | 6/3 | 7/8 | ; | ; | | b Loboratory pH. Assenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.) c Sum of calcium and magnesium in epm. e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. h Annual medion and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Annual medion onlyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Internor, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), San Bemardino County Flood Carriol Division States (States and States County May); Lea Angueles Department of Water and Power (LADMP); City of Las Angueles, Department of Public Health, City of Long Beach, Department of Water Resources (DWR); as indicated. Interactive July 1963, this station sampled only in January, May, July and October. ANALYSES OF SURFACE WATER TABLE D-28 TULE RIVER BELOW SUCCESS DAM (STA. NO. 91) | _ | | | | | | | | | | | | | | | | | |-------------------|-------------------------|---|------|---------------|------------------|-----------------|------|------------------|-------|----------|------|--------------------------------------|-------------|------|------|--| | | | Analyzed
by i | | UBGS | | | | | | | | | | | | | | | 4 | bid - Caliform's ity MPN/mi | | Median
50. | Maxfmum
2400. | Minimum
0.23 | | | | | | | | | | | | | - Ja | - bid - | | CV | 5 | m | | н | 8 | <u>-</u> | 00 | 4 | ٦ | г | 2 | 00 | | | | N N | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Hordr
os Co
Total
ppm | | 100 | 108 | 971 | | 130 | 62 | 100 | 87 | 63 | 19 | 61 | 72 | 98 | | | Par | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 22 | 22 | 23 | | 22 | 23 | ส | 22 | 23 | 22 | 22 | 8 | R | | | Total | spilos
spilos
spilos | | 160e | 173° | 189e | | 199 ⁸ | 124 B | 1528 | 1398 | ш38 | 1108 | 360€ | 1108 | 135 8 | | | | Other constituents | | | | | | | | | | PO ₁₄ = 0.00
ABS = 0.0 | | | | ABS = 0.0
PO _b = 0.00
As = 0.01 | | | | Silico
(SiO ₂) | | | | | | | | | | ส | | | | 15 | | | 5 | Boron Si
(B) (S | | 0.0 | 0.0 | 0.1 | | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | million | equivolents per million | Fluo-B | | | | | | | | | | 0.2 | | | | 0.03 | | ports per million | lents p | rrote
(NO ₃) | | | | | | | | | | 0.5 | | | | 0.0 | | l a | ednivo | Chlo-
ride
(CI) | | 7.5 | 5.8 | 8.0 | | 0.31 | 5.2 | 8.0 | 3.4 | 5.4 | 5.8 | 5.4 | 0.10 | 0.10 | | | <u>e</u> | Sul -
fote
(SO _e) | | | | | | | | | | 0.08 | | | | 0.18 | | | Constituents | Bicar-
bonate
(HCO ₃) | | 147 | 2.59 | 2.80 | | 91 %
11. | 1.39 | 2.33 | 1.80 | 88 F. | 13.49 | 1.45 | 1.49 | 2.07 | | | Mineral con | Corban-
ote
(CO ₃) | | 0.00 | 0.00 | 0.00 | | 0.0 | 000 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | | : | Œ. | Patas-
sium
(K) | | | | | | | | | | 0.00 | | | | 2.5 | | | | Sodium
(Na) | | 0.57 | 14 0.61 | 0.70 | | 17.0 | 0.38 | 0.52 | 1.1 | 9.0 | 0.37 | 8.0 | 8.3 | 0.44 | | | | Magna-
sium
(Mg) | | | | | | | | | | 0.22 | | | | 0.32 | | | | Colerum
(Co) | | 1.99 | 2,16 | 2.33 | | 2.59 | 1.24 | 2.00 | 1.67 | 1.05 | 1.28 | 1.22 | 1.4 | 28 | | | | d H | | 7.6 | 7.9 | 7.6 | | 7.7 | 7.4 | 7.7 | 7.9 | 7.5 | 7.3 | 7.2 | 7.4 | 8.2 | | | Specific | (micramhos
at 25°C) | | 244 | 83 | 288 | | 320 | 162 | 646 | 196 | 163 | 162 | 159 | 163 | 218 | | | | lved (n | | 89 | 104 | 85 | | 83 | 86 | 162 | 104 | 11.7 | 104 | 95 | 8 | | | | | Dissolved
oxygen
ppm %Sot | | 7.5 | 10.0 | 8.7 | | 9.3 | 10.2 | 15.8 | 11.2 | 11.9 | 9.01 | 9.5 | 7.3 | 8. 2 | | | | Ten
in of | | 92 | 63 | 58 | | 20 | 15 | 62 | 15 | 85 | 58 | 59 | 89 | 8 | | | | Dischorge Temp | | 1.60 | þ | 15 | | 2.14 | 6.54 | 1.49 | 160 | 3.85 | | 126 | 5.67 | 162 | | | | ond time
sampled | 1962 | 10/2 0950 | 11/11 | 12/4 | 1963 | 0060 | 2/7 | 3/4 | 1320 | 5/6 | 6/3
1230 | 7/1 | 8/5 | 9/9 | b Laboratory pH c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,) Derived from canductivity vs TDS curves Determined by addition of analyzed canstituents. Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Department of Managed nates Department of Managed nates Department of the Interior, Surreau Of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardina County Flood D-34 TUOLUMME RIVER BELOW DON PEDRO DAM (STA. NO. 31a) | Γ | | 9 | | | | | | | | _ | | _ | | | _ | | | | |-------------------|-------------------------|--|--------|------------------|-----------------|-------|------|------|------|------------|-------------|------------------------|-----------------|----------|-------------------|------------------|------|--| | | | Anolyzed
by i | USCS | | | | | | | | | | | | | | | | | | | Hordness bid - Coliform as CoCO ₃ 117 MPN/mil Total N C ppm | Median | Max mum
7000. | Minimum
C.28 | | | | | | | | | | | | | | | | Tur | - piq
- ki-
lu bba | | | | -3 | | m | 04 | ~ | 8 | m | , | - | | | | | | | | Hordness
es CoCO ₃
Totol N C
ppm ppm | | 0 | | *** | | c | | , | <i>A</i> | 0 | 0 | | | | | | | | | PPM
PPM | | 00 | | 00 | | 10- | 150 | 4 | 224 | 244 | 83 | t | | | | | | L | 9 | - pog - | | 8 | | 1.9 | | 51 | 23 | 18 | 16, | 27 | đ | 23 | | | | | | | Total | solved and in ppm | | 22 | | 16e | | 186 | 24° | 286 | 10° | 2 877 | 75 _e | 35e | | | | | | | | Other constituents d | | | | | | | | | | PO _{1, 0, 10} | | | | | | | | | Ì | SiO ₂) | | | | | | | | | | 21 | | | | |
 | | | | Ion | Baron Silica
(B) (SiO ₂) | | 0: | | 0.0 | | 0.0 | ं। | 0.0 | 0,0 | 0,0 | ं | 0:0 | | | | | | million | er mill | Fluo-
ride
(F) | | | | | | | | | | 000 | | | | |
 | | | ports per million | ents p | Ni-
trote
(NO ₃) | | | | | | | | | | 0.01 | | | | | | | | por | equivolents per million | Chlo-
ride
(CI) | | 2.4
0.07 | ken - | 0.00 | | 0.02 | 0.05 | 0.05 | 0.03 | 2.2 | 0.05 | 0.0 | - ^{[, p} | - ⁶ p |
 | | | | = | Sul -
fote
(SO ₄) | | | sample taken | | | | | | | 2.4 | | | scheduled - | scheduled |
 | | | | MIDEROL CONSTITUENTS IN | Bicor-
bonote
(HCO ₃) (| | 0,16 | - No sa | 9.15 | | 0,16 | 0.21 | 16
0.26 | 0.39 | 30 | 26 | 800 | - Not s | - Not | | | | | SHOO IO | ote
(CO ₃) | | 0 8 | | 0.00 | | 0.00 | 0 8 | 000 | 000 | 0000 | 000 | 0 0 | | | | | | : | MIDE | Potos- Corbon- E
sum ote
(K) (CO ₃) | | 010 | | Olo | | 010 | 010 | 010 | 010 | 000 | 010 | 010 | | |
 | | | | | Sodium P
(No) | | 1.5 | | 0.0 | | 0.00 | 0.07 | 1.4 | 0.09 | 0.05 | 0.11 | 2.4 | | | | | | | | Sium
(Mg) | | | | | | | | | | 2.0 | | | | | | | | | | Colcium Magns-
(Co) sium
(Mg) | | 0,16 | | 0.17 | | 0.17 | 0.24 | 0.28 | 0.47°C | 6.3 | 0.42 | 0.34 | | |
 | | | r | _ | Q
Ha | | 7.0 | _ | 9*9 | | 7.0 | 6.5 | 7.0 | 6.8 | 7.0 | 7.1 | 7.0 | | | | | | | Spacific | conductance PHb (micromhos pHb) of 25°C) | | 27 | | 21 | | 72 | 32 | 37 | 23 | 8 | 55 | 947 | | | | | | | | %Sot | | 78 | | 88 | | 88 | 9. | 85 | 778 | 78 | 75 | 017 | | | | | | | | Diesotved
osygen
ppm %Sot | | 7.7 | | 4.6 | | 6.6 | 10.3 | - o | 4.6 | e | 7.5 | 0.4 | | | | | | | | e o e | | 61 | | 7. | | 9 | 169 | 67 | 20 | 51 | 9 | 65 | | | | | | | | Dischorge Temp
in cfs in 0F | | | | 5900 | | 2150 | 2800 | 780 | 1300 | 2500 | 4330 | 5220 | | | | | | | | ond time
compled
P.S.T | 1962 | 10/18 | ; | 12/10 | 1963 | 1/7 | 2/14 | 3/8 | 4/4
1145 | 5/6 | 6/7 | 7/1 0935 | ; | 1 | | | Loborotory pH. Sum of colcium and magnesium in epm. Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO,) Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Gravimetric determination. Amy and rongs, respectively. Colculored from analyses of duplicate monthly samples made by Colifornio Department of Public Health, Division of Lobardores, or United States Public Health Service TUOLLINNE RIVER AT HICKMAN-WATERFORD BRIDGE (STA. NO. 30) | | | olyzed
by i | | nscs | _ | | | | | | | | | | | | |
_ | 1 | |-------------------|----------------------|--------------------------------------|---------------------|------|---------|-------------|-------|------|------|------|------|-------------|-----------------------|---------|------|------------------
-------------|-------|---| | - | - | os CoCO ₃ ity MPN/mi by i | + | | moun | ? | | | | | | | | | | | |
 | 1 | | L | _ | - Coirt | - | | Minimum | | CI CI | | - | 0 | 01 | 2 | m | 77 | н | m | 2 |
 | 1 | | - | ٦ | P + C | غز | 15 | | | m | | C) | 9 2 | 9 | QJ . | 9 | 0 | 0 | 8 | 53 |
 | - | | | | s CoCO | pom pom | 30 | | | | | % | 19 | 33 | e 30 | 66 | 21 (| 18 | 105 24 | 1114 |
 | 1 | | H | | Bod - P | 2 8 | | | | 39 | | 24 | 31 | 39 | <u>۾</u> | e | 53 | 33 | 52 10 | 1,48 |
 | 1 | | - | 0, | Solved
Solved
Solved | | | _ | _ | 36e | _ | 59e | 34°e | 9.7½ | 55 e | 26L | 52e | a th | 291 ^e | 306 8 | | | | - | ٦ | | _ | | - | _ | | | | | | | | - | _ | | |
_ | + | | | | Other constituents ^d | | | | | | | | | | | FO _{1, 0,00} | | | 4 | ABS 0.00 | | | | | | Silico | | | | | | | | | | | 15 | | | | 91 | | | | | lion | Boron | | 0.0 | | | 0 | | 0:0 | 이 | % | ं। | 0:0 | 0.0 | 0.0 | 0.1 | 01 | | | | million | per million | Fivo- | | | | | | | | | | | 000 | | | | 0.0 | | | | ports per million | ents p | - N
trate | _ | | | _ | | | | | | - | 0.00 | | | | 0.03 | | | | ō | equivalents | Chio- | \dashv | 21 | 66.0 | taken - | 0.28 | | 15 | 5.0 | 0.59 | 8.1 | 1.5 | 6.0 | 7.6 | 102 | 2.82 | | | | | ĉ | Sul - | (80%) | - | | | | | | | | | 3.6 | | | | 0.10 | | | | | trituents | Bicar-
bonats | (HCO ₃) | 32 | 0.0 | - No sample | 18 | | 29 | 0.34 | 33 | 34 | 99.0 | 42 | 22 | 1.70 | 108 | | | | | Mineral constituents | Carbon- | (co ₃) | 0 | 3 | | 0.00 | | 0.0 | 000 | 000 | 000 | 0.00 | 000 | 0.0 | 0.00 | 000 | | | | | Min | Potos- | (K) | | | | | | | | | | 1,2 | | | | 0.13 | | | | | | Sodium | (140) | 11 | 0,40 | | 0.23 | | 8.8 | 3.8 | 9.9 | 0.26 | 8.0 | 1100.48 | 3.8 | 52 | 2.22 | | | | | | Mogne- | (Mg) | | | | | | | | | | 43 | | | | 1.4
0.88 | | | | | | alcam | (00) | | 99.0 | | °36° | | 0.52 | 0.30 | 99.0 | 0.61 | 8.6 | 0.42 | 0.35 | 2.10 | 28 | | | | | | F. | | 7.0 | | | 7.0 | | 7.5 | 8.3 | 7.1 | 7. | 7.6 | 7.8 | 7.7 | 7.0 | 8.0 | | | | | 0.000 | canductance pHb (micrambos | | OFT | | | 1.9 | | 102 | 59 | 121 | 52 | 971 | Q | 29. | 61.19 | 760 | | | | - | | p s v | %Sot | 85 | | | 9% | | ŭ | 105 | 101 | ₹03 | 11 | 5,0 | 74 | 33 | 119 | | | | | | Dissolvad | mdd | 0.0 | | | 5: | | 5.0 | 1.6 | 10.7 | 9.01 | 5-1-2 | 5- | 7.1 | 7. | 6*6 | | | | - | | | | 65 | | | 4 | | 51 | 55 | 44. | 22 | 24 | Ğ | 63 | ઢ | 92 | | | | | | Dischorge Temp | | | | | 7,68 | | 1 | 6085 | 204 | 7120 | 7/80 | 152 | 269 | 507 | 20,21 | | | | | | ond time | P.S.T. | 374 | 130C | ; | 515 | 1963 | 1/7 | 2/14 | 3/8 | 4/2 | 3/6 | 6/7 | 7/1 | 98/ | 1,430 | | | b Laboratory pH Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.) c Sum of colcium and magnesium in apm. Derived from canductivity vs TDS curves Determined by addition of analyzed constituents. Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (UJSCS); United States Department of the Interior, Bureau of Reclamation (UJSR); United States Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Control District (SRCFCD); Metropoliton Water District of Surface Only Distr Annual median and range, respectively. Calculoted from analyses of duplicate manhly samples made by California Department of Public Haalth, Division of Laboratories, or United States Public Health Service. TUOLUNAE RIVER AT TUOLUNAE CITY (STA. NO. 31) | _ | | | | | | | | | | | | | | | | | |
 | | |-------------------|-------------------------|---|----------------------|----------------|------------------|--------------|-------|------|------|-----------|------------------|--------|--------------------|----------|------|------|--------------------|------|---| | | | de Cocos ity MPN/mi by i | | USGS | | | | | | | | | | | | | | | | | | - | Coliform MPN/mi | | Median
700. | Maximum
7000. | 6. | | | | | | | | | | | | | | | | Tur | - bid
tty
magar | | | 15 | | -3 | | m | 22 | 2/ | 9 | 52 | - | Æ | 7 | m | | | | | | 000 | Total N C
ppm ppm | | 77 | | 77 | | 8 | 9 | 23 | 13 | ω | 15 | 크 | 7 | 49 | | | | L | | | | | 8 | | 777 | | 42 | 8 | 75 | 7.7 | 9, | 22 | 717 | 891 | 182 |
 | | | | å | 000 | | | 23 | | 87 | | © 7 | 3,5 | 2 | ®
₩ | 8 | 24 | P 17 | -7. | <u>6</u> | | | | | Totol | pevios
eolide | ndd u | | 212 | | 112° | | 181 | 145e | 191 ^e | 926 | 9L01 | 112 | 109 | 457 | 513 | | | | | | Other constituents d | - 1 | | | | | | | | | | As 0.01
ABS 0.0 | | | | As 0.02
ABS 0.1 | | | | | | Silico | (2) (S) | | | | | | | | | | 16 | | | | 91 | | | | | lion | Baron | ĵ) | | 0.1 | | 0.0 | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0,2 | 0.0 | | | | million | er a | Fluo- | | | | | | | | | | | 0.1 | | | | 0.2 | | | | ports per million | equivolents per million | Z . | | | | | | | | | | | 0.02 | | | | 10.0
0.07 | | | | ă | ednivo | Chia- | (Ē) | | 76 | taken | 39 | | 61 | 0.31 | 99 | 24,0 | 24,0 | ₹
0.8 | 37 | 168 | 181 | | | | | Ē | Sul - | | | | sample taken | | | | | | | 0.10 | | | | 9.0 | | | | | stituents | Bicar | (HCO ₃) | | 1.11 | - No | 36 | | 63 | 19 | 1.03 | 141 | 24.0 | 45.0 | 37 | 150 | 162 | | | | | Mineral constituents in | | (00) | | 000 | | 0.00 | | 0.00 | 0000 | 0000 | 0.00 | 000 | 0.0 | 0.0 | 000 | 0.00 | | | | | Min | Potos- | (¥ | | | | | | | | | | 1.7 | | | | 0.19 | | | | | | Sodium | (0 N) | | 1.78 | | 0.83 | | 31 | 5.7 | 1.52 | 13 | 14 | 0.78 | 0.78 | 3.96 | 1.18 | | | | | | Magne- | (Mg) | | | | | | | | | | 0.35 | | | | 1.14 | | | | | | Colcium | (00) | | 1.60 | | 0.89 | | 1.44 | 0,44°C | 1.51 | 26.0 | 13 | 1.04 | 0.87 | 3.36 | 250 | | | | | | QHd | | | 7.0 | | 7.1 | | 7.3 | 6.5 | 7.0 | 7.2 | 7.3 | 7.4 | 7.3 | 7.b | 7.1 | | | | | Specific | Oissolved conductance pHb osygen (micromhos | | | 370 | | 196 | | 316 | 78 | 334 | 161 | 174 | 195 | 190 | 799 | 843 | | | | | | 9 | %Sot | | 64 | | 75 | | 78 | 87 | 7.1 | 79 | 7 | 759 | 53 | 100 | 22 | | | | | | Disso | ppm %Sat | | 8.4 | | 8.1 | | 8.7 | 9.5 | 7.3 | 8.3 | 7.3 | 5.9 | 8.4 | 8.4 | 5,8 | | | | | | Temp
in OF | | | 63 | | 53 | | 51 | 52 | 58 | 95 | 19 | 19 | 70 | 92 | 77 | | | | | | Discharge Temp
in cfe in 0F | | | 546 | | 1500 | | 925 | 7000 | 975 | 100 | 1180 | 1675 | , | 125 | 375 | | | | | | ond time | P.S.T | 1962 | 10/19 | 1 | 12/11 | 1963 | 1/7 | 2/15 0915 | 3/8 | 1145 | 5/6 | 6/7 | 7/1 | 8/1 | 9/6 | | 1 | b Lobarotory pH. Sum of calcium and magnesium in epm. Arsenic (As), olkyl benzene sulfanate (ABS), and phasphote (PO.) Derived from canductivity vs TDS curves. Grovimetric determinotion. Determined by addition of analyzed constituents. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service Control District (SERCE), Method States Calculated States Control District States Colifornia (Med.) Les Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Power (LADMP); City of Los Angeles, Department of Mate and Resources (DMR); as indicated. iote: For all stations in the month of May, silver was reported as: Silver (Ag) = 5.0* * Results are less than the figure listed. * Results are equal to, but_allightly less than the figure indicated. ** Results are more than the figure listed. | | Sta | | | Picocuries | per liter | | |----------------------------------|------|-------------|-----------------------|-------------------------------------|----------------|-------------| | 1011010 | No | חמום | Dissolved Alpha | Solid Alpha | Dissolved Beta | Solid Beta | | Big Creek above Pine Flat Dam | 33d | 9/5 | 0.0 + 0.0 | 0.0 + 0.0 | 3.9 + 4.8 | 3.7 + 4.8 | | Chowchilla River near Raymond | 17,1 | 5/9 | 0.0 11 0.0 0.3 11 0.1 | 0.8 + 0.3 | 21.6 + 4.9 | 102.4 + 5.9 | | Delta-Mendota Canal near Mendota | 92 | 5/10 | 0.1 + 0.4 | 1.4 + 0.6 | 11.6 ± 6.4 | 32.6 ± 6.7 | | Fresno River near Daulton | 113 | 5/9 | 0°0 +1+1 0°0 | 1.2 + 0.4 | 9.4 + 4.8 | 33.9 + 5.1 | | Kaweah River below Terminus Dam | 35 | 2/6 | 0.2 + 0.2 | 0.1 = 0.2 | 12.3 + 5.0 | 5.1 + 4.9 | | Kern River near Bakersfield | 36 | 9/17 | 0.0 | 0.0 + 0.3 | 0.00 | 0.0 + 6.2 | | Kern River below Isabella Dam | 36a | 5/1 | 0.2 ± 0.2 | 0.3 ± 0.3 | 14.4. 4.9 | 15.6 ± 4.9 | | Kern River below Kernville | 36b | 5/1 | 0.1 + 0.2 | 0.2 + 0.3 | 12.5 + 4.8 | 8.4 + 4.8 | | Kings River below North Fork | 33c | 9/5 | 0.0 ± 0.3 | 0.3 ± 0.4 | 3.9 + 6.4 | 8.1 ± 6.4 | | Kings River below Peoples Weir | 34 | 5/5 | 0.0 | 0.1 +1 0.2 | 9.4 + 4.8 | 8.6 + 4.8 | | Kings River below Pine Flat Dam | 332 | 2/6 | 9.0 + 0.0 | 9.0 + 0.0 | 0.0 + 6.2 | 5.9 ± 6.3 | | Merced River below Exchequer Dam | 32a | 6/5 | 0.1 + 0.2 | 0.0 + 0.2 | 14.5 + 4.9 | 9.2 + 4.9 | | Merced River near Stevinson | 32 | 5/8
9/10 | 0.1 + 0.2 | 0°5 + 1+1 0°5 0 0°1 + 1+0°1 0°1 + 1 | 9.3 +1+ 6.0 | 13.2 + 4.9 | | Salt Slough at San Luis Ranch | 24c | 5/8 | 0.5 ± 0.4 | 0.7 + 0.5 | 8.3 + 6.7 | 0.0 # 6.7 | TABLE D-33 RADIOASSAYS OF SURFACE WATER | | 3+0 | | | Picocuries | per liter | | |--|-----|--------------|--------------------------|---|--------------------------|----------------| | CO-10-10-10-10-10-10-10-10-10-10-10-10-10- | No | Date | Dissolved Alpha | Solid Alpha | Dissolved Beta | Solid Beta | | San Joaquin River at Crows Landing
Bridge | 26b | 5/8 | 0.3 +1+0 0.0 | 4.00 | 14.5 + 4.8 | 3.2 +1+ | | San Joaquin River at Fremont Ford
Bridge | 25c | 5/8 | 000 | 0.4 + 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 18.6 + 1 + 6.2 | 12.4 + 4.7 | | San Joaquin River at Friant Dam | 24 | 6/5 | 1,00 + 0.0 | 0.1 + 0.5 | 9.9 + 2.0 | 0.4 + 6.6 | | San Joaquin River near
Grayson | % | 5/6
9/6 | 0.6 +1 +0.3
0.4 + 0.4 | 0.7 +1+1 | 11.5 + 4.9 | 20.3 + 5.0 | | San Joaquin River at Hills Ferry Br. | 250 | 5/8 | 0.3 + 0.2 | 0.6 + 0.2 | 13.2 + 4.8 | 16.4 + 4.8 | | San Joaquin River at Maze Road Bridge | 26a | 9/6 | 0.3 +1 0.2 | 0.4+0.3 | 8.5
5.8
5.8
5.8 | 15.0 + 4.9 | | San Joaquin River near Mendota | 25 | 5/14
9/10 | †*O *O *O | 0.7 + 0.5 | 6.9 +1+6.2 | 20.5 + 1 + 6.5 | | San Joaquin River at Patterson Bridge | 27a | 5/8 | 0.1 + 0.5 | 0.7 + 0.6 | 11.4 ± 6.6 | 3.1 : 6.5 | | San Joaquin River near Vernalis | 27 | 5/8 | 0.2 +1+0.3 | 4.0 + 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.0 + 66 | 7.7 + 6.6 | | Stanislaus River near Mouth | 53 | 5/8 | 0.0 | 0.5 +1+0.3 | 14.8 + 4.8 | 20.2 + 4.9 | | Stanislaus River below Tulloch Dam | 29a | 5/13 | 0.0 ± 0.0 | 0.0 + 0.3 | 5.7 ± 6.3 | 16.0 ± 6.5 | | Tule River below Success Dam | 16 | 9/6 | 0.0 1+1+1 | 0.0 | 14.7 ± 4.9 | 2.2 + 4.7 | | | | | | | | | | | | | |
 |
 | | |-----------------------|------------------------------------|--|---------------------------------|------|------|--| | Solid Beta | 23.9 ± 5.0 | 10.5 = 6.4 | 11.3 + 5.0 | | | | | Dissolved Beta | 18.3 ± 5.0 | 11.3 ± 6.4 | 6.3 + 6.3 | | | | | Solid Alpha Dissolved | | t.o.t. t.o.t | 0.7 +1 0.3 0.2 +1 0.4 t | | | | | Dissolved Alpha | 0.1 + 0.2 | 0.1 + 0.4 | 000
41+1
000 | | | | | Dote | 5/6 | 2/6 | 2/6
9/6 | | | | | S†g
No | 31a | 99 | 31 | | | | | Station | Tuolumne River below Don Pedro Dam | Tuolumne River at Hickman-Water Ford
Bridge | Tuolumne River at Tuolumne City | | | | APPENDIX E GROUND WATER QUALITY #### TABLE OF CONTENTS | | PAGE | |-------|--| | INTRO | DUCTION | | EXPLA | NATION OF TABLES | | EXPLA | NATION OF PLATES | | | NATION OF HEADINGS AND SYMBOLS USED IN TABLE E-1 E-6 State Well Number E-6 Region, Basın, and Area Designation E-6 Agency Supplying Data E-6 | | | LIST OF TABLES | | TABLE | | | E-1 | Mineral Analyses of Ground Water | | E-2 | Heavy Metal Analyses of Ground Water | | E-3 | Radioassay of Ground Water | | E-4 | Analyses of Miscellaneous Constituents | | | LIST OF PLATES (Bound at end of volume) | | PLATE | | | E-1 | Ground Water Quality Basins and Areas | E-2 E-3 Lines of Equal Electrical Conductivity Mineral Types of Ground Water #### INTRODUCTION This appendix contains data pertaining to the ground water quality conditions in the San Joaquin alley area. The data consist of the chemical and radiological characteristics of those waters sampled. he analyses represent those constituents determined as most significant in the evaluation and/or surveillance f ground water quality. These data are listed on tables and portrayed on plates. #### EXPLANATION OF TABLES All data in the Appendix E Tables are listed by ground water basin or area which are shown on late E-1. The order is by the corresponding number found under the name. Following this breakdown the ells are tabulated numerically by state well numbers as explained on page C-6. Table E-1 lists the mineral analyses of the selected wells for the area reported in this volume. he following tabulation indicates the tests made and the properties and constituents usually determined in the two types of mineral analyses. | | | y s i s | |------------------------|-----------|-----------| | Constituents and | | : Partial | | properties | : mineral | : mineral | | Specific conductance | x | × | | H | × | | | Total dissolved solids | × | | | Percent sodium | × | | | Hardness | × | X | | Pemperature | × | × | | Calcium | × | | | Magnesium | × | | | Sodium | × | × | | Potassium | × | | | Carbonate | × | | | Bicarbonate | × | | | Sulfate | × | | | Chloride | × | X | | Nitrate | × | | | Fluoride | × | | | Boron | × | × | | Silica | × | | The standard mineral analysis is made on the samples of wells either new to the program or whose previous analyses have been unstable from year to year requiring a more complete history before partial malysis would be suitable. A partial mineral analysis is suitable when a satisfactory history on the well has been established and a detailed analysis is not required to maintain surveilance. Heavy metal analyses are shown on Table E-2 and list other important constituents not determined in a standard mineral analysis. These constituents, though small in quantity, can be of significance for various types of water usages. Radioassay analyses are shown on Table E-3. The type of test conducted was for gross radioactivity since the purpose is mainly for reconnaissance by random sampling and a detailed analysis is not required. Two constituents not normally determined, ABS (detergents) and lithium, were analysed for in selected samples, and are shown on Table E-4. ABS determinations are made because of their use as an indicator of pollution. Lithium was determined in response to a request from the Kern County Farm Advisor secause it has a detrimental effect similar to that of boron on citrus and other fruit trees. Wells whose analyses differ significantly from other wells in the surrounding area are listed in Cable E-5. This deviation may be in a single constituent or it may be the complete analysis. Special effort is made to investigate these wells to determine the reason for the observed deviations. #### EXPLANATION OF PLATES The locations of the selected sampling wells and the selected wells for water measurements re shown on Plate C-3. #### EXPLANATION OF PLATES (Continued) The ground water basins and areas sampled during this reporting period are shown on Plate E-1 with their corresponding name and number. Plate E-2 shows the "Lines of Equal Electrical Conductivity of Ground Water" in the San Joaquin Valley. These contours are based on analyses listed on Table E-1 and represent the quality of water from the principal pumped zone in the valley. Contours were not drawn for Panoche. Tehachapi and Cummings Valleys because of the lack of data. Plate E-3 shows the types of water in the San Joaquin area and is based on the analyses listed on Table E-1. #### EXPLANATION OF HEADINGS AND SYMBOLS USED IN TABLE E-1 <u>State Well Number</u>—-The well numbering system used in this report for the location of wells is explained on page C-6. Reqion, Basin, and Area Designation—The region used in this report and shown on Plate E-1, "Ground Water Quality Basins and Areas, San Joaquin Valley," is a geographic area and is defined in Section 13040 of the Water Code as Central Valley region. A decimal system of the form 0-00.00 has been used for basin numbering. The number to the left of the dash refers to the geographic region. On the right of the dash the first two digits refer to a hydrographic unit, generally designated as a basin, valley, or area. These are followed by decimals which designate a subbasin, area, or subarea within the basin, valley, or area. An example is given below: 5-22.20 The number 5 indicates the Central Valley region. The number 22 indicates the San Joaquin Valley. The number 20 indicates the Lower Kings River area. Agency supplying data--The numbers in this column are the code numbers for the agency that sampled the well. The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows: | | Code | | Type of Agency | |-----|---------|-----|---| | 000 | through | 049 | Federal | | 050 | through | 099 | State | | 100 | through | 199 | County | | 200 | through | 399 | Municipal | | 400 | through | 699 | DistrictWater, Irrigation, Conservation, etc. | | 700 | through | 999 | Private | The cooperating agencies, and code numbers assigned to them, are listed in the following tabulation: | Agency Code | Agency | |-------------|--| | 5000 | U. S. Geological Survey | | 5050 | Department of Water Resources | | 5122 | Stanislaus County Farm Advisor | | 5123 | Tulare County Farm Advisor | | 5124 | Kern County Farm Advisor | | 5126 | Kings County Farm Advisor | | 5524 | Turlock Irrigation District | | 5525 | Merced Irrigation District | | 5631 | Fresno Irrigation District | | 5640 | Buena Vista Water Storage District | | 5641 | Central California Irrigation District | TABLE E-1 ANALYSES OF GROUND WATER 1963 | | Toto!
hardness | C0C0 3 | | 27 | <i>v</i> | 153 | 77 | | 167 | 118 | 142 | 179 | 192 | |---|------------------------|-------------|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | tuents in | T D S
Computed | Evap 180% | | 372 | | | 4 4
8 9 | | 322 | | | | | | onsti
er m | Siii. | SiO2 | | 10 | - | 1 | 0 1 | | 27 | 1 | 1 | 1 | 1 | | Mineral constituents
parts per million | <u>c</u> | 20 | | 0 0 | 0 | 0 | 0 | | 0.10 | 0 - 20 | 0
m
• | 0 • 50 | 0.30 | | | Fluo- | _ | | 0.1 | 1 | 1 | 0 | | • 0 | 1 | ŀ | 1 | - | | | rate | ۳
0
2 | | 0 | 1 | 1 | C | | 0.7.0 | 1 | f
I | 1 | ! | | million
per million
actance value | Chla- | | | 0.08 | 0.06 | 14 | 7 90 | | 0.76 | 0.51 | 26 | 0.31 | 0.0 | | 0 | Sulfate | 200 | | 0.06 | ì | 1 | 0.12 | | 18 | 1 | 1 | 1 | 1 | | parts per
equivalents
percent re | Brear-
bonate | 200 | | 27 0 • 44 76 | 1 | ŀ | 24 0 • 39 | | 228
3•74
69 | 1 | 1 | 1 | - | | par
equ
per | Carban-
ate | 8000 | - | 0 | 1 | t
å | 0 | | 0.17 | 1 | i | 1 | - | | . <u>c</u> | Patas - | 4 | | 0.03 | 1 | 1 | 0.03 | | 0.10 | 1 | 1 | ł | - | | instituents | Sodium | 2 | | 0.09 | 0
• 3
5
8 | 26 | 0.09 | | 2.09
| 3.17 | 2.26 | 1.04 | 34 | | Mineral constituents | Magne-
sium | 5 | 52206 | 0.08 | 1 | 1 | 0.08 | 52207 | 2.14 | 1 | 3 | 1 | 1 | | Σ | Calcium | 52200 | | 0.45 | i
? | ; | 0.35 | | 24
1.20
22 | 1 | 1 | 1 | 1 | | Specific conduct- | (micra-
mhos | 01 2 3 C) | DIST | 57 | 146 | 409 | 2, 4 | DIST | 530 | 534 | 536 | 457 | 521 | | | H | | T 10N | 7.3 | ; | 1 | 7.0 | | ω
 | 1 | ! | 1 | 1 | | Temp. | wnen
sampled
° F | ΕΥ | RRIGA | 73 | 72 | 7.1 | 7.1 | RRIGATION | 49 | 63 | 64 | 63 | 63 | | State well number | Date sampled Agy. | | OAKDALE IRRIGATION | 25/10E- 3D 1 M
8-19-63 5122 | 25/10E-10B 1 M
8-14-63 5122 | 25/10E-27H 1 M
8-14-63 5122 | 34/10E-13A 1 M
6-28-63 5122 | MODESTO I | 35/ 7c-13A 1 M
6-26-63 5050 | 35/ 7E-24J 1 M
(-26-63 5050 | 357 8E- 6N 1 M
6-26-63 5050 | 35/ 8E- 9C 1 M
6-26-63 5050 | 34/ 8E-20J 1 M
6-26-63 5050 | | S | Date | SAN | | 25/1 | 25/1 | 25/1 | 35/1 | | 34/ | 35/ | 35/ | 35/ | 35/ | * TDS by Evop of 105°c TABLE E - I ANALYSES OF GROUND WATER 1963 | | Totol | Caco 3 | | 172 | 155 | 48 | | 201 | 223 | 158 | 137 | 158 | 20 | |--|-----------|--------------------|---------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------|--------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | uents in | TDS Total | Evap 180°c | | | 427 | | | 990 | 404 | | | | | | anstit
er mi | -1/1S | - 1 | | 1 | 0 † | 1 | | 1 | 31 | i | 1 | 1 | + | | Mineral canstituents
parts per millian | Baron | 89 | | 0.10 | 0.50 | 0.30 | | 0 • 0 5 | 0 + • 0 | 0.50 | 00.0 | 00 • 0 | 0.20 | | | Flua- | L | | 1 | • | 1 | | 1 | • 0 | 1 | 1 | ł | 1 | | | Ni- | NO3 | | 1 | 12.0
0.17 | ! | | 24.0 | 9.7 | ŀ | 1 | 1 | 1 | | million
per million
actance value | Chlo- | 10 | | 14 | 3 10 a
4 t 3 | 1.66 | | 3.21 | ¥ 30 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 1.13 | 20 | 1.10 | 32 | | t million
ts per million
reactance value | Sulfate | 804 | | † | 12 0 . 45 | ŀ | | 14 0.29 | 1.71 | 1 | 1 | 1 | 1 | | parts per
equivalents
percent rea | Bicor- | нсоз | | 1 | 210
3.54
50 | i | | 191
3•13
45 | 3.93 | ; | 1 | 1 | 1 | | par | Carbon- | 003 | | 1 | 0 | t | | 0 | ٠, | - | 1 | i
i | | | . <u>e</u> | Patas - | × | ED) | 1 | 0 • 10
1 | 1 | | 0.08 | 0.10 | 1 | ł | 1 | 1 | | Mineral canstituents | Sodium | o
Z | CONTINUED) | 1.39 | 4 0 0 3 | 1.74 | | 3.09 | 250 | 1.96 | | 3.26 | 4.8 | | ineral co | Magne- | M g | 52207 | 1 | 1.40 | 1 | 52208 | 1.32 | 1.32 | 1 | 1 | 1 | 9 (| | Σ | Calcium | Co | 52200 | 1 | 34
1.70
23 | | | 2.69 | 3.14 | 1 | 1 | i | 1 | | Specific
conduct- | (micro- | at 25°C) | DIST | 472 | 100 | 392 | DIST | 753 | 1440 | 535 | 433 | 643 | 255 | | | Ĭ. | | | 1 1 | 8 1 | - | T I ON | ∞
• | 0.0 | 1 | 1 | 1 | 1 | | Temp. | when | L- | EY
RRIGA | 99 | 63 | 70 | RRIGA | 99 | 99 | 99 | 29 | 1 | - | | State well | Agv | Date sampled Coll. | SAN JOAQUIN VALLEY MODESTO IRRIGATION | 34/ 8E-23E 1 M
9-12-63 5050 | 45/ 8E- 5P 1 M
6-27-63 5050 | 45/10E- 1D 1 M
7-30-63 5122 | TURLCCK IRRIGATION | 45/ 8E-24A 1 M
9-18-63 5524 | 45/ 8E-27L 1 M
9-18-63 5524 | 44/ 5E-20A 1 M
9-18-63 5524 | 45/ 9E-25A 1 M
9-26-63 5524 | 45/ 9E-30R 1 M
9-19-63 5524 | 45/11E- 5M 2 M
9- 5-63 5122 | | | | ă | SA | (r | 4 | 4 | | 4 | 4 | 4 | 4 | 4 | 4 | TABLE E-1 ANALYSES OF GROUND WATER Computed hordness Evap 180°C CaCO 3 9 111 162 80 220 168 153 167 136 Total 2 236 374 T D S Mineral constituents ports per million Si02 F 1 47 39 1 000 00.0 00.0 0.10 0.20 00.0 0.10 0.10 0.10 00.0 Вогол В 1 1 i 0.1 i F)10ride 26.0 0.42 12 21.0 1 1 1 i 1 į 1 N 0 3 trote 0.11 20 8 0 • 23 134 24 1.55 20 equivolents per million percent reactance vaiue 26 1.18 Chloper million o de parts per million 0.17 27 0 • 56 1 ł 1 1 1 Bicor- Sulfote so, 156 3.56 HCO3 1 1 bonote Carbon-0.20 1 ate CO3 Potos -0.05 0.08 i 1 ë × .⊆ 52208 (CONTINUED) Mineral constituents 29 1.26 36 17 127 51 52.26 1.83 45 1.96 30 56 110 Sodium o Z Mogne-8 0.66 19 2.14 1 1 Sium Σ 2.25 311.55 1 1 Colcium 1 1 52200 microof 25°C) Specific canduct-196 320 890 550 570 556 536 565 743 once mhos JOAQUIN VALLEY TURLOCK IRRIGATION DIST 1 1 1 i 1 8.4 H Temp. when sampled 65 65 99 65 99 29 67 29 74 9 45/11E-21D 1 M 9-19-63 5524 45/11E-31E 1 M 9-18-63 5524 55/ 3E- 1R 1 M 9-20-63 5524 55/ 9E- 9A 1 M 9-20-63 5524 55/ 9E-13G 1 M 9-20-63 5122 55/10E- 4F 1 M 9-23-63 5524 55/10E-23E 1 M 6-27-63 5050 55/10E-28H 1 M 9-26-63 5524 55/10E-30F 1 M Agy. Coll. State well Date sampled number TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Total | hardness
as
CaCO 3 | | 205 | 96 | 207 | 172 | 96 | 116 | 150 | 169 | 147 | | |---|---------|--|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--| | tuents in | TDS | Computed hardness
Evap 180°c CaCO 3 | | | | | | | | | | | | | constr
er mi | S.II. | si02 | | 1 | 1 | 1 | ł | - | į į | 1 | 1 | 1 | | | Mineral constituents ports per million | Borgn | æ | | 0.20 | 0.10 | 0.10 | 0 - 2 0 | 0.20 | 0.10 | 000 | 0 | 0 1 0 | | | | Fluo- | r de | | 1 | 1 | - | 1 | 1 | 1 | ! | 1 | 1 | | | | I.i.Z | trate
NO ₃ | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | million
e volue | Chlo- | ride
C I | | 14 | 10 | 0.65 | 1.30 | 0.62 | 1.69 | 62.0 | 19 | 21 | | | parts per million
equivolents per million
percent reactonce volue | Sulfate | 504 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | ts per
ivalents
cent | Bicar- | bonate
HCO3 | | 1 | I | 1 | 1 | 1 | 1 | 1 | 1 | l
1 | | | par | Carban- | ate
CO3 | | ļ | 1 | 1 | 1 | į | 1 | i | - | 1 | | | ë | Potas - | Enis | ED) | 1 | 1 | 1 | 1 | 1 | ŀ | 4 | ŧ | į. | | | Mineral constituents | Sadium | N
O | 52208 (CONTINUED) | 1.30 | 21 | 1.78 | 3.09 | 51 | 106 | 2.61 | 1.78 | 36 | | | linerol co | Magne- | E I M | 52208 (| 1 | - | 1 | | i
I | i | i t | ŀ | 1 | | | 2 | Calcium | CO | 52200 | l | 1 | ; | 1 | 1 | ł | 1 | 1 | 1 | | | Specific conduct- | (micro- | mhos
at 25°C) | | 532 | 283 | 561 | 682 | 433 | 685 | 652 | 520 | 483 | | | | Hd | | TION | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | | | Temp. | when | P P | EY
RRIGA | 6.5 | 99 | 65 | 6.5 | 65 | 99 | 65 | 9 | 67 | | | State weil | - | Date sampled Agy. | SAN JOAQUIN VALLEY TURLOCK IRRIGATION DIST | 55/11E- 7P 1 M
9-16-63 5524 | 55/11E-29F 1 M
9-16-63 5524 | 65/10E- 2H 1 M
9-16-63 5524 | 65/10E- 98 1 M
9-16-63 5524 | 64/10E-24L 1 M
9-16-63 5524 | 65/10E-28K 1 M
9-16-63 5524 | 65/11E- 38 1 M
9-29-63 5524 | 65/11E- 9C 1 M
3-13-63 5524 | 65/12E- 6L 1 M
9-17-63 5524 | | # ANALYSES OF GROUND WATER | | Tatal
hardness
as
CaCO 3 | | 62 | 91 | 99 | 105 | 119 | 116 | 110 | 171 | 91 | | |---|--|---|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---| | tuents in | TDS Tatal Computed hardness Evap 180°c CaCO ₃ | | | | | | | | | | | | | onst. | Sili-
ca
SiO ₂ | | 1 | 1 | } | 1 | 1 | 1 | - | | 1 | | | Mineral constituents
parts per million | Boran | | 000 | 0000 | 0 0 0 | 0.10 | 0 | 0000 | 0 0 | 0000 | 0 | | | ~ | Flua-
ride | | 1 | ; | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Ni-
trote
NO ₃ | | 1 | 1 | 1 | 1 | t
I | ŀ | ! | 1 | 1 | _ | | millian
e value | Chlor-
ride
Cl | | 5 | 0.20 | 0.11 | 21 | 14 | 0.14 | 0.25 | 2.03 | 0.25 | | | parts per million
equivolents per millian
percent reactance volue | Sulfate
SO4 | | 1 | 1 | 1 | ł | 1 | l | 1 | 1 | 1 | | | parts per
equivalents
percent rec | Bicar-
banate
HCO3 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | por | Carbon-
ate | | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 8 | 1 | | | Ë | Potas - | | - | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | | | Mineral constituents | Sadium | | 21 | 26 | 20 | 2.91 | 26 | 22 | 24 | 210.01 | 210.091 | | | ineral co | Magne:
sium
Ma | 52209 | - | 1 | 1 | 1 | 1 | 1 | 1 | ł | ł | | | Σ | Calcium | 52200 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | | Specific canduct- | mhos | IST | 228 | 308 | 228 | 518 | 361 | 326 | 330 | 416 | 267 | | | | Ĭ | I ON D | 1 | 1 | 1 | 1 | 1 | l | 1 | 1 | 1 | | | Temp. | when
sampled
° F | EY
RIGAT | 8 9 | 67 | 68 | 67 | 8 9 | 99 | 8 | 99 | 69 | | | State well | Agy. | SAN JOAGUIN VALUEY MERCED IRRIGATION DIST | 65/11E-27K 1 M
7- 1-63 5525 | 65/11E-36P 1 M
7- 9-63 5525 | 65/12E-21N 1 M
7- 9-63 5525 | 75/11E- 4M 1 M
7- 2-63 5525 | 75/12E- 10 1 M
9-10-63 5525 | 75/12E-19A 1 M
6-20-63 5525 | 75/13E- 4P 1 M
7- 9-63 5525 | 75/13E-22C 1 M
7-23-63 5525 | 75/14E- 9R 1 M
9-10-63 5525 | | | State | Date sampled | SAN JOA | 65/11E
7- 1- | 65/11E
7-9- | 65/12E | 75/11E | 75/12E
9-10- | 75/12E
6-20- | 75/13E | 75/13E
7-23- | 75/14E
9-10- | | * TDS by Evap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Toto1 | oco 3 | | 264 | 101 | 223 | 96 | | 170 | 412 | 478 | 532 | 441 | |---|---------------|--|---|--------------------------------
--------------------------------|--------------------------------|--------------------------------|---------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | ients in | TDS To | Computed hordness
Evop 180°C CoCO 3 | | | | | | | | | | 846
876 | 761 | | onstitu
er mitt | - i115 | SiO ₂ E | | - | | - | 1 | | 1 | l l | - | 21 | 2.7 | | Mineral constituents
parts per million | Boron | | | 000 | 0 | 000 | 000 | | 0 - 2 0 | 2.00 | 2.30 | 0.09•0 | 0 | | | Fluo- | ri de
F | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 0 • 2 | 0.2 | | | -i N | trate
NO ₃ | | 1 | 1 | } | l | | 1 | 1 | 1 | 20.0 | 23.0
0.37 | | million
e value | Chlo- | ride
C.I | | 18 | 0 - 23 | 13 | 0.28 | | 215 | 288
8•12 | 289 | 190 | 224 6 32 46 | | er million
ts per million
reactonce volue | Sulfate | 804 | | 1 | ii
T | i | - | | 1 | ł | 1 | 230 | 126
2•62
19 | | parts per
equivalents
percent rea | Bicor- | bonote
HCO3 | | 1 | 1 | 1 | 1 | | } | 1 | - | 284
4•65
31 | 270 | | par | Corbon- | ate
CO3 | | 1 | 1 | 1 | š
1 | | 1 | į | 1 | 0.10 | 0 | | . <u>e</u> | Potos - | siu a | ED) | 1 | 1 | ; | ł | | 1 | 1 | 1 | 0.05 | 0.05 | | Mineral constituents | Sodium | o
Z | (CONTINUED) | 2.00 | 18 | 2.48 | 1.35 | | 142 | 154 | 178 | 4 99 | 110 | | lineral co | Mogne- Sodium | si u m
M g | 52209 | 8 | İ | 1 | 1 | 52211 | 1 | ì | 1 | 111
9•13
61 | 95
7.81
57 | | 2 | Colcium | Ca | 52200 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1.50 | 1.00 | | Specific conduct- | (micro- | mhos
at 25°C) | IST | 670 | 278 | 919 | 325 | | 1060 | 1570 | 1750 | 1190 | 1350 | | | Hd | | I ON D | - | 1 | 1 | 1 | AREA | } | 1 | 1 | 8 | φ
• | | Temp. | when | L 0 | EY
R I GA T | 68 | 70 | 99 | 69 | DOTA | 72 | 63 | 62 | 67 | 68 | | State well number | | Date sampled Agy. | SAN JOAQUIN VALLEY MERCED IRRIGATION DIST | 75/14E-31M 1 M
8- 8-63 5525 | 75/15E-18K 1 M
8- 7-63 5525 | 7S/15E-30E 1 M
8- 7-63 5525 | 85/14E- 2D 1 M
8-21-63 5525 | DELTA-MENDOTA | 35/ 7E-33C 1 M
7-12-63 5122 | 45/ 7E-17K 1 M
6-27-63 5050 | 45/ 7E-18A 1 M
6-27-63 5050 | 45/ 7E-26R 1 M
7-17-63 5050 | 45/ 7E-34K 1 M
7-17-63 5050 | | _ | | | | | | | | | | | | |---------|--|--|---|---|--
--|--|--|---|--
--| | Total | hardness
CaCO 3 | | 241 | 411 | 444 | 276 | 602 | 450 | | | 273 | | TDS | Computed
Evap 180°c | | 750 | 925 | 870 | 544 | | | 0 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1529 | 1500 | | Siii- | co
SiO ₂ | | 70 | 17 | 23 | 23 | 1 | 1 | 27 | 27 | 35 | | Baran | æ | | 0.00 | 0 9 • 0 | 0 • 30 | 0 + 0 | ⊃
8
• | 0 • 5 0 | 94. | 2.20 | 3 | | Fluo- | r - de | | 7.0 | 0.5 | 0 • 1 | 7.0 | 1 | t | 0 • 1 | 0.2 | 0 · 0 | | - i.N | trote
NO ₃ | | 14.0 | 3.9 | 11.0 | 11.0 | 1 | 1 | 12.0
0.19 | 0 | 2 • 3 | | Chlo- | ride
C I | | 5.70 | 271
7.64
48 | 190 | 128
3•61
38 | 181 | 1.18 | 2.17 | 347
9•79
41 | 273 | | Sulfate | \$04 | - | 152
3•16
22 | 235
4.89 | 272
5•66
39 | 98
2.04
21 | 1 | 1 | 247
5.14
50 | 559
11.64 | 548
11.41
52 | | Bicor- | bonate
HCO3 | | 306 | 195
3.20
20 | 3.20 | 2113.46 | 1 | 1 | 167
2•74
27 | 162
2.66
11 | 171 2.80 13 | | Carbon- | ate
CO3 | | 0.40 | 0 | 0 | 0.20 | 1 | 1 | 0 | 0 | 0 | | Potas - | E X | ED) | | 0.05 | 0.08 | 0.03 | 2 2 | 1 | 0.05 | 0.20 | 0 8 8 | | Sodium | Να | CONTINU | 3.70 | 180 | 130 | 4.22 | 154 | 129 | 3.70 | 385
16•74
69 | 390
16.96
75 | | | sium
Mg | 52211 (| 100 | 5.76 | 5.43 | 50
4.11
42 | 1 | 1 | 2.63 | 3.21 | 2.22 | | Colcium | 00 | 52200 | 2.59 | 2.45 | 3.44 | 28
1.40 | 1 | 1 | 3.69 | 82
4.09
17 | 3.24 | | (micro- | mhos
at 25°C) | | 1220 | 1590 | 1340 | 076 | 1750 | 1370 | 666 | 2275 | 2280 | | Hd | | AREA | 2 . | 8 2 | 80
27 | 7 . 8 | 1 | 1 | 8 . 1 | 8 . 2 | ° 2 | | when | sombleo
° F | Ϋ́ | 65 | 73 | 74 | 49 | 70 | 73 | 65 | 1 | 67 | | | Agy.
Coll. | VALL
A-MEN | 5050 | 5050 | 3 1 M
5050 | 5050 | 5 1 M
5122 | 4 1 M
5122 | 5050 | 5641 | 5050 | | | Date sampled | SAN JOAQUIN
DELT | 7-17-63 | 7-17-63 | 55/ 7E-23E
7-17-63 | 55/ 7E-35A
6-27-63 | 55/ 8E- 80
8- 5-63 | 55/ 8E-27N
8- 5-63 | 85/ 9E- 2F
6-27-63 | 85/ 9E-12E
7-23-63 | 85/10E-29D 1 M
6-27-63 5050 | | | When ph once colcium Magne- Sodium Potas- Carbon- Bicor- Sultone Chio- Ni- Fluo- Baron Sili- IDS | when properties Properties Outcomples Color of a range Control of a range Branch of a range South of a range Control | Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Coli or Mos. Sign of DELTA-MENDOTA Processing of Delta (Micros (Mic | Sampled Agy. Dollar Minos Agy | Sampled Agy below recompled Agy sampled Agy sampled colling samp | Somptied Agy Sompled | Sompleted Agy Somplete | Sampled Agy, Sampled Agy, Sampled Potential Potential Potential Sampled Agy, Sam | Sampled Agy Sampled Agy Sampled | Sample S | Sample Automatic Automat | * TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Totol
hordness
CaCO 3 | | 248 | 462 | 251 | 379 | 4 % | 153 | | 61 | 9 5 | 176 | | |---|--|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---|---------------------------------|----------------|--------------------------------|--------------------------------|---------------------------------|------------------------| | uents in
lion | TDS Total Computed hardness Evap 180°c CaCO ₃ | | 1353 | 1365 | | | 1083 | 610 | | | 198 | | | | onstitu
er mill | Silı-
ca C
SiO ₂ E | | 2α | 9 1 | l
i | l
I | 77 | 16 | | 1 | 39 | - | | | Mineral constituents
parts per million | Boron | | 2.20 | 1 . 80 | 1.30 | 0 9 • | 2 • 80 | 1.40 | | 0 | 00.0 | 0.10 | | | | Fluo-
ride
F | | 0 • 2 | 0.5 | i | 1 | • 0 | 0.2 | | 1 | 0 | 1 | 1 | | | rote
NO3 | | 1.3 | 0 | 1 | 1 | 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.7 | | 1 | 4 • 4
0 • 0 7
2 | 1 | | | million
e value | Chlo-
ride
Cl | | 245 | 374
10.55
47 | 3.16 | 3.27 | 129
3• 6 4 | 197 | | 18 | 25
0•71
24 | 35 | | | er million
ts per million
reactance value | Sulfate
SO4 | | 524
10.91
52 | 804
804
804
80 | t | 1 | 4 4 6 0 8 6
0 8 6 | 70 1 • 46 14 | | 1 | 0 0 0 8 0 0 8 | 1 | - | | e be | Bicar-
bonote
HCO3 | | 3.06 | 205 | 1 | 1 | 209
3 • 43
21 | 3.39 | | 1 | 127
2.08
71 | 1 | | | ports
equival
percen | Corbon-
ate
CO3 | | 0 | 0.17 | 1 | 1 | 0 | 0 | | - | 0 | 1 | | | .c | Potas -
sium
K | ED) | 0.08 | 0.05 | 1 | 1 | 0.05 | 0.05 | | 1 | 0.05 | 1 | 1 | | Mineral constituents | Sodium | (CONTINUED) | 370
16.09
76 | 315
13•70
60 | 97 | 80. | 332
14•44
89 | 170 | | 0.74 | 1.17 | 38 | | | linerol co | Magne-
sium
Mg | 52211 (| 1.56 | 5.84 | ì | 1 | 4 6 9 3 3 | 1.56 | 52212 | i | 6
0 • 49
16 | ě | - | | 2 | Calcium | 52200 | 3,39 | 3,39 | 1 | ł | 1.35 | 30 | | à
è | 28
1,40
45 | 1 | - | | Specific conduct- | (micro-
mhos
at 25°C) | | 1875 | 2050 | 927 | 1080 | 1730 | 970 | WATER DISTRICT | 207 | 285 | 533 | | | | Hd | AREA | 8 . 2 | 8 3 | 1 | 1 | 8 • 2 | 8 • 2 | R DI | 1 | 8 • 1 | 1 | | | Temp. | sompled
°F | A T | 76 | 1 | 1 | 1 | 6.0 | 4 9 | | 47 | 72 | 67 | | | Stote well number | Date sampled Agy. | SAN JOAGUIN VALLEY
DELTA-MENDOTA | 85/10E-29D 1 M
7-17-63 5050 | 95/ 9E= 2L 1 M
7=23=63 5641 | 95/ 9E-21F 1 M
7-23-63 5641 | 95/10E-36R 1 M
7-22-63 5641 | 95/11E- 7N 1 M
6-27-63 5050 | 10S/ 9E- 2D 1 M
6-27-63 5050 | CHOWCHILLA | 95/16E-30C 1 M
8- 7-63 5050 | 95/16E-35N 1 M
8- 7-63 5050 | 104/14E- 8B 1 M
8-15-63 5050 | " TUS 6, tvop et 1050e | | Temp. Specific conducts in equivolents per million of conducts conducts are consistent in equivolents per million of conducts conducts are consistent in equivolents per million of conducts and concerns are consistent in equivolents per million of concerns and concerns are are concerns and concerns are concerns are concerns and concerns are concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns and concerns are concerns are concerns and are concerns are concerns and concerns are concerns and concerns are concerns are concerns are concerns and concerns are concerns are concerns are concerns are concerns and concerns are concerns are concerns and concerns are conce | 1 2 2 | |--|---| | Temp. Conducti- Mineral constituents in ports per million per million per million per million per million per million pe | 127 | | Temp. Specific conditions in ports per million p | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Temp. Specific conducts in ports per million conduct conduct constituents in percent reactions value sampled sampled conduct. When sampled conducts conducts conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct conduct conduct conduct conducts are conducted as a conduct | 2 | | Temp. Specific conduct. Mineral constituents in ports per million conduct. | 0 | | Temp. Specific constituents in equivolents per million conduct. when sampled million conduct. when sampled once conduct. when sampled once conduct. when sampled once conduct. when sampled once conduct. A WATER DISTRICT 52200 52212 (CONTINUED) A WATER DISTRICT 52200 331 8 28 28 2.51 0.05 153 0.05 188 RIGATION DIST 52213 0.05 1.22 0.05 1.23 0.05 0.05 1.23 0.05 0.05 1.23 0.05 0.05 0.05 1.23 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0 | 1 0 1 | | Temp. Specific conduct. Conduct constituents in ports per million conduct. Sampled miles in percent coctonce sampled miles conduct. Sampled miles conduct. Salidate conduct. Sampled miles conduct. Salidate condu | 0.138 | | Temp. Specific conduct. Sandium Polas in conduct condu | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Temp. Specific conduct. Sandium Polas in conduct condu | 0 480 | | Temp. Specific conduct. Sandium Polas in conduct condu | 1,116 | | Temp. Specific conduct- conduct conduc | 0 | | Temp. Specific conduct. Samples of mines of conduct samples of 25°C) company of 25°C of 22°C o | 0.104 | | Temp. Specific conduct- conduct- sampled minos of 25°C) EY A WATER DISTRICT 52200 5 | 1.22
1.22
1.9
0.83
3.2
0.70
0.70 | | Temp. Specific conduct- conduct- sampled micro- conduct- | 0 | | Temp. when sampled of each | 1 222 1 9 | | Temp. when sampled of F EY A watter 68 70 8 70 8 77 77 77 | 250 202 | | well Temp. when when when sompled Coll of | 0 1 1 | | well or Agy. led Agy. JIN VALL HOWCHILL JON VALL SOSO | 0 0 0 0 | | vel
Vel
Vel
Vel
Vel
Vel
Vel
Vel
V | 5050
1 5050
1 5050
1 5050 | | State well number Dote sompled Agy. | 125/17E-7F 1 M
8-26-63 5050
125/17E-24A 1 M
8-7-63 5050
125/18E-7L 1 M
8-7-63 5050 | * TOS by Fvap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Tata1
hardness | 20000 | | 77 | 76 | 63 | 226 | | 187 | 222 | 221 | 144 | 148 | |---|-----------------------|------------|------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | tuents in | TDS Tatol | Evap IBU-c | | | | 244 | | | 351 | 394 | 384 | | | | constituent
per million | Sili. | 2102 | | - | 1 | 7.7 | 1 | | 64 | 57 | r. | 1 | - | | Mineral constituents parts per million | <i>c</i> | no a | | 000 | 0 | 0000 | 0.20 | | 0 0 | 0.10 | 000 | 00 • 0 | 0.10 | | | Fluo- | | | 1 | 1 | 0 • 0 | 1 | | 0.1 | 0 | 0.1 | 1 | 1 | | | Ni- | 2002 | | 1 | 1 | 8 • 1
0 • 13 | 1 | | 27.0
0.44
8 | 0 • 0 5 | 11.0
0.18 | 1 | : | | million
e volue | Chla- | 5 | | 26 | 26 | 23 | 1.41 | | 1.07 | 142 | 126
3 555
58 | 0.62 | 1.13 | | parts per million
equivalents per million
percent reactance value | Sulfate | 204 | | 1 | î
î | 444 | i i | | 0.29 | 0.35 | 0.12 | 1 | 1 | | parts per
equivalents
percent | Bicor-
banate | 2001 | | 1 | 1 | 1.51 | 1 | | 3.65 | 110 | 137 2.25 37 | 1 | 1 | | por | Carbon-
ate | 500 | | 1 | 1 | 0 | ł | | 0 | 0 | 0 | - | 1 | | .E | Potas ~ | ¥ | ED) | 1 | 1 | 0 0 0 2 | 1 | | 0.13 | 0.10 | 0.10 | 1 | 1 | | constituents | So | 0 2 | CONT INUED) | 0.96 | 0.96 | 0.96 | 2.91 | | 1.70 | 36
1.57
26 | 1.74 | 31 | 35 | | Mineral c | Magne- | 6 X | 52213 (| 1 | • | 0.41
18 | \$ 6 | 52214 | 9
0•74
13 | 12
0.99 | 1.73 | 1 | ! | | 2 | ပိ | | 00776 | ł | 1 | 0.85 | ŧ
1 | | 2.99 | 3.44 | 2.69 | 1 | <u> </u> | | Specific conduct- | (micro-
mhos | ot 25°C) | ISI | 273 | 274 | 237 | 718 | ERA | 490 | 610 | 655 | 422 | 460 | | | Hd | | ION | 1 | ŧ | 7 • 4 | 1 | A-MAD | 0 | 8 0 | 8 2 | - | i | | Тетр. | when
sampled
°F | 2 | RIGAT | 73 | 72 | 7.1 | 75 | CHILL | 1 | 68 | 7.0 | 69 | 68 | | State well | Agy. | Colli | MADERA IRRIGATION DIST | 125/18E-14J 1 M
8- 7-63 5050 | 8-28-63 5050 | 135/17E- 1L 1 M
9- 3-63 5000 | 13S/17E- 5P 1 M
8-15-63 5050 | WEST CHOWCHILLA-MADERA | 10S/13E- 1A
1 M
7-23-63 5641 | 115/14E- 5B 1 M
8-15-63 5050 | 115/14E-16A 1 M
9-11-63 5050 | 115/15E-23L 1 M
8-26-63 5050 | 115/15E-29H 1 M
8-15-63 5050 | | | Totol | C0C03 | | 742 | 194 | 96 | 101 | m | 2 | | 130 | | |---|------------------|-------------------|---|---------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|--| | tuents in | T D S | Evop 180°C COCO 3 | | | | | | | - | | | | | onsti
er m | Siti- | | | ł | | 1 | - | - | 1 | | 1 | | | Mineral constituents
ports per million | Boron | 83 | | 0.10 | 0000 | 0000 | 00.0 | 0.20 | 0.10 | 0.20 | 0 | | | | Fluo- | L | | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | | | | rate - | NO 3 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | | | million
per million
ctance value | Chlo- | 10 | | 756 | 2.26 | 25 | 32 | 12 | 16 | 15 | 19 | | | | Sulfate | 804 | | 1 | 1 | 1 | 1 | 1 | 1 | 0.02 | 1 | | | parts per
equivalents
percent rea | Bicor-
bonate | нсо3 | | 1 | i | 1 | 1 | 1 | 1 | - | 1 | | | par | Carbon-
ate | C 0 3 | | ! | 1 | 1 | 1 | 1 | 1 | | 1 | | | .E | Potas - | ¥ | ED) | 1 | 1 | 1 | 1 | 1 | 1 | ì | 1 | | | Mineral constituents | Sadium | D N | CONTINUED) | 308 | 37 | 32 | 2.55 | 46 | 1.91 | 1.74 | 31 | | | lineral co | Magne- | ρM | 52214 | ł | 1 | 1 | 1 | 1 | 1 | l | ì | | | 2 | Calcium | Ca | 52200 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | | | Specific conduct- | (micro-
mhos | at 25°C) | ERA | 2950 | 585 | 353 | 381 | 208 | 201 | 192 | 395 | | | | Hď | | A-MAD | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | | | Temp. | when
sompled | <u>.</u> | EY
CHILL | 67 | 6,8 | 69 | 71 | 1 | 1 | 99 | 7.1 | | | State well | Agy. | _ | SAN JOAGUIN VALLEY WEST CHOWCHILLA-MADERA | 125/14E-10N 1 M
8-19-63 5050 | 25/15E- 4K 1 M
8-15-63 5050 | .2S/15E-22F 1 M
8-15-63 5050 | 125/15E-27G 1 M
8-15-63 5050 | 135/15E-22J 1 M
7-22-63 5641 | .35/15E-25C 1 M
7-22-63 5050 | -25C 1 M
8-19-63 5050 | 135/16E- 2C 2 M
8-15-63 5050 | | | Stat | belomos etol | 200 | SAN JOA | 125/14E
8-19- | 25/15E
8-15- | 25/15E
8-15- | 25/15E
8-15- | 34/15E | 35/15E | 8-19- | 35/16E
8-15- | | * TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | _ | _ | | | | | | | | | | | |---|--|--|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | Total | hardness
0 s
CaCO 3 | | 80 | 146 | 209 | 221 | 111 | 257 | 147 | 108 | 123 | | tuents in | TDS | Computed hardness
Evop 180°c CaCO 3 | | 191 | | 345 | 485 | 340 | 693 | 278 | 265 | 257 | | constituent
per million | Silı- | sio ₂ | | 61 | 1 | 1 | 9 | 09 | 8 | 70 | 102 | 73 | | Mineral constituents
parts per million | Boron | 00 | | 0 25 | 0 | 0 50 | 0.16 | 0.12 | 0 0 | 0 | 900 | 20.0 | | | Fluo- | T de | | 0 | 1 | 1 | 0 • 1 | 0 • 5 | 0 | 0.5 | 0 • 5 | 0.2 | | | <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> | trate
NO ₃ | | 6.9
0.11 | 1 | 9.5
0.15 | 25 0
0 4 0
5 | 0.01 | 43.0
0.69 | 12.0
0.19 | 13.0 | 17.0
0.27
8 | | million
per million
actance volue | Ch10- | ride
C I | | 0.20 | 5 0 • 14 | 16 | 21 0 59 | 1.38 | 225
6 35
6 9 | 0.28 | 0.37 | 15 0 42 12 | | 0.1 | Sulfate | 804 | | 0.06 | 1 | 43
0.90
14 | 42
0.87
11 | 35
0.73
13 | 10 | 0.23 | 0.12 | 0.19 | | parts per
equivolents
percent re | Bicar- | bonate
HCO ₃ | | 134
2•20
86 | 1 | 304 | 372 | 209 | 116
1.90
21 | 201
3.29
82 | 141
2•31
77 | 157 2.57 74 | | por | Carbon- | ate
CO3 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ë | Potas - | E X | | 0.00 | ł | 0.08 | 0.05 | 0.13 | 0.20 | 0.13 | 0.13 | 0.13 | | constituents | Sodium | 0 2 | | 0.65 | 0.57 | 2.83 | 3.30 | 3.04 | 3.83 | 0.96 | 0.78 | 21
0 • 91
26 | | Mineral co | Magne- | sium
Mg | 52215 | 0.66 | 1 | 1.64 | 1.48 | 0.82 | 2.14 | 1.23 | 0.66 | 1.15 | | 2 | Calcium | ٥٥ | 52200 | 1.05 | 1 | 5.
2.54
39 | 2.94 | 1.40 | 2 99 | 34
1.70
42 | 1.50 | 1.30 | | Specific conduct- | (micro- | mhos
ot 25°C) | DIST | 228 | 344 | 009 | 747 | 576 | 066 | 385 | 311 | 356 | | | Hd | | ION D | 7.9 | - | ω
• | 7.6 | 8 | 7.2 | 7.4 | 7 • 7 | 7.4 | | Temp. | when | L o | EYRIGAT | - | 1 | 1 | 1 | 1 | 78 | 1 | 1 | 1 | | State well | T | Date sompled Agy. | SAN JOAQUIN VALLEY
FRESNO IRRIGATION | 12S/20E-32J 1 M
5- 2-63 5050 | 125/21E-31P 1 M
7-11-63 5631 | 135/17E-12J 1 M
9-26-63 5050 | 13S/17E-22B 1 M
6-25-63 5631 | 135/17E-29L 1 M
6-20-63 5631 | 135/19E-24G 1 M
6-12-63 5050 | 135/19E-27L 1 M
8-12-63 5000 | 135/19E-29E 1 M
7-17-63 5050 | 135/19E-32D 1 M
6-13-63 5050 | | | | | | | | | | | | | | | # ANALYSES OF GROUND WATER | | | | | | | | | | | - 1 | | | | | | | | |---|-------------|--------|-------------------|------------------|----------------------|-------------|-------------|------------|---|---|-------------|--------------|--------|---|------------------|-------------------|--------------------| | State well number | Temp. | | Specific conduct- | | Mineral constituents | instituents | i. | por | parts per
equivolents
percent rea | parts per million
equivolents per million
percent reactonce volue | nillion | | 2 | Mineral constituents
parts per million | constit
er mi | uents in
Ilion | | | | when | Hď | (micro- | Colcium | Moone | Sodium | Patas - | Carban- | B.cor- | Sulfate | Chio- | -1.2 | Fluo- | Boron | Sili | TDS | Total | | Date sampled Agy. Coll. | sompled | | mhas
at 25°C) | | | 2 | sium
× | ate
CO3 | | 804 | ride
C I | | | | | 000 | hardness
CaCO 3 | | SAN JOAQUIN VALLEY
FRESNO IRRIGATION | EY
RIGAT | I ON D | DIST | 52200 | 52215 | CONTINUED) | ED) | | | | | | | | | | | | 135/19E-32M 1 M
8-12-63 5000 | 1 | 7.5 | 832 | 2.50 | 1.73 | 105 | 0.15 | 0 | 373
6•11
71 | 27 0.56 | 1.41 | 31.0 | o
• | 0 • 5 0 | 6.2 | 536 | 212 | | 135/19E-36E 1 M
5-28-63 5050 | 72 | 8 • 0 | 281 | 0.80 | 9,00 | 0.61 | 0.13 | 0 | 108
1.77
84 | 0.06 | 0.11 | 10.0
0.16 | 0 | 0 0 0 | 73 | 186 | 73 | | 135/20E- 6F 1 M
6-11-63 5050 | 71 | 8 • 0 | 212 | 1.05 | 0.41 | 0.000 | 0.08 | 0 | 104
1.70
82 | 0.00 | 0.20 | 7.1 | • | 0.28 | 56 | 169 | 73 | | - 6F 1 M
6-11-63 5050 | 71 | 1 | 1 | 1 | 1 | 1 | 1 | - | - | ŀ | - | 11.0 | 1 | 1 | 1 | | | | 135/20E- 9F 2 M
3-23-63 5060 | 1 | 8 0 | - | 16
0.80
36 | 0.82 | 0.52 | 0.08 | 0 | 102 | 0 0 4 8 4 | 0.20 | 11.1
0.18 | 0 • 1 | 1 | ŧ | 113 | 81 | | 5-28-63 5050 | 71 | ŧ | 1 | 1 | i i | - | l | | 1 | 1 | 1 | 12.0 | 1 | 1 | 1 | | | | 135/20E- 90 1 M
5-28-63 5050 | 71 | 8 1 | 206 | 0.95 | 0.82 | 13 | 0 0 0 0 | 0 | 118 | 0.08 | 0.14 | 9.6 | . 0 | 90.0 | 20 | 191 | ζ
α | | 8- 2-63 5050 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 12.0 | 1 | 1 | 1 | | | | 135/20E-12L 1 M
6-14-63 5050 | 1 | 7.8 | 155 | 14
0•70
45 | 0.41 | 0.39 | 0 0 0 0 0 0 | 0 | 80
85
85 | 0.10 | 0.11 | 0.8 | 0.2 | 0 0 0 0 0 | 23 | 102 | 9 | | | | | | | | | | | | | | | | | | | 7 | * TDS by Fvap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Totol | hordness
05
CoCO3 | | 8 9 | 136 | 69 | 82 | 77 | 45 | 48 | | 76 | |--|-----------------|--|--------------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|--------------------------|---------------------------------|-----------------|---------------------------------| | constituents in
ser million | 108 | Computed hordness
Evop 180°c CoCO 3 | | 122 | 185 | 170 | 190 | 198 | 120 | 190 | | 185 | | onstif
er mi | Sili - | si02 | | 1 | 1 | 8 9 | 65 | 74 | 4 5 | 62 | - | 89 | | Mineral constituent
ports per million | Boran | | | 1 | 1 | 90•0 | 0.16 | 40.0 | 40.0 | 0 • 0 3 | 1 | 0 • 0 | | | Fluo- | r · de | | 0 • 1 | 0.1 | 0.1 | 0 • 1 | 0 • 2 | 0 • 2 | 0 • 2 | - | 0.5 | | | i.z | trate
NO3 | | 7.1
0.11
5 | 15.9 | 10.0 | 14.0
0.23
10 | 16.0 | 3.7 | 11.0 | 17.0 | 0 0 0 0 0 0 4 | | million
e volue | Chio- | ride
C 1 | | 0.14 | 0.23 | 0.14 | 0.14 | 0.20 | 0.06 | 0.20 | 1 | 0
0
0 3
4 | | million
per
sactand | Sulfate | 804 | | 0.10 | 0.17 | 0.00 | 0.15 | 4 0 0 8 9 4 | 40.0 | 0.25 | 1 | 0.23 | | ports per
equivolents
percent re | Bicar- | banate
HCO ₃ | | 120
1.97
85 | 172
2.82
81 | 93
1.52
81 | 108 | 1.41 | 76
1.25
86 | 106
1•74
73 | 1 | 1111082 | | por | Carbon- | ote
CO3 | | 0 | 1 8 | 0 | 0 | 0 | 0 | 0 | - | 0 | | . <u>e</u> | Potos - | Siu A | JED) | 0.10 | 0.13 | 0.10 | 0.10 | 0.15 | 0.05 | 0 | 1 | 0.13 | | instituents | Sodium | ° | CONT INVED) | 0.57 | 17
0.74
21 | 11 0 48 24 | 0.65 | 14 0.61 | 0.52 | 16
0•70
29 | i | 14
0•61
27 | | Mineral constituents | Magne- | | 52215 | 0.82 | 1.07 | 0.58 | 0.74 | 0.74 | 9 0 0 9 4 9 | 10.82 | 1 | 10
0.82
36 | | Σ | Colcium | | 52200 | 0.95 | 33
1.65
46 | 16 | 18
0.90
38 | 0.80 | 0.40 | 0.85 | 1 | 14
0.70
31 | | Specific conduct- | once
(micro- | mhas
at 25°C) | IST | l | 1 | 194 | 233 | 239 | 152 | 254 | + | 230 | | | Hd | | NOI | 7.7 | 8 • 2 | 7 • 7 | 7 • 8 | 7.7 | 7.9 | 7.9
| ! | 7.5 | | Temp. | when | samplea
• F | EY
RIGAT | i | 1 | 70 | 1 | 70 | 1 | 71 | 1 | ; | | = | | Agy.
Coll. | NO IR | 5060
5060 | 5 2 M | 5050 | J 1 M
5050 | 5050 | 5050
5050 | 5050 | -17F 1 M | A 1 M
5050 | | State well | | Date sampled | SAN JOAGUIN VALLEY
FRESNO IRRIGAT | 35/20E-17G 1 M
9- 3-63 5060 | 13S/20E-17G 2 M
9- 3-63 5060 | 135/20E=20N 1 M
6-26-63 5050 | 138/20E-27J 1
6-26-63 505 | 13S/20E-32D 1 M
6-26-63 5050 | 135/21E-15N
5-16-63 5 | 13S/21E-17F 1 M
5-16-63 5050 | -17F
5-16-63 | 135/21E-19A 1 M
5-29-63 5050 | | | Total | hardness
CaCO 3 | | | | 140 | 225 | | 234 | 4 7 | 189 | 0 9 | |---|--------------|---|--|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------| | tuents in
Ition | TDS | Computed hardness
Evap 180°C CaCO ₃ | | | | 264 | 404 | | 317 | 120 | 287 | 187 | | ansti
r mi | Sili- | ca
Si0 ₂ | | 1 | 1 | 57 | 73 | 1 | 1 | 44 | 8 | 9 | | Mineral canstituents
parts per million | Baran | 60 | | 1 | 1 | 6000 | 0 15 | 1 | ŧ
\$ | 000 | 0.10 | 8 0 | | 2 | Flua- | r de
F | | 1 | 1 | 0 | м
• | 1 | 1 | 0 • 1 | 0.2 | 0 | | | - <u>-</u> Z | trate
NO ₃ | | 7.0 | 21.0 | 20.0 | 39.0 | 16.0 | 22.0
0.35
6 | 1.9 | 25.0 | 9.7 | | million
value | Chla- | ride
C.I | | 1 | 1 | 0.37 | 0.54 | | 0.51 | 0 0 0 | 0.56 | 0.17 | | parts per million
equivalents per million
percent reoctonce value | Sulfate | 804 | | 1 | 1 | 0.27 | 38 0.79 | t | 0.56 | 0.12 | 0.25 | 0.12 | | ports per
equivalents
percent re | Bicar | banate
HCO3 | | 1 | 1 | 178
2.92
75 | 245
4•02
67 | 1 | 283 | 1.20 | 210 | 112 | | por
equ | Carban- | ate
CO3 | | 1 | - | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | i | Patas - | siu x | ED) | 1 | 1 | 0.10 | 10 0.26 | 1 | 7 0 18 | 0.03 | 0.08 | 0.080 | | nstituents | Sadium | D Z | CONTINUED | 1 | 1 | 24
1.04
26 | 1.35 | 1 | 1.22 | 0.57 | 20
0.87
18 | 1.09 | | Mineral constituents | Magne- | SIUM
M.9 | 52215 | ľ | ł | 1.40 | 2.14 | ł | 2.22 | 0.49 | 2.63 | 6
0 • 49
21 | | Σ | Calcium | Ca | 52200 | 1 | ł | 1.40
36 | 2.35 | 1 | 2.45 | 0.45 | 23
1.15
24 | 0.70 | | Specific conduct- | micro- | | | 1 | 1 | 393 | 572 | 1 1 | 1 | 173 | 194 | 232 | | | Ha | | ION D | 1 | 1 | 7.4 | 8 . 2 | 1 | 8 1 | 7.8 | 8 .1 | 7.8 | | Тетр. | when | samplea
• F | EYRIGAT | 1 | 73 | 1 | i | 72 | 1 | 8 9 | 1 | 1 | | State well | | Date sampled Agy. | SAN JOAGUIN VALLEY
FRESNO IRRIGATION BIST | 135/21E-19A 1 M
5-29-63 5050 | 135/21E-31E 2 M
5- 2-63 5050 | -31E 2 M | 13S/21E-31M 1 M
6-12-63 5050 | 135/21E-310 1 M
5-27-63 5050 | -310 1 M
6-24-63 5060 | 135/21E-36R 1 M
8-20-63 5050 | 135/22E-28C 2 M
7-11-63 5631 | 135/23E-30J 1 M
7-19-63 5631 | * TOS by Evap ct 105°c TABLE E-1 ANALYSES OF GROUND WATER 1963 | | Tatai
hardness
as
CaCO 3 | | 153 | 174 | 187 | 126 | 161 | 175 | 172 | 197 | 59 | |---|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | constituents in
per million | TDS Total Computed hardness Evap 180°C CaCO ₃ | | 290 | 368 | 325 | 259 | 305 | | 335 | 346
318 | 181 | | constituent
per million | Sill-
ca
SiO ₂ | | 69 | 75 | 75 | 76 | 4 | 1 | 6.3 | 74 | 47 | | Mineral
parts p | Baron | | 0 • 0 8 | 0.15 | 0.10 | 0000 | 0.20 | 0.10 | 0000 | 0.04 | 0 • 0 | | | Flua-
ride
F | | 0 . 2 | 0 • 2 | 0 | 0.2 | en
• | 1 | 0.2 | 0.1 | 0.1 | | | Ni-
trate
NO3 | | 15.0 | 23.0 | 16.0 | 17.0 | 13.0 | 1 | 15.0 | 12.0 | 16.0
0.26
11 | | million
e volue | Chlo-
ride
C1 | | 1.18
2.9 | 1.07 | 1.27 | 17 | 33 | 1.69 | 24
0.68
13 | 0.37 | 0.23 | | parts per million
equivalents per million
percent reactance value | Sulfate
SO4 | | 16
0 33
8 | 24 | 16 0.33 | 0.12 | 0.23 | 1 | 14 0 • 29 6 | 0.19 | 0.19 | | parts per
equivalents
percent re | Bicar-
banate
HCO3 | | 143
2.34
57 | 212
3•47
64 | 170
2.79
60 | 154
2.52
74 | 193
3•16
70 | 1 | 240
3.93
76 | 276
4 • 52
86 | 104 | | por | Carbon-
ote
CO3 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | n i | Patas -
sium
K | ED) | 0.13 | 0.15 | 0.18 | 0.18 | 0.15 | 1 | 0.18 | 0.18 | 0.08 | | constituents | Sadium | (CONTINUED) | 20 0.87 | 1.87 | 20 0.87 18 | 18
0•78
22 | 1.26 | 1.78 | 37
1.61
31 | 30 | 1.22 | | Mineral co | Magne-
sium
Mg | 52215 (| 1.15 | 1.97 | 1.64 | 1.07 | 1.32 | 1 | 18
1•48
28 | 1.73 | 0.58 | | 2 | Calcium | 52200 | 38
1.90
47 | 1.50 | 2.10 | 1.45 | 38
1.90
41 | 1 | 1.95 | 2.20
41 | 12
0.60
24 | | Specific conduct- | (micra-
mhas
at 25°C) | 151 | 777 | 560 | 471 | 339 | 450 | 653 | 200 | 503 | 261 | | | Į. | I ON D | 8 | 0 | 7.3 | 7.7 | 8 • 0 | ! | 7.5 | 8 0 | 7.4 | | Temp. | when
sampled
°F | EYRIGAT | 1 | 69 | 71 | 71 | 68 | 1 | 70 | 1 | 1 | | State well | Agy. | SAN JOAGUIN VALLEY
FRESNO IRRIGATION DI | 14S/17E-13H 1 M
6-25-63 5631 | 145/18E-11F 1 M
8-28-63 5000 | 145/18E-160 1 M
8-12-63 5000 | 145/18E-24D 1 M
8-12-63 5000 | 145/18E-25A 1 M
6-12-63 5050 | 14S/18E-26N 1 M
8-13-63 5050 | 14S/18E-29J 1 M
8-12-63 5000 | 145/19E- 7M 1 M
6-13-63 5050 | 145/19E-14P 1 M
6-13-63 5050 | | | D | SA | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | 1963 | |------| | | | - | | | | | | | | | | | | |---|------------------------|---|---------------------------------|----------|---------------------------------|----------|---------------------------------|----------|---------------------------------|--|---------------------------------| | | Toto!
hardness | 50000 | 350 | | 488 | | 105 | | 229 | 376 | 35 | | luents in | T D S | 001 400 | 692 | | 695 | | 246 | | 406
388 | 603 | 20 C 4 20 C | | onstill
er mi | Sile | 202 | w
o | - | 70 | 1 | 74 | 1 | 4 | 73 | 67 | | Mineral constituents
ports per million | c | n | 0 • 3 4 | 1 | 0.11 | | 0.07 | 1 | 0 | 0.14 | 0.27 | | | Fluo- | _ | 0.1 | 1 | 0.1 | ţ | 0 | 1 | 0 • 1 | 0.1 | 0 | | | trote | ρ
Ο 2 | 27.0 | 32.0 | 0.01 | 0.5 | 15.0
0.24
8 | 20.0 | 18.0
0.29 | 3 • 9 | 0 0 0 0 0 0 1 | | million
e volue | Chlo- | 5 | 1.52 | 1 | 1.64 | - | 19 0 • 54 | i i | 0.82 | 66
1.86
1.8 | 1.48 | | parts per million
equivolents per million
percent reactance volue | Sulfate | 400 | 22 0 46 | l | 18 0.37 | 1 | 0.17 | î
Î | 0.31 | 21 0 • 44 | 0.29 | | parts per
equivalents
percent re | | £000 | 585
9.59 | - | 648
10•62
84 | 1 | 134 2.20 | 1 | 314 | 474
7.077 | 527 | | par | Carbon- | 800 | 0 | 1 | 0 | | 0 | 1 | 0 | 0 | 0 | | ri | 1 00 0 | K YED) | 0.23 | 1 | 0.33 | 1 | 0.18 | 1 | 0.18 | 13 | 0.28 | | instituents | Sadium | CONTINUED) | 112 | 1 | 2.39 | | 0.96 | 1 | 1.83 | 2.65 | 2.96 | | Mineral constituents | 1 | Mg
52215 | 2 • 30
19 | 1 | 4
8 8 8
8 8 8
8 8 | 1 | 0.90
28 | - | 1.89 | 2 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3.37 | | Σ | Calcium | 52200 | 4.69 | - | 108 | 1 | 1.20 | - | 2.69 | 4 9 8 9 7 4 7 | 3.69 | | Specific conduct- | (micro-
mhos | at 25°C)
0 I ST | 1080 | i
i | 1140 | 1 | 331 | 1 | 623 | 1040 | 928 | | | H. | | 8 • 2 | 1 | 7.5 | .1 | 7.7 | ì | χ)
* | 0.8 | 20 | | Тетр. | when
sampled
° F | EY | i
i | 1 | 1 | 1 | 1 | 1 | 1 | 8 9 | 65 | | State well | Agy. | SAN JOAQUIN VALLEY
FRESNO IRRIGATION | 145/19E-20H 2 M
6-26-63 5050 | -20H 2 M | 145/19E-20K 2 M
6-12-63 5050 | -20K 2 M | 145/19E-20M 2 M
6-12-63 5050 | -20M 2 M | 145/19E-22R 1 M
6-26-63 5050 | 145/19E-28P 1 M
6-26-63 5050 | 145/19E-29A 1 M
6-26-63 5050 | * TDS b, Fvop c1 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Totol | hardness
0.5
CaCO 3 | | 363 | 100 | 92 | 91 | | 276 | 307 | 192 | 63 | |--|--------------|---------------------------|---|------------------------------|-------------------------------|---------------------------------|---|-----------------------|------------------------------|---------------------------------|------------------------------|---------------------------------| | Ë | | | | 536 | 187 | 187 | 185 | | 437 | 484 | 300 | 130 | | uents | TDS | Computed
Evap 180°c | | S S | | пн | | | 7 1 | 7 | (1 (1 | | | constituent
per million | Siii | | - | 8 | 0 7 | n
n | r
B | 1 | 74 | 50 | 9 | 41 | | Mineral constituents
parts per million | Boron | | | 60.0 | 90.0 | 90.0 | 90 • 0 | 1 | 0 0 8 | 0.15 | 0 0 0 | 0 4 | | Σ | Fluo. E | | | 0 • 2 | 0 • 1 | 0.1 | 0 • 2 | 1 | 0.5 | 0 • 2 | 0 • | 0.5 | | | - Z | trate
NO ₃ | | 14.0 | 18.0
0.29
11 | 28.0
0.45
20 | 8 • 2
0 • 13 | 9.2 | 25.0 | 4.5 | 16.0 | 11.0 | | million
volue | Chlo- | ride
C1 | | 2 9 4 2 2 9 | 0.20 | 0.14 | 0 | 1 | 1.35 | 25 | 1.13 | 0 0 | | r million
is per million
reactance value | Sulfate | 504 | | 0.19 | 0.12 | 14 0 29 | 10 0 21 9 | 1 | 18 0.37 | 0.21 | 0.21 | 4 8 0 | | parts per
equivolents
percent re | Bicar- | | | 368 | 130
2.13
78 |
1.36 | 123
2.02
83 | - | 283 | 454
7•44
88 | 212 | 1.31 | | por | Carban- | ote
CO3 | | Э | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | .c | Potos - | sium
K | ED) | 10 | 0.08 | 0 0 0 | 0.05 | 1 | 0.18 | 0.15 | 0.10 | 0.03 | | constituents | Sodium | o
Z | CONTINUED) | 1.78 | 0.74 | 10 0.43 | 14
0•61
25 | 1 | 27
1•17
17 | 2.39 | 1.17 | 0.43 | | Mineral ca | - a - c - c | | 52215 | 3.37 | 0.99 | 0.74 | 0.82 | - | 1.48 | 34
2 • 80
32 | 1.73 | 0
666
8 | | Σ | Colcium | 0 | 52200 | 3.89 | 1.00 | 1.10 | 1 • 00
4 0 | 1 | 81
4.04
59 | 3.34 | 2.10 | 0.60 | | Specific conduct- | ouce (micro- | mhos
of 25°C) | uIST | 851 | 276 | 237 | 250 | 1 | 672 | 642 | 511 | 167 | | | Hd | | NO | 7.3 | 7.5 | 7.9 | -T
-∞
-∞ | 1 | 7.7 | ω
• | | 7.5 | | Temp. | when | sompled | EYRIGAT | 69 | 1 | 6 9 | 8 | 1 | 1 | 1 | + | 67 | | = | | Agy.
Coll. | VALL
NO IN | 5050
5050 | 1 M
5050 | M 1 M
5050 | 3K 1 M
5050 | 5050 | 5050 | 5050 | 5000 | 5000 | | Stote well | | Date sampled | SAN JOAQUIN VALLEY
FRESNO IMRIGATION | 145/19E-31A 1
6-12-63 505 | 145/20E- 1J 1
10-29-63 505 | 145/20E- 7M 1 M
6-26-63 5050 | 145/20E-13K 1
5-28-63 505 | -13K 1
5-28-63 505 | 145/20E-19A 1
7-17-63 505 | 145/20E-27C 1 M
6-13-63 5050 | 145/20E-34R 2
8-22-63 500 | 145/21E- 3J 1 M
8- 8-63 5000 | # TOS 5, Even ct 1050c | Total
hardness | CoCo3 | | | 109 | 102 | | 131 | | | | 3.3
8 | |-------------------|---|---|--|--|--|--|--
--|--|--|--| | T D S | Evap 180°c | | | 147 | 199 | | 250 | | 293 | | 500
404
404 | | Siii- | Si0 ₂ | | - | } | n
m | 1 | 69 | l | 47 | 1 | 5 | | Boran | 8 | | 1 | 1 | 0.18 | 1 | 90.0 | 1 | 0 0 0 | î | 0.07 | | Fluo- | LL. | | 1 | 0 | 0 | i | 0 | - | 0 | 1 | 0 | | | NO3 | | 0.0 | 0
• 0
• 0
• 0 | 7.4 | 26.0 | 16.0 | 18.0 | 21.0 | 20.0 | 18 • 0
• 2 9
3 | | Chlo- | 10 | | ; | 0 2 8 8 8 | 0.17 | [| 0.31 | 1 | 0.42 | 1 | 288 | | Sultate | 804 | | 1 | 0.12 | 9 0 0 1 9 | ŀ | 0.19 | i
i | | g
I | 807 79 70 70 70 70 70 70 70 70 70 70 70 70 70 | | Bicar-
bonate | нсоз | | 1 | 2 153
851
85 | 142
2•33
83 | t
F | 169
2.77
78 | 1 | 219 | ; | 351
5•75
68 | | Carbon-
ate | C 0 3 | | | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | Patas - | × | ED) | 1 | 0 0 0 0 0 0 | 0.05 | 1 | 0.10 | 1 | 0.05 | 1 | 0.10 | | Sodium | o Z | CONTINU | 1 | 0.059 | 18 0.78 | i
i | 22
0•96
26 | - | 1.09 | 1 | 36
1.57
19 | | Magne-
sium | 5 ₹ | 52215 (| 1 | 1.07 | 0.99 | 1 | 16
1.32
36 | i | 21
1•73
36 | 1 | 2.06 | | Calcium | CO | 52200 | 1 | 22
1.10
38 | 1.05 | 1 | 1.30 | 1 | 1.95 | ł | 4 4 6 6 9 | | (micro-
mhos | at 25°C) | ST | 1 | 1 | 761 | 1 | 9,49 | 1 | 745 | ì | 780 | | F. | | J NOI | 1 | 8.
1 | 8.1 | 1 | 7.5 | 1 | χ
• | 1 | ν
•
α | | when | - | EY
RIGAT | 89 | 1 | 75 | 73 | 1 | 72 | 71 | 1 | 1 | | Agy. | _ | AN JOAQUIN VALL
FRESNO IR | 45/21E- 4N 1 M
5-27-63 5050 | 6-24-63 5060 | 4S/21E- 6B 3 M
6-12-63 5050 | 4S/21E- 6E 1 M
5-16-63 5050 | - 6E 1 M
10-29-63 5050 | 45/21E- 7M 1 M
5- 1-63 5050 | 45/216- 9R 1 M
5-28-63 5050 | 5-28-63 5050 | 145/21t-12P 1 M
6-27-63 5050 | | | When pH Chice Colcium Magne-Sodium Potas-Carbon-Bicar-Sulfate Chlo-Ni-Filuo-Boran Sili-Agy. | pH (micro- Colcium Magne-
Sodium Potas- Carbon- B.car- Sultate Chlo- Ni- Fluo- Boron Sili- <u>IDS</u> mhos sium ate bonate tride trate ride co Computed at SSC Ng Ng Ng K CO3 HCO3 SO4 CI NO5 F B SiO2 Evopl80% | When PH (micro Calcium Magne Sodium Potas Carbon Brear Sultate Chlo Ni | Somple Agy Sample Most | When prices PH (micro- rate ium) Calcium inhos Sodium sium of o | When parts PH (micro- salum and salum) Catelium sium sium sium and sium sium and | When ph (micro calcium magne Sodium sium of Expansion Solution sium of Expansion Solution S | Sumpled PH (micro Calcium Magne Sodium Potos Carbon Sium Sium Office Sultate Chio Ni Fluo Sium Office Sodium Sium Office Sodium Office Sodium Office Sodium Office Sium Office | Supplied Minos Carteium Magne Sodium Forces Carbon Burger Sulfate Collice Roles Sodium Sium Office Boron Sium Roles Sodium Sium Office Boron Sium Roles Sodium Sium Office Boron Sium Sium Office Boron Sium Sium Office Boron Sium Sium Office Boron Sium Signature Sodium Roles Sodium Sium Office Boron Signature Sodium Sium Office Boron Sium Office Boron Signature Sodium Sig | Surgiciary PH (micro- colcium Magne- Sodium Potos- Carbon- Bicar- Sulfate Chilo- Micro- Carbon- Bicar- Sulfate Chilo- Micro- Carbon- Bicar- Carb | Second Color Col | * TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Tatal | CO3 | | 144 | | 281 | 221 | | 8 5 | | 155 | 138 | 199 | |---|-----------|--------------------|---|---------------------------------|--------------|---------------------------------|---------------------------------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | nts in | T D S To | Evap 180°c CaCO 3 | | 241 | | 667 | 98 83 | | 204 | | 294 | 287 | 369 | | anstituer
r million | Sili- | | | 0 7 | 1 | 10 | 0 20 | | 8 9 | ł
ł | 67 | 77 | 74 | | Mineral constituents
parts per million | Baron | B | | 0.24 | 1 | 0 | 0.20 | | 0 0 0 | 1 | φ
•
• | 0 1 3 | 0 • 0 7 | | Σ | Fluo- B | ,
LL, | | m
• | ! | 0 • 1 | m
• | | 0 0 | 1 | 0 | 0 0 | 0 • 2 | | | Ni - | NO 3 | | 19.0
0.31
8 | 20.0 | 16.0 | 29.0 | | 12.0
0.19
8 | 21.0 | 18.0 | 24.0
0.39
10 | 41.0
0.66
13 | | million
se value | Chlo- | 10 | | 24
0.68
18 | 1 | 1.56 | 27 0 • 76 12 | | 0.20 | 1 | 14 0 • 39 | 17 | 26 0 13 | | millio
per
acton | Sulfate | 804 | | 7 0 . 15 | - | 32 | 0.35 | | 0.12 | - | 0.23 | 0.17 | 0.35 | | parts per
equivalents
percent re | Bicar- | нсоз | - | 162 | į
\$ | 5 | 288 | | 122
2•00
80 | 1 | 3.36 | 173
2.84
73 | 215 | | par | Carbon- | 003 | | 0 | i i | 0 | 0 | | 0 | i | 0 | 0 | 0 | | Ξ | Potas - (| × | ED) | 0.08 | 1 | 13 | 0.08 | | 0.13 | ł | 0.15 | 0.15 | 0.20 | | constituents | Sadium | 0 2 | CONTINUED) | 21
0.91
24 | 1 | 2.17 | 1.83 | | 18 | 1 | 26
1-13
26 | 24
1.04
26 | 1.17 | | Mineral co | ا
ا | ω M | 52215 | 1.32 | 1 | 1.73 | 1.97 | 52216 | 0.74 | ä
I | 1.40 | 1.15 | 1,23 | | Σ | Calcium | Ca | 52200 | 1.00 | 1 | 78 2 48 | 2.45 | | 0.95 | 1 | 34 | 32 1.60 | 2.74 | | Specific conduct- | micro- | at 25°C) | TSIO | 281 | 1 | 758 | 584 | | 281 | \$ 2 | 430 | 395 | 531 | | | Ħ | | I ON E | 7.9 | 1 | 9. | 7.8 | | 7 • 7 | 1 | 7.6 | 7.9 | 7.5 | | Temp. | when | LL 0 | EYRIGAT | 1 | ł | 10
40 | 29 | FRESNO | 71 | 70 | 1 | 74 | 02 | | State well | Agv | Date sampled Coll. | SAN JOAQUIN VALLEY
FRESNO IRRIGATION | 145/21E-30N 1 M
6-13-63 5050 | 6-13-63 5050 | 155/19E-15C 1 M
8-14-63 >000 | 155/20E- 6L 1 M
8-14-63 5000 | CITY OF F | 13S/20E-34M 1 M
5- 1-63 5050 | 145/20E- 1J 1 M
5- 1-63 5050 | 14S/20E- 2J 1 M
5-15-63 5050 | 14S/20E- 3M 1 M
6-13-63 5050 | 145/20E- 8A 1 M
7-16-63 5050 | | | less
0 3 | Γ | 123 | 154 | 134 | | | 16 | 2 8 8 | 267 | 137 | 23 | |---|---|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | i | Total
hardness | | | | | | | | | | | | | | TDS Total Computed hardness Evap IBO°C CaCO 3 | | 254 | 287 | 260 | | | 152 | 787 | 461 | 370 | | | sonsti
er m | Sili-
co
Si0 ₂ | | 71 | 9 | 73 | 1 | | 13 | e
B | 50 | 79 | 1 | | Mineral constituents
parts per millian | Baran | | 0 • 0 | 90.0 | 0 0 0 | 1 | | İ | 0 | • | 0.04 | 1 | | | Flua-
ride
F | | 0 • 2 | 0 . 2 | 0.1 | ł | | 1 | 0.2 | 0 • 2 | 0.5 | 1 | | | Ni-
trate
NO ₃ | | 15.0 | 19.0 | 11.0
0.18 | 17.0 | | 1 | 0.00 | 0 • 8 | 0 | 1 | | million
per million
ctance volue | Chla-
ride
Cl | | 0 • 3 7 | 0.37 | 0
1 4 0
0 0 1 0 0 | 1 | | 18 | 121
3•41
43 | 3.10 | 2.23 | 96 | | 0 | Sulfate
SO4 | | 0.15 | 0.23 | 0.17 | 1 | | 0 • 19 | 43
0.90
11 | 1.02 | 0.23 | 34 | | parts per
equivolents
percent re | Bicar-
banate
HCO3 | | 162
2.66
78 | 199
3•26
78 | 169
2•77
78 | 1 | | 1.05 | 220
3.61
46 | 212 | 2.90 | 89 | | bar
bar | Carban-
ate
CO3 | | 0 | 0 | 0 | 1 | | 0.50 | 0 | 0 | 0 | - | | ï | Potas . | JED) | 0.13 | 0.15 | 0.15 | 1 | | 1 | 0.15 | 0.13 | 0.13 | 1 | | onstituents | Sadium | CONTINUED) | 1.00 | 24
1.04
24 | 0.83 | 1 | | 44
1.91 | 2.04 | 2.00 | 2.57 | 1 | | Mineral constituents | Magne-
sium
Mg | 52216 | 1,15 | 18
1.48
35 | 1.23 | 1 | 52217 | 0.16 | 1.32 | 1.40 | 0.58 | 1 | | M | Calcium | 52200 | 1.30 | 1.60 | 1.45 | 1 | | 0.15 | 8 • 4 • 4 4 • 5 6 | 3.94 | 2.15 | 0.45 | | Specific conduct- | (micro-
mhos
at 25°C) | | 354 | 418 | 367 | 1 | | 1 | 802 | 756 | 571 | 1 | | | Hd | | 7.5 | 1.6 | 8.1 | 1 | AREA | 0.6 | 7.6 | 7.6 | 8 0 | 20.0 | | Temp. | sompled
° F | RESNO | 42 | 72 | 73 | - | FRESNO SLOUGH AREA | 1 | 70 | 69 | 71 | 1 | | _ | Agy.
Coll. | VALL
OF F | 2 M
5050 | F 1 M
5050 | 1 M
5050 | 1 M
5050 | NO SL | 1 M
5702 | 5000 | 5000 | 2 M
5000 | 1 M
5702 | | State well | Date sampled | SAN JOAGUIN VALLEY
CITY OF FRESNO | 145/20E-10M 2 M
5-15-63 5050 | 14S/20E-11F 1 M
5-14-63 5050 | 14S/20E-15M 1 M
5-16-63 5050 | -15M 1 M
5-16-63 5050 | FRESI | 135/15E-34K 1 M
4- 4-63 5702 | 13S/16E-36R 1 M
8-14-63 5000 | 135/16E-36R 3 M
8-14-63 5000 | 135/17E-30A 2 M
8-28-63 5000 | 145/15E- 3B 1 M
1-10-63 5702 | * TOS by Evap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | to l
dness | CO 3 | | ις. | 16 | r. | 90 | 28 | 52 | 137 | 8 9 | 764 | |---|------------------|--------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---------------------------------|---------------------------------| | ë | Total
Pordne | 2°c Co | | 148 | 4 4 8 | 441 | 359 | 687 | 596 | 1
1
1
1
1
1
1
1
1 | 769 | | | uents
Iian | TDS Total | vap 18(| | Ţ | 4 | 4 4 | m | 9 9 | Ŋ | ه ه | • | | | onstit
er mil | S111 - | SiO ₂ E | | 14 | 53 | 000 | 1 | l | 47 | 52 | 1 | 1 | | Mineral constituents
parts per millian | Baran | 80 | | 0.20 | 0.20 | 0 1 8 | 1 | 0.20 | 0.10 | 0 4 • 0 | 1 | 0 . 2 8 | | = | Fluo- | L | | 1 | 1 | 0 4 | 1 | 1 | | 0 • 2 | 1 | i | | | rote | NO3 | | 1 | i | 0 • 0 | 0 | 0 | 4.9
0.08 | 0.0 | 0 | 1 | | millian
e value | Chlo- | - 0 | | 0.59 | 174 | 142 | 3.72
3.72 | 310 | 156 | 211
5.95
57 | 297 | 1000 | | parts per million
equivolents per millian
percent reactance value | Sulfore | 804 | | 0 | 0.25 | 0.02 | 0.12 | 42 | 1.19 | 34 | 0.19 | 1 | | parts per
equivolents
percent r | Bicar-
bonote | нсо3 | | 1.10 | 107 | 184
3.02
43 | 166
2•72
41 | 136
2.23
19 | 214
3.51
37 | 228
3.74
36 | 240
3.93
31 | 1 | | par | | | | 18 | 0.000 | 0 | 0 | 0 | 0.23 | 0 | 0 | 1 | | . <u>c</u> | Potas - | ¥ | ED) | 1 | 1 | 0.03 | 0.05 | 0.05 | 0.08 | 0.13 | 0.18 | 1 | | Mineral constituents | Sadium | 2 | CONTINUED) | 1.91 | 158 | 154 6.70 | 134 5.83 | 256
11.13
95 | 195
8 • 48
88 | 178 | 230 | 334 | | ineral co | Magne | вМ | 52217 | 1 | 0.16 | 0 | 0 | 0.16 | 0.08 | 0
4
0 0 0 | 0.33 | å I | | Σ | Calcium | CO | 52200 | 0.10 | 0.15 | 0.10 | 0.15 | 0.40 | 0.95 | 2.25 | 1.45 | t
e | | Specific conduct- | (micro- | at 25°C) | | 1 | 1 | (65 | 069 | 1280 | 973 | 1100 | 1334 | 3410 | | | Hd | | AREA | 0.6 | 4. | T
• | ω
• | 7.5 | 8 | 7.6 | 8.1 | 1 | | Temp. | when | LL. | E H | } | 1 | χ
9 | 70 | 1 | 1 | 70 | 74 | 73 | | State well | Agy. | Dare sampled Coll. | SAN JOAQUIN VALLEY
FRESNO SLOUGH | 145/15E- 3B 1 M
2-27-63 5702 | 145/15E- 3K 2 M
5- 3-63 5702 | 145/16E- 6A 1 M
8-27-63 5000 | 145/16E- 6C 1 M
8-12-63 5001 | 145/16E- 7G 1 M
9-26-63 5000 | 145/16E-10J 1 M
8-12-63 5000 | 145/16E-23M 1 M
8-12-63 5000 | 155/17E-10J 3 M
8-10-63 5000 | 155/17E-10R 1 M
8-12-63 5050 | | ≥ | | |-----|------| | 2 | | | | | | | | | 220 | m | | 9 | 1963 | | 5 | _ | |) | | | 0 | | | | | | _ | | _ | | | | | | | | | | |--|-------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------| | |
Totol
hardness
os | 2 | 99 | 141 | m
m | 22 | τυ
80 | 43 | 15 | 113 | 92 | | constituents in
per million | Computed hardness | | 470 | 543 | 751 | 496 | 698 | 518 | | | 251 | | canstit
er mil | Sill- | 7 | 41 | 1 | 65 | 62 | S | 1 | 1 | 1 | 69 | | Mineral constituent
parts per million | Boran | | 0.16 | ł | 1.60 | 0 . 75 | 1.50 | 1 | 0.46 | 0.07 | 0 | | | Fluo-
ride | | 0 4 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | | Ni-
trate
NO- | 2 | 0 • 3 | 2.5 | 1.3 | 1 - 8 | 1.3 | 0.6 | 1 | 1 | 13.0
0.21
6 | | million
per million
ictance value | Chlo-
ride
Cl | | 186
5 • 25
6 9 | 183
5.16
52 | 224 6 • 32 | 152 | 215 | 153 | 1.49 | 0.76 | 18
0•51
15 | | 0 | Sulfate | - | 0.06 | 0.58 | 1.06 | 0.10 | 0 58 | 1.52 | 1 | 0.17 | 0.23 | | ports per
equivalents
percent re | Bicar-
banate | | 138
2.26
30 | 251
4•11
42 | 264 | 195
3•20
42 | 279
4•57
41 | 199
3•26
36 | 1 | 1 | 153
2•51
73 | | por | Carbon-
ate | , | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | , <u>s</u> | Potas -
sium
K | ED) | 0.13 | 0.18 | 0.15 | 0.10 | 0.10 | 0.15 | 1 | 1 | 0.18 | | nstituents | Sodium | CONTINUED) | 141
6•13
81 | 148
6.44
6.8 | 260 | 166 | 235
10•22
89 | 1727.48 | 96 | 1.17 | 36 1.57 44 | | Mineral constituents | Magne:
sium
Mo | _ | 0.16 | 0.66 | 0.16 | 0.08 | 0 2 2 3 | 0.16 | 1 | 1 | 0.58 | | × | Calcium | 52200 | 1.15 | 2.15 | 0.50 | 0.35 | 18
• 0
8 | 14
0.70
8 | 1 | 1 | 1.25
3.5
3.5 | | Specific conduct- | (micro-
mhos | | 3000 | 1033 | 1240 | 820 | 1210 | 931 | 481 | 377 | 340 | | | Hd | AREA | 8 | 1.9 | 7 . 8 | 7.9 | η
•
20 | 8 • 1 | 1 | 1 | 8 | | Temp. | when
sampled
°F | ΕΥ
OUGH | ; | 71 | 73 | 72 | 71 | 71 | 75 | - | 71 | | State well | Date sampled Agy. | SAN JOAQUIN VALLEY
FRESNO SLOUGH AREA | 155/17E-14G 1 M
8-22-63 5000 | 155/17E-15E 1 M
8-10-63 5000 | 155/17E-16H 1 M
8-10-63 5000 | 155/17E-17A 1 M
9- 9-63 5000 | 15S/17E-17R 1 M
9- 9-63 5000 | 155/17E-21K 1 M
8-10-63 5000 | 155/17E-34A 1 M
8-12-63 5050 | 155/18E-16G 1 M
6-11-63 5631 | 155/18E-36A 1 M
8-14-63 5000 | TDS by Evap ct 105" TABLE E-1 ANALYSES OF GROUND WATER 1963 | | Total
hardness | | 184 | 9 | 203 | 63 | 89 | 8 | 13 | 29 | 37 | |---|-----------------------|-------------------------------------|---------------------------------|---------------------------------|---|---------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------| | constituents in
per million | T D S
Computed | | 336 | 228 | 538
563 | 420 | 240 | 178 | 161 | 133 | 91 | | constituent
per million | Sili- | 3 | 47 | 99 | 32 | 9 | 1 | 9 | 6 8 | 39 | 1 | | Mineral c | Boron | | 0.07 | 0 | 0 • 1 0 | 0 | - [| 0000 | 0 • 0 2 | 0 0 0 3 | 1 | | | Fluo-
ride | | 0.2 | 0 | 0 1 | 0 | 1 | 0 • 0 | 0 | 0
• | 1 | | | Ni-
trote | 0 | 5.7 | 13.0 | 49.0 | 0 | 0 • 0 | 5.1 | 0 • 1 | 1 • 4
0 • 0 2
1 | 0 | | millian
e value | Chlo-
ride | | 1.44 | 0.48 | 2 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 19 | 24 | 0.17 | 0.11 | 0.11 | 0.17 | | parts per million
equivalents per millian
percent reactance value | Sulfote | 1 | 0.54 | 0.19 | 59
1.23
14 | 1.33
19 | 26
0.54
12 | 0.02 | 0.06 | 0.04 | 0.10 | | parts per
equivalents
percent re | Bicor-
bonote | 0 | 198
3•25
61 | 120
1•97
69 | 246
4 • 03
47 | 308 | 199
3.26
73 | 109
1•79
87 | 1.51 | 95
1 - 56
90 | 1 • 4 4
8 8
8 4 | | par | Carbon-
ate | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | i.E | Potos - | JED.) | 0.18 | 0.18 | 0.15 | 0.05 | 0.03 | 0.13 | 0 | 0.10 | 0.03 | | constituents | Sodium | CONTINUED | 3.6
1.57
2.9 | 34
1.48
50 | 103 | 110
4•78
72 | 2.52 | 1.30 | 32
1•39
81 | 1.09 | 0 • 9 9 6 9 9 6 | | Mineral co | Mogne-
sium | 52217 | 12
0 • 99
18 | 0.33 | 0 0 0 | 0.23 | 0 250 | 0.16 | 0 | 0.08 | 0 • 0 8 | | 2 | Colcium | 52200 | 2.69 | 19 | 20 E | 32
1.60
24 | 1.50 | 0.60 | 0.018 | 0.50 | 0.65
38 | | Specific conduct- | mhos | (2.67.0) | 547 | 286 | 916 | 670 | 459 | 206 | 172 | 177 | 169 | | | Ĭ. | AREA | Ο
χ | 7.6 | 7.5 | 0 | α•1 | 7.9 | 7.5 | 7.6 | 8 • 1 | | Тетр. | when
sompled
°F | | - | 74 | 76 | 99 | 3 0 | 72 | 77 | 78 | 71 | | eli | Agy. | N VALL
SNO SL | M 1 M
5000 | E 1 M
5000 | L 1 M
5050 | G 1 M
5050 | J 1 M
5000 | C 1 M
5000 | N 1 M
5000 | A 1 M
5050 | 5000 | | State well | Date sampled | SAN JOAGUIN VALLEY
FRESNO SLOUGH | 155/19E-22M 1 M
8-29-63 5000 | 155/19E-28E 1 M
8-14-63 5000 | 155/19E-35L 1 M
8-12-63 5050 | 16S/17E-10G 1 M
8-26-63 5050 | 165/17E~12J 1 M
8-10-63 5000 | 165/18E- 2C 1
8-14-63 50C | 165/18E- 4N 1 M
8-27-63 5000 | 165/18E-10A 1
8-12-63 505 | 16S/18E-15L 1
8-10-63 500 | | | | 03 | | | | | | | | | | | | V2 | | 0 | | | | - | | | | | |---|--|------------------------------------|---------------------------------|---------------------------------|--------------------------------|---|---------------------------------|---------------------------------|---|---------------------------------|---| | | Total
hardness
as
CaCO ₃ | | 69 | 41 | 4 1 | 200 | 134 | 49 | 3 6 | 59 | 107 | | tuents in
Ilion | TDS Total Camputed hardness Evap 180°c CaCO ₃ | | 213 | 92 | 95 | 663 | 277 | 166 | 141 | 194 | 405 | | constit
er mi | Sili-
ca
Si0 ₂ | | 36 | - | i | 31 | 31 | 39 | 50 | 4 1 | 22 | | Mineral canstituents
ports per million | Boran | | 0.02 | 1 | 1 | 0 | 9 | 0000 | 0 | 0.05 | 0 | | | Flua-
ride
F | | 0.1 | 1 | 1 | 0 | e O | • 0 | . 0 | 0 . | 0 | | | Ni-
trate
NO ₃ | | φ
• | 0 | 0 | 0.6 | 24.0
0.39 | 0 • 3 | 0 | 1.9 | 1 • 3 | | million
e volue | Chla-
ride
Cl | | 0 42 | 0.20 | 0.25 | 5 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 50
1 • 41
33 | 16
0•45
20 | 0 0 | 0 0 0 0 | 113
3 • 19
4 9 | | reactance volue | Sulfate
SO 4 | | 0.33 | 0.15 | 0.19 | 130
2•71
26 | 24
0.50
12 | 0.23 | 2 0 • 0 4 | 0.35 | 1.42 | | equivalents
percent re | Bicar-
banate
HCO3 | | 153
2.51
77 | 85
1 • 39
80 | 1.29 | 143
2•34
22 | 117 | 98
1•61
70 | 1 • 3 8
8 9
8 9 | 84
1 • 38
51 | 111
1•82
28 | | equ | Carban-
ate
CO3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ë | Patas -
sium
K | ED) | 0.03 | 0 0 0 | 0 0 0 0 0 0 | 0.05 | 0.10 | 0 0 3 | 0.10 | 0.03 | 0.03 | | constituents | Sadium | CONTINUED) | 1.83 | 18 0.78 | 18 0.78 | 154 6.70 | 35 | 1.00 | 0.74 | 36 | 103 | | Mineral co | Magne-
sium
Mg | 52217 | 0 • 08 | 0.16 | 0.16 | 0.16 | 4 6 8 8 | 0.08 | 0.16 | 1
0 • 0 8 | 0 | | Σ | Calcium | 52200 | 26
1•30
40 | 13 | 13 | 3.84 | 2.35 | 24
1.20
51 | 0.55 | 1.10 | 2.05
31 | | Specific
conduct- | (micro-
mhos
at 25°C) | | 334 | 161 | 164 | 1150 | 797 | 246 | 148 | 303 | 709 | | | pH | AKEA | 8 • 0 | 0 | 7.9 | 7.6 | 7.9 | 0 . | 0 | 7.5 | 7.7 | | Temp. | wnen
sampled
° F | Ŧ | 29 | 73 | 74 | 70 | 73 | 1 | 72 | 7.1 | 6,9 | | | Agy.
Coll. | QUIN VALLEY
FRESNO SLOUGH | 1 M
5000 | 1 M
5 0 0 0 | 1 M | 2 M
5000 | 1 M
5000 | 1 M | 1 M
5000 | 1 M | 1 M | | State well | Date sampled | SAN JOAQUIN VALLEY
FRESNO SLOUG | 165/18E-18A 1 M
8-27-63 5000 | 165/18E-24A 1 M
8-10-63 5000 | 165/18E-24J1 M
8-10-63 5000 | 165/18E-26A 2 M
8-29-63 5000 | 165/19E- 30 1 M
8-29-63 5000 | 165/19E- 8R 1 M
8-14-63 5000 | 165/19E-16C 1 M
8-14-63 5000 | 175/19E= 1G 1 M
8-14-63 5000 | 175/19E- 5J 1 M
6-14-63 5000 | TABLE E-I ANALYSES OF GROUND WATER 1963 | | | SS 2S | | 80 | 31 | 98 | | 37 | 4 | | 00 | α | 70 | |---|-----------------|--|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | Total | hordne
CaCO 2 | | | | | | | 144 | 237 | | 108 | 7 | | canstituents in
per million | TDS | Computed hordness
Evop 180°C CaCO 3 | | 375 | 277 | 309 | | 78 | 335 | 473 | 06 | 174 | | | canstituent
per million | Sili- | si02 | | 23 | 1 | - | | 1 | 8 | 54 | 17 | 1 | } | | Mineral (| Boran | Ф | | 000 | | 1 | | 0.10 | 0.07 | 0.10 | 0 • 0 3 | 0000 | 0000 | | | Fluo- | r i de | | 0.2 | 1 | 1 | | 1 | 0 . 2 | 0.2 | e • | ŧ | 1 | | | - Z | trate
NO ₃ | | 1.0 | 0.01 | 0.6 | | 2.4 | 19.0
0.31
6 | 26.0
0.42
6 | 0.5 | 19•0
0•31
10 | 1 | | million
per million
ctance volue | Chia- | ride
C I | | 32 0.90 | 1.69 | 1.75 | | 0.11
8 | 33 0.93 | 1.95 | 0.06 | 0.28 | 0.08 | | 1 0 | Sulfate | 804 | | 0.28 | 0.15 | 0.10 | | 0.25 | 0.60 | 41
0.85
11 | 0.00 | 21 0 44 | 1 | | ports per
equivalents
percent rea | Bicar- | banate
HCO ₃ | | 297 | 206
3 • 38
6 5 | 228
3•74
64 | | 1.02 | 219 | 24¢
4.03
54 | 1.16 | 127
2.08
67 | l
l | | bod | Carban- | ate
CO3 | | 0 | 0 | 0.23 | | 0 | 0 | 0.27 | 0 | 0 | 1 | | Ē | Potas - | sium
K | IED) | 0.03 | 0.05 | 0.08 | | 0.05 | 0.10 | 0.10 | 0.03 | 0.00% | 1 | | constituents | Sodium | o N | CONTINUED | 109 | 4.13 | 105 | | 0.065 | 5.30 | 2.78 | 1.22 | 21
0•91
29 | 0.30
 | Minerol co | Мадпе- | sium
Mg | 52217 | 0 | 0.16 | 0.16 | 52218 | 0 . 3 4 k | 0.82 | 1.15 | 0 | 0.66 | 1 | | Σ | Calcium | Ca | 52200 | 1.75 | 0.45 | 0.60 | | 0 40 28 | 2.05 | 3.59 | 0.15 | 1.50 | 1 | | Specific conduct- | once
(micro- | mhos
at 25°C) | | 909 | 495 | 554 | DIST | 145 | 050 | 731 | 134 | 327 | 117 | | | Hd | | AREA | 8 0 | 8 • 2 | 7. | IRRIG | 7.4 | 30 | 8 • 4 | 7.4 | 7.8 | + | | Тетр. | when | o F | I.S | 67 | 69 | 69 | | 99 | 73 | 1 | 75 | 67 | 70 | | State well | | Date sampled Agy. | SAN JOAGUIN VALLEY
FRESNO SLOUGH | 175/19E- 6F 1 M
8-14-63 5000 | 175/19E- 7A 1 M
8-14-63 5000 | 175/19E- 7D 1 M
8-14-63 5000 | CONSOLIDATED | 145/21E-25R 1 M
9-26-63 5000 | 155/21k-24L 1 M
8-12-63 5050 | 155/22E-33G 1 M
8-21-63 5000 | 165/20E-18G 1 M
8-16-63 5000 | 165/23E- BP 1 M
9-13-63 5000 | 175/22E- 2H 1 M
7-10-63 5126 | ANALYSES OF GROUND WATER | State well | Temp. | | Specific canduct- | Σ | Mineral constituents | nstituents | iΞ | por | ports per
equivalents
percent re | ports per million
equivalents per million
percent reactance value | nillian
value | | 2 | Mineral constituents
parts per million | consti | tuents in
Ilian | | |---|----------|----------|-------------------|-------------------------------|----------------------|----------------------|----------------------|-----------------------------------|--|---|---------------------|-----------------------|--------------------|---|---------------------------------|-------------------------------|-----------------------------------| | Date sampled Agy. | · · | F | · 0 | Calcium | Magne-
sium
Mg | Sadium | Potos -
sium
K | Carbon-
ote
CO ₃ | Bicor-
bonote
HCO3 | Sulfore
SO4 | Chlo-
ride
Cl | hrote
NO3 | Fluo-
ride
F | Boron | Silt-
ca
SiO ₂ | TDS
Computed
Evop 180°c | Total
hardness
as
CoCO 3 | | SAN JOAGUIN VALLEY ALTA IRRIGATION VISTRICT | LEY | N UIS | | 52200 | 52219 | | | | | | | | | | | | | | 155/24E- 70 1 M
8-13-63 5000 | 9 | 7.5 | 385 | 37 | 1.15 | 0.87 | 0.05 | Э | 168
2•75
70 | 16
0.33
8 | 14
0 • 3 9
10 | 27.0
0.44
11 | 0 . 2 | 0 | 62 | 275 | 150 | | 155/24E-31H 2 M
8-21-63 5000 | 1 | 7 • 8 | 341 | 1.50 | 0.82 | 1.13 | 0.05 | 0 | 158
2.59
75 | 20 0 42 12 | 0.14 | 20.0 | 0 4 | 0.50 | 5 | 247 | 116 | | 165/23E- 3F 2 M
8- 9-63 5000 | 1 | 7 • 4 | 572 | 2.59 | 1.64 | 1.45
1.996
3.1 | 0.10 | 0 | 298
4.88 | 40
0.83
13 | 0.31 | 13 • 0
0 • 21
3 | 0 | 0 | 51 | 383 | 212 | | 165/24E- 3J 1 M
6-17-63 5123 | 7.5 | α
• 1 | 550 | 43
2.15
37 | 22
1•81
31 | 1.83 | 0.05 | 0 | 202
3•31
57 | 23 | 1.61 | 24.0
0.39 | 0.1 | 0 | 6 4 | 361 | 198 | | 165/25E-32N 2 M
5-28-63 5123 | 62 | 8.1 | 620 | 2.84 | 2.38 | 38 | 0.10 | 0 | 319 | 19 | 35 | 11.0 | 0 • 1 | 0.10 | 4 | 398 | 261 | | 175/23E- 8H 1 M
5-28-63 5123 | 89 | 1 | 1020 | 1 | 1 | 116 | i | | - | 1 | 139 | i | 1 | 0 1 0 | 1 | | 241 | | 175/23E- 8J 1 M
5-28-63 5123 | 9 | 1 | 1020 | 1 | 1 | 116 | 1 | 1 | 1 | 1 | 139 | 1 | - | 0 10 | 1 | | 241 | | 175/24E-15A 2 M
6-24-63 5123 | 70 | 8 . 2 | 405 | 1
• 0
• 0
• 0
• 0 | 1.48 | 1
9 8 9
9 0 | 0 0 8 8 | 0 | 179
2.93
66 | 19 | 35 | 7.8
0.13 | 0 • 2 | 0.10 | 52 | 288 | 157 | × × | | | | | | | | | | | | 1 | | | | | 7 | * TDS by Evap ct 105°c | | ness
0 3 | | 168 | 83 | 18 | 133 | Ω. | S. | 45 | ζ. | 0 1 |] | |---|--|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---------------------------------|------------------------| | Ē | Total
hardne | | | 0.0 | 2 1 | | 2 | 5 | 6 7 | 0 9 | 40 | | | | TDS Total Computed hardness Evop iBO°c CaCO ₃ | | 306 | 650 | 651 | 756 | 242 | 285 | 181 | 103 | 174 | | | constr
er m | Sili-
ca
SiO ₂ | | 37 | 22 | 19 | 17 | 1 | | 24 | 20 | 18 | | | Mineral constituents
ports per million | Boron | | 000 | 1.20 | 0 • 98 | 1.40 | 1 | 8 | 90.0 | 90 • 0 | 0.0 | | | | Fluo-
ride
F | | 0 • 2 | 1.3 | 1.3 | 9 | 1 | ŀ | 0.2 | 0 • 2 | 0 | | | | Ni-
trote
NO ₃ | | 22.0 | 0 • 0 | 0.01 | 0 | 0 • 0 | 0 | 4.4 | 2.6 | 0 | | | million
e volue | Chio-
ride
Ci | | 36
1.02
21 | 1.97 | 174 | 1.92
16 | 35 | 1.35 | 1.04 | 5
0•14
9 | 0.11 | | | nts per million
reoctonce volue | Sulfate
SO 4 | | 19 | 93
1.94
18 | 1.04 | 235 | 0.46 | 0.31 | 20 0 42 16 | 0 | 0.27 | | | ports per
equivolents
percent re | Bicor-
bonote
HCO3 | | 3.11
64 | 435
7•13
65 | 307 | 304 | 159
2.61
58 | 184
3.02
56 | 1.16 | 78
1.28
85 | 149
2•44
87 | | | por | Carbon-
ate
CO3 | | 0 | 0 | 0 | 13 | 14
0.47
10 | 20 0.67 | 0 | 0 | 0 | | | . <u>e</u> | Potas -
sium
K | | 0.08 | 0.03 | 0.03 | 0.03 | 0 | 0.03 | 0.03 | 0 | 0.03 | | | constituents | Sodium | | 34
1 • 48
30 | 216
9.39
85 | 246
10•70 | 225
9•78
78 | 3.96 | 109 | 1.78 | 1.443 | 2.65 | | | Mineral co | Mogne-
sium
Mg | 52220 | 0.82 | 0.16 | 0 | 0.90 | 0 | 0 | 0 | 0 | 0 | | | 2 | Calcium | 52200 | 2.54 | 1.50 | 0.35 | 1.75 | 0.10 | 0.10 | 18
0.90
33 | 0.10 | 0.20 | | | Specific conduct- | (micro-
mhos
at 25°C) | AREA | 482 | 1070 | 1170 | 1090 | 435 | 493 | 307 | 150 | 275 | | | | H _d | IVER A | 7.9 | 8.1 | 8 . 2 | 8 • 5 | π
•
• | 9.1 | 7.5 | 7.4 | 7.8 | | | Temp. | sampled | ~ | 69 | 99 | 1 | 71 | 7.0 | 67 | 1 | 71 | 9 9 | | | State well
number | Date sompled Agy. S | SAN JOAQUIN VALLEY | 16S/21E-35P 1 M
8- 9-63 5000 | 175/18E-12N 1 M
8-28-63 5000 | 175/18E-24J 1 M
8-28-63 5000 | 175/18E-350 1 M
8-26-63 5050 | 175/19E-27A 1 M
8-19-63 5000 | 175/19E-34Q 1 M
8-19-63 5000 | 175/20E- 2M 1 M
8-28-63 5000 | 175/20E-13G 1 M
8-28-63 5000 | 175/20E-22P 1 M
8-27-63 5000 | * TDS by Funn c1 1050r | ANALYSES OF GROUND WATER ANALYSES OF GROUND WATER | The colline magne - Sadium paras - Carbon mhos sium sium sium sium ore | equivalents per million mineral constituents in percent reactionce value | Bicar- Sulfate Chla- Ni- Fluo- Boron Sili-
bonote ride trate ride co | HCO3 SO4 C1 NO3 F B SIO2 | | 2 2 2 5 0 0 4 0 4 8 0 0 0 8 0 0 5 0 2 0 173 3 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 38 38 0.06 0.05 0.05 0.05 0.00 18 101 5 17 0.2 0.00 18 101 5 17 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0 | 1.29 0.71 0.03 0.03 0.02 0.00 26 144 88 | 0 420 26 15 158 6.88 0.54 0.42 | 228 27 68 2.8 1.0 0.30 23 379 43
3.74 0.56 1.92 0.05
60 9 31 | 2 224 75 68 0.0 0.5 0.50 19 472 13
3 3.67 1.56 1.92 25 | 1.41 1.02 0.76 0.18 0.6 0.22 24 222 64 228 44 30 23 23 5 | 3.52 0.10 1.07 0.01 1.2 0.58 27 285 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | |--
--|---|--|---|---|--|---|---|--|---|--|---|---------------------------------| | 4.55 0.03 3.52 0.10 1.07 1.07 1.07 1.07 1.07 1.07 1.07 | Fluor Baron Sin. 1 | Sign 1 | 0.0000000000000000000000000000000000000 | 0.00 0. | 0.00 0. | 0 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 | 0 0 0 2 2 2 2 4 4 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2 4 4 2 2 2 2 2 4 4 2 | 2,0 | | 0.3 0.90 282 | | 1.60 | Cho. | 0 | 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 • 4 8 17 | 6 4 | 17 | 0.03 | | 68
1•92
31 | | 0.76 | 1.007 | -, | |
0.10
1.32
1.60
3.29
0.60
0.60
0.60
0.25
0.25
0.25
0.05
0.45
0.45
0.45
0.45
0.173
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | Bicar- Sul
bonote
HCO3
137
2 2 25 | HC03
137
2.25
81 | 137
2 • 2 5
8 1 | 137
2•25
81 | | 38 | 1.29 | 420
6 • 88 | 228
3•74
60 | 224
3.67
47 | 86
1•41
42 | 215
3 • 52
75 | 241
3.95
78 | | 52220
0.02
0.05
1.60
0.10
1.60
0.10
0.10
0.60
0.25
0.66
0.25
0.66
0.25
0.66
0.25
0.25
0.66
0.25
0.66
0.25
0.66
0.25
0.66
0.25
0.66
0.25
0.66
0.25
0.66
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 | Potas - | | | SUED. | 0,03 | 0 | 0 | 0 | 0 0 0 0 5 | 0 • 0 3 | 0.02 | 0 0 3 | 0.03 | | 52200
0.052
0.12
0.12
0.60
0.12
0.25
0.25
0.25
0.60
0.25
0.25
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | | | - | | | | 2 2 8 | | | | | | | | | | Calcium | Ca | | 0.05 | 0.10 | 1.60 | 3.29 | 0.60 | 0.25 | 0.45 | 0.10 | 0.159 | | | _ | H. | | | | | 7 • 7 | | | 20
e
TO | | | | | 1VER AREA OF 2 | 900 | T | \dashv | LLEY
INGS R | | | ξ0 | | | | | | | | Sumpled PH Sumpl | Jaconon | Date sompled Agy. | _ | SAN JOAQUIN VALLEY
LOWER KINGS | 175/20E-23D 1 M
8-27-63 5000 | 175/21E- 7J 1 M
8-14-63 5000 | 175/21E-17P 1 M
8-13-63 5000 | 175/21E-23J 1 M
9-23-63 5000 | 185/19E- 18 1 M
8-14-63 5000 | 185/19E- 18 3 M
8-14-63 5000 | 185/19E- 2F 2 M
8-23-63 5000 | 185/19E- 2F 3 M
8-23-63 5126 | 185/19E- 6G 1 M
7-30-63 5126 | * TDS by Fvop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Total | hardness
CoCO 3 | | 10 | m | m | 83 | 15 | 0 | 18 | 26 | 371 | | |---|---------|----------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | ituents in | TDS | (1) 144 | | | 194 | 233 | | 598 | | | | | | | er m | S-11-S | sio ₂ | | 1 | 24 | 19 | 1 | 27 | - | 1 | 1 | 1 | | | Mineral constituents
parts per
million | Baron | | | 0.70 | 0 4 • 0 | 0.30 | 00 • 0 | 1 • 90 | 1.00 | 0 • 30 | 1.30 | 0.20 | | | | Fluo. | rı de
F | | 1 | 1.2 | ω
• | 1 | 7. 0 | 1 | - | ł | i | | | | - i Z | trate
NO ₃ | | 1 | 0 | 0 | 1 | 0.01 | 1 | 1 | 1 | - | | | million
per million
actance value | Chio- | ride
C1 | | 0.73 | 0.28 | 0.59 | 10 | 38
1.07
10 | 0 8 9 | 0.14 | 32 | 238 | | | parts per million
equivalents per million
percent reactonce value | Sulfote | S04 | | 1 | 0.12 | 0.27 | 1 | 0 | l | 1 | 1 | 1 | | | ports per
equivolents
percent rec | B.cor- | bonate
HCO ₃ | | 1 | 133 | 179
2.93
77 | 1 | 579 | 1 | 1 | 1 | 1 | | | por | Carbon- | ote
CO3 | ÷ | - | 0.50 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | | i | Potos - | siu R
K | ED) | 1 | 0 | 0 | 1 | 0.05 | 1 | 1 | 1 | 1 | | | Mineral constituents | Sadium | | 52220 (CONTINUED) | 106 | 3.09 | 3.91 | 15 | 238 | 125 | 2.65 | 198 | 142 | | | ineral c | Маапе- | si u m
M g | 52220 (| ŧ | 0 | 0 | 1 | 0 | ŧ | 1 | 1 | 1 | | | Σ | Calcium | Co | 52200 | i
i | 0.05 | 0.05 | } | 0.30 | 1 | l
l | 1 | l | | | Specific conduct- | (micro- | mhos
at 25°C) | | 470 | 278 | 380 | 735 | 973 | ν
2
2 | 286 | 862 | 1400 | | | | Hd | | VER A | - | 0.6 | 8 . 2 | 1 | 8 • 2 | 1 | - | - | 1 | | | Temp. | when | sampieo
• F | EY
GS RI | 8 9 | 8 9 | 67 | 63 | 74 | 75 | 69 | 7.1 | 72 | | | State well | | Date sampled Agy. | SAN JOAQUIN VALLEY
LOWER KINGS RIVER AREA | 185/19E-26H 1 M
7-30-63 5126 | 185/20E- 6A 1 M
8-19-63 5000 | 185/20E- 6E 1 M
6-28-63 5000 | 185/21E-14F 1 M
7-10-63 5126 | 195/19E-25L M
8-30-63 5126 | 195/20E-33A 1 M
7-11-63 5126 | 195/21E- 3B 1 M
7-12-63 5126 | 20S/20E-10L 1 M
7-30-63 5126 | 20S/21E-12A 1 M
7-11-63 5126 | | | | | | 1. " | | | | | | | | | | | | | | _ | | | | | | | | | | _ | | |---|-----------------------|-------------|--|-------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | Total
hardness | C0C03 | | 23 | 77 | | 207 | 101 | | 136 | 47 | 19 | 33 | | tuents in | Sili- TDS Total | E vop 180°c | | | | | 362 | 220 | | | | | 116 | | sansti
er m | Sili- | SiO2 | | 1 | 1 | | υ
© | 5 | | ł | 1 | 1 | 1 | | Mineral canstituents
parts per millian | _ | 8 | | 0 • 4 0 | 1.20 | | 00 • 0 | 90•0 | | 0000 | 0 | 0 | 00 | | | Fluo- | L | | } | 1 | | 0 • 2 | 0.2 | | 1 | | 1 | 1 | | | Ni-
trote | E ON | | 1 | - | | 32 0 0 52 9 | 20.0 | | 1 | 1 | 1 | 2.9 | | millian
e value | Chlo- | -0 | | 36 | 3.24 | | 0.65 | 0 45 | | 35. | 0.20 | 0.17 | 0•23
11 | | parts per million
equivalents per millian
percent reactance value | Sultate | 504 | | 1 | 1 | | 29 0 • 60 11 | 0 • 0 8 8 9 | | ; | 1 | 1 | 0.15 | | parts per
equivalents
percent r | Bicor-
bonate | нсоз | | 1 | 1 | | 23.
3.85
69 | 128
2•10
71 | | 1 | 1 | - | 104 | | pod | Carbon-
ate | CO3 | | i | - | | 0 | 0 | | 1 | 1 | i
i | 0 | | i. | 1 50 - | ¥ | ED) | 1 | 1 | | 0.08 | 0.05 | | 1 | 1 | i | 0 | | Mineral canstituents | S | 0 2 | 52220 (CONTINUED) | 4.04 | 296 | | 1.35 | 21
0•91
31 | | 38 | 34 | 1.22 | 34 | | lineral co | Mognersium | φ
W | 52220 | 1 | 1 | 52221 | 1.64 | 0.66 | 52224 | 1 | 1 | 1 | 0 | | 2 | Ü | | 52200 | } | 1 | | 2.50 | 1.35 | | - | } | } | 13
0•65
31 | | Specific canduct- | (micra-
mhos | at 25°C) | REA | 797 | 1420 | IST | 556 | 513 | | 044 | 227 | 160 | 218 | | | F. | | VER A | 1 | 1 | RIG DI | 7 • 6 | 7.9 | ATER | 1 | 1 | | 7.7 | | Temp. | wnen
sampled
°F | | EY
GS R1 | 75 | 89 | VE IR | 69 | 72 | LTA W | 79 | 70 | 70 | 70 | | State well
number | Date sampled | | SAN JOAGUIN VALLEY
LOWER KINGS RIVER AREA | 205/21E-16D M
7-19-63 5126 | 215/21E- 1A 2 M
7-11-63 5126 | ORANGE COVE IRRIG | 155/24E-10L 1 M
8-20-63 5000 | 155/24E-23K 1 M
8-23-63 5050 | KAWEAH DELTA WATER | 175/25E-34P 1 M
6-17-63 5123 | 185/24E-19M 1 M
5-28-63 5123 | 195/23E- 8H 1 M
7-26-63 5126 | 20s/22E- 1A 1 M
7-11-63 5126 | * TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Totol | os
coco 3 | | 723 | 181 | 120 | | 93 | 24 | 5.9 | | 353 | 174 | | |--|-----------------|--|------------------------------------|---------------------------------|---------------------------------|-------------------------------|------------------------|---------------------------------|---------------------------------|---------------------------------|------------|---------------------------------|---------------------------------|---| | uents in
Iron | TDS | Computed hardness
Evap 180°C CoCO 3 | | 1042 | 375 | 261 | | | | - | | 690 | 345 | | | onstit
er mil | Siii- | | | 80 | 1 6 | 32 | | 1 | 1 | 1 | | 36 | 29 | | | Mineral constituents
parts per million | Boron | | | 0 8 8 | 0 1 0 | 0 1 0 | | 0 | 0 | 00 | | 0.20 | 0 | - | | 2 | Fluo- | r de
F | | 0 • 2 | • 0 | 0 | | 1 | 1 | 1 | | 0 | 0 | | | | - i N | trate
NO ₃ | | 22 0 35 | 14.0 | 22
0 • 35
9 | | ł | 1 | 1 | | 39.0 | 42.0
0.68
12 | | | million
e value | Chlo- | ride
C.I | | 541
15•26
81 | 3 • 30 | 1.04 | | 0.17 | 0.14 | 0.03 | | 236 | 1.10 | | | er million
nts per million
reactonce volue | Sulfote | 504 | | 0
4 4 6 | 0.46 | 0.40 | | 1 | 1 | 1 | | 1.04 | 23 | | | parts per
equivolents
percent re | Bicor- | bonate
HCO3 | | 2.79 | 142
2•33
36 | 140
2•29
56 | | 1 | 1 | 1 | | 164
2.69
24 | 3.34 | | | port | Carbon- | | | 0 | 0.23 | 0 | | 1 | 1 | 1 | | 0 | 0 | | | .⊆ | Potas - | sium
K | ED) | 0.13 | 0.08 | 0.08 | | - | 1 | 1 | | 0.13 | 0.10 | | | Mineral constituents | Sodium | 0 | CONTINUED | 101 | 0 8 4
0 8 0 0 | 39
1•70
41 | | 150.65 | 1.000 | 0.26 | | 3.87 | 2.13 | | | ineral co | Magne- | Sium
Mg | 52224 | 1018.31 | 1.81 | 0.99 | 52225 | 1 | 1 | 1 | 52228 | 3.87 | 18
1.48
26 | | | Σ | Calcrum | C o | 52200 | 123
6•14
32 | 36
1.80
28 | 28
1.40
34 | | 1 | 1 | 1 | | 3.19 | 2 00 0 | | | Specific conduct- | ance
(micra- | mhos
at 25°C) | | 2040 | 0 4 9 | 405 | IST | 236 | 186 | 141 | UIST | 1050 | 591 | | | | Ha | | ATER | 8 | 8 • 4 | 8 • 1 | ION | 1 | 1 | - | IRRIGATION |
 | 7.9 | | | Тепр. | when | sampled | EY
LTA | 72 | 73 | 75 | RIGAT | 70 | 20 | 69 | | 1 | 74 | | | State well | | Date sampled Agy. | SAN JOAQUIN VALLEY
KAWEAH DELTA | 205/26E- 3F 1 M
8-28-63 5050 | 20S/26E- 5R 1 M
6-12-63 5126 | 20S/26E-19F M
6-12-63 5123 | TULARE IRRIGATION DIST | 195/23E-24G 1 M
5-28-63 5123 | 195/24E-22C 1 M
6-12-63 5123 | 195/25E-31J 1 M
5-28-63 5123 | LINDMORE | 20S/26E-13A 1 M
6-12-63 5123 | 20S/27E-31J 1 M
9- 5-63 5123 | | | | ness
03 | | 7.1 | 63 | | 12 | 56 | | 139 | 6 | | 158 | 19 | |---|--|------------------------------------|-------------------------------|---------------------------------|--------------------------|-------------------------------|---------------------------------|------------------|----------------------------|---------------------------------|--------------|---------------------------------|---------------------------------| | , <u>e</u> | Totol
Totol
hardne | | | | | 5 6 | | | 1 | | | | | | | TDS Totol Computed hardness Evop 180°c CoCO3 | | | | | 176 | | | | | | 360 | 189 | | onsti | Sili. | | 1 | 1 | | 30 | 1 | | 1 | - | | 18 | 15 | | Mineral constituents
ports per million | Boran | | 0.10 | 00 | | 0.10 | 0.20 | - | 0 | 0 | | 0 • 1 0 | 0 | | _ | Fluo-
ride
F | | - | - | | 1.4 | 1 | | 1 | 1 | | 0 | 0 4 | | | Ni-
trate
NO ₃ | | 1 | | | 0 | 1 | | 1 | 1 | | 39.0
0.63
11 | 11.0 | | million
per million
ctance value | Chlo-
ride
Cl | | 10 | 21 | | 0.28 | 1.89 | | 19 | 22 | | 1.47 | 27 0 . 76 | | 0 | Sulfote
SO4 | | 1 | 1 | | 0.35 | 1 | | ł | 1 | | 1.77 | 44 | | parts per
equivalents
percent re | Bicor-
bonote
HCO3 | | 1 | 1 | | 116 | 1 | | | i
i | | 103 | 0.000 | | por
equ
per | Carbon-
ate
CO3 | | 1 | - | | 0 | 1 | | 1 | 1 | - | 0 | 0 | | in | Potas : | | 1 | 1 | | 0 | 1 | | 1 | 1 | | 0 0 0 0 5 | 0.03 | | nstituents | Sodius | | 3.43 | 35 | | 2.43
91 | 3.91 | | 1.43 | 52 2 2 6 | | 2 4 9 6 4 9 8 | 2.48 | | Mineral constituents | Mogne-
sium
Mg | 52233 | • | ł | 52234 | 0.08 | 1 | 52235 | 1 | • | 52236 | 0.66 | 0.08 | | Σ | Calcium | 52200 | 1 | 1 | | 3 0 15 | 1 | | } | - | | 2.50 | 0.30 | | Specific conduct- | (micro-
mhos
at 25°C) | | 270 | 273 | AREA | 235 | 533 | • | 439 | 688 | N MUD | 555 | 283 | | | H _a | O NOI | 1 | - | VORTH | 20 | 1 | AT I.D. | 1 | 1 | OAUDIN | 20 | 8 • 1 | | Тетр. | when
sampled
°F | EY
RIGAT | 73 | 1 | LEN | 78 | | RLIMA | 2.2 | 42 | SAN | 75 | 77 | | State well
number | Agy.
Coll. | SAN JOAQUIN VALLEY PIRIGATION DIST | 22S/25E-22A M
9-24-63 5123 | 235/25E- 9F 1 M
9- 5-63 5123 | ALPAUGH-ALLENSWORTH AREA | 23S/24E-32P M
9- 6-63 5123 | 245/23E- 5R 2 M
9-24-63 5123 | DELANO-EARLIMART | 24S/25E-23H 1 M
9-24-63 | 255/26E-16J 1 M
8-15-63 5124 | SOUTHERN SAN | 265/25E- 3R 1 M
8-15-63 5124 | 265/26E-160 1 M
8-15-63 5124 | | | Date | SAN | 225/ | 235/ | | 235/ | 245/ | | 245/ | 255/ | | 265/ | 265/ | * TDS by Fvop ct 105°c | | | 0 | | 01 | | m | | 0 | m | 0 | | m | m | |---|-----------------|----------------------------|--|---------------------------------|---------------------------------|---------------------------------|--------------------------
---------------------------------|---------------------------------|---------------------------------|------------|---------------------------------|---------------------------------| | | Totol | C0C03 | | 22 | 107 | 28 | | 10 | 28 | 289 | | 143 | 38 | | tuents in | 105 | Evap 180°c CoCO 3 | | 118 | | 114 | | | | | | | 142 | | er m | | SiO ₂ | | 15 | 1 | 14 | | 1 | 1 | 1 | | 1 | 17 | | Mineral constituents
parts per million | Boron | 8 | | 0 • 1 0 | 00 • 0 | 0.10 | | 0.10 | 0.10 | 0.20 | | 0.10 | 0•10 | | | Fluo- | r:de
F | | 0 • 2 | 1 | 0 • 1 | | 1 | 1 | 1 | | 1 | 0 | | | - i.v. | note
NO ₃ | | 0.10 | 1 | 1.4 | | 1 | 1 | 1 | | 1 | 3.1 | | million
e value | Ch10- | C I | | 10
0•28
16 | 0.25 | 200.56 | | 0.17 | 0.28 | 2.59 | | 1.95 | 0.39 | | parts per million
equivolents per million
percent reactance value | Sulfate | 504 | | 0.25 | 1 | 0.10 | | 1 | 1 | 1 | | å
t | 0.35 | | parts per
equivalents
percent re | Bicar- | bonate
HCO ₃ | | 1.13
64
64 | - | 1.11
68
1.11
62 | | 1 | ę
t | 1 | | 1 | 1.39 | | par | Carbon- | co ₃ | | 0 | i
t | 0 | | 1 | 1 | - | | 1 | 0 | | .c | Potos - | sium
K | | 0.03 | 1 | 0.03 | | 1 | 1 | 1 | | 1 | 0.03 | | onstituent | Sodium | Να | | 1.39 | 30 | 1.26 | | 1.17 | 1.22 | 2.61 | | 1.43 | 1.48 | | Mineral constituents | Magne- | S I U | 52237 | 0.08 | 1 | 0.16 | 52238 | 1 | 1 | 1 | 52240 | 1 | 0.16 | | 2 | Calcium | Co | 52200 | 0.35 | 1 | 0.40 | | 1 | 1 | 1 | | 1 | 0.60 | | Specific conduct- | (micro- | at 25°C) | ORAGE | 173 | 353 | 177 | DIST | 146 | 206 | 877 | ΕA | 481 | 218 | | | Hd | | ER ST | 0 • 0 | 1 | 7.9 | IRKIG | - | - | 1 | TA AREA | - | 8 • 2 | | Temp. | when
sampled | LL. | EY
N WAT | 76 | 78 | 1 | ASCO | 78 | 1 | 77 | R DELTA | 75 | 73 | | State well
number | - | Date sampled Call. | SAN JOAGUIN VALLEY
NORTH KERN WATER STORAGE | 265/24E-26R 1 M
6-26-63 5124 | 275/25k- 5R 1 M
6-26-63 5124 | 275/25E-34A 2 M
6-20-63 5124 | SHAFTER-WASCO IRRIG DIST | 275/24E- 5R 1 M
6-26-63 5124 | 285/25E-17L 1 M
7-15-63 5124 | 285/26E-30A 1 M
6-20-63 5124 | KERN RIVER | 295/25E-10N 1 M
6-26-63 5124 | 295/25E-32F 1 M
6-13-63 5124 | * TDS by Evop ct 105°c # ANALYSES OF GROUND WATER 1963 | | Totol
hordness
CaCO 3 | | 206 | 87 | 224 | 89 | 111 | 94 | 6 | 21 | 271 | |---|---------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | tuents in
Ilion | T D S
Computed
Evop 180°c | | 431 | _ | | 211 | 205 | 206 | 197 | 144 | | | ansti
er m | Sui- | | 14 | 1 | 1 | 23 | 20 | 19 | 22 | 13 | 1 | | Mineral constituents
parts per million | Baron | | 0.50 | 04.0 | 0.50 | 0.20 | 0 - 20 | 0.20 | 0.30 | 0 • 5 0 | 0 | | | Fluo-
ride
F | | 0.1 | 1 | å
I | 0.2 | 0 • 1 | 0.5 | 1 • 4 | 0 • 2 | 1 | | | Ni-
trote
NO ₃ | | 9+0
0+15 | 1 | i | 8
• 1
• 1
4 | 4 • 8
0 • 0 8
2 | 0 | 0 | 0 | 1 | | million
per million
actance volue | Chlo-
ride
Cl | | 1.69 | 26 | 0.62 | 14
0•39
12 | 0.37 | 16 0.45 | 36
1.02
34 | 0.28 | 0.65 | | parts per million
equivalents per million
percent reactance volue | Sulfate
SO4 | | 3.21 | 1 | 1 | 29 | 32 0 67 | 34 0 - 71 | 20 0 • 42 | 0.27 | 1 | | ports per
equivalents
percent rec | Brcor-
bonote
HCO3 | | 107 | 1 | - | 130
2.13
66 | 135
2•21
66 | 135 2 21 66 | 1.54 | 114 | 1 | | bod | Corbon-
afe
CO3 | | 0 | 1 | ł | 0 | 0 | 0 | 0 | 0 | - | | ï | Potos -
sium
X | Jeb) | 0.05 | 1 | ł | 0.03 | 0.05 | 0.05 | 0.03 | 0 | 1 | | Mineral constituents | Sodium | 52240 (CONTINUED) | 2.57 | 1.30 | 2.61 | 39
1•70
50 | 1,22 | 1.443 | 2.91 | 1.96 | 3.70 | | ineral co | Mogne-
sium
Mg | 52240 | 0.34 | 1 | ğ
E | 0.16 | 0.066 | 0.33 | 0.08 | 0.16 | 1 | | 2 | Calcium | 52200 | 3.79 | - | 1 | 300.000 | 1.55 | 1.55 | 0.10 | 0.25 | ! | | Specific conduct- | (micro-
mhos
at 25°C) | E A | 099 | 327 | 762 | 325 | 332 | 320 | 305 | 220 | 874 | | | H. | TA AR | 0 . | 1 | ł | 8 . 1 | 8 1 | 8 • 2 | 8.1 | 8 . | 1 | | Temp. | when
sampled | ÉY
R DEL | 76 | 99 | 71 | 72 | 71 | 71 | 73 | 73 | 1 | | State well
number | Date sampled Agy | SAN JOAQUIN VALLEY
KERN RIVER DELTA AREA | 295/26E- 9R 1 M
6-20-63 5124 | 295/26E-35K 1 M
9-13-63 5124 | 30S/24E-14H 1 M
6-13-63 5124 | 30S/25E-10C 1 M
6-13-63 5124 | 30S/27E-19L 1 M
6- 8-63 5124 | 30S/28E-29B 1 M
6-25-63 5124 | 31S/25E-13B 1 M
7- 2-63 5124 | 315/26E- 2J 1 M
7- 2-63 5124 | 325/27E-16R 1 M
3-13-63 5124 | | L | Da | SAI | 29. | 29. | 90 | 30 | 300 | 300 | 31. | 310 | 22 | * TDS by Evap of 105°c ANALYSES OF SHOUND WALLER | Γ | | _ | 55 5 | | 9 | 173 | 125 | 210 | 315 | 348 | •
• | 162 | 7 | |-------|--|---------|----------------------------|---------------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | _ | Totol | hardness
CaCO 3 | | 41 | F | 12 | | | 76 | 1840 | | 1695 | | | tuents in | TDS | | | | | | 24 S | | | | 313 | 3462 | | | er m | S-11. | sio ₂ | | ŀ | 1 | i
B | 15 | 1 | - | 1 | 2 | m
œ | | | Mineral constituents
parts per million | Baron | | | 0.20 | 0 • 2 0 | 0 • 30 | 0.20 | 0 - 20 | 0 | 4 • 10 | 0 0 | ٠
9 | | | | F100- | r de | | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7.0 | 0 . 2 | | | | i.Z | trote
NO ₃ | | 1 | 1 | 1 | 0 | i
i | 1 | 1 | 61.0
0.98
20 | 0 | | | million
e value | Chlor | ride
C I | | 1.33 | 37 | 27 | 1.21
1.9 | 7.3 | 1.61 | 850 | 35 | 1.47 | | 11,11 | equivalents per million
percent reactance value | Sulfate | 504 | | 1 | 1 | 1 | 58
1•21
19 | 1 | 1 | 1 | 26
0•24
11 | 47.30
47.30 | | | ivalent
cent | Bicar- | bonote
HCO ₃ | | 1 | 1 | 1 | 234
3.84
61 | 1 | 1 | 1 | 150 | 146
2 • 39
5 | | | ede | Carbon- | 01e
CO3 | | ŀ | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | | | uj : | Potas - | e x | | 1 | 1 | 1 | 0.10 | 1 | 1 | ŧ | 0.10 | 0.28 | | | Mineral constituents | Sodium | o
Z | | 460.4 | 2.17 | 2.04 | 2.04 | 2.26 | 2.57 | 33.87 | 1.95
1.95
3.1 | 382
16•61
33 | | | lineral c | Mogne- | Siu B
Mg | 52241 | 1 | 1 | 1 | 1.40 | i | 1 | 1 | 0.74 | 6.17 | | | 2 | Colcium | ° | 52200 | 1 | 1 | 1 | 56
2.79
44 | 1 | 1 | 1 | 2.50 | 557
27 • 79
55 | | | Specific conduct- | (micra- | mhas
at 25°C) | A | 601 | 574 | 469 | 570 | 862 | 970 | 6080 | 495 | 3600 | | | | Hd | | A AREA | 1 | 1. | 1 | 8.1 | 1 | 1 | į. | Ο
• | 7.8 | | | Temp. | when | H o | EY
RICOH | 81 | 1 | 75 | 74 | 72 | 69 | 73 | 7.1 | 79 | | | State well | | Date sampled Agy. | SAN JOAQUIN VALLEY
EDISON-MARICOHA | 295/29E-34N 1 M
8- 7-63 5124 | 55/28L-11R 1 M
6-11-63 5124 | 30S/28E-25A 1 M
6-11-63 5124 | 30S/29E-15H 2 M
6- 0-63 5124 | 30S/29E-20A 1 M
6-11-63 5124 | 30S/29E-27J I M
8- 7-63 5124 | 315/24E-28B 1 M
7- 2-63 5124 | 31s/30E-30C 1 M
6-25-63 5124 | 325/25E=34G 1 M
7- 2-63 5124 | | - | | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | | | |---|--------------|----------------------------|--------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|-----------|---------------------------------|---------------------------------| | | Total | hardness
CaCO 3 | | 76 | 324 | 247 | 567 | 946 | 1391 | 90 | | 658 | 283 | | tuents in | TDS | pa
Doc | | | 9 9
9 9
9 9 | | | | 2592 | | | 1912 | 1055 | | constituent
per million | -ilis | | | ł | 17 | ; | 1 | 1 | 17 | 1 | | 7 | 24 | | Mineral constituents
parts per million | Boron | | | 0 % | 0 5 0 | 0 • 0 | 0 9 • 0 | 0.30 | 1 • 40 | 0.20 | | 1.50 | 0.64 | | _ | Fluo- | rıde
F | | 1 | 7 0 | ŀ | 1 | 1 | 1.0 | 1 | | 0 | 0 • 4 | | | - <u>-</u> z | trate
NO ₃ | | 1 | 149.0 | - | { | 1 | 25.0
0.40 | 1 | | 1.3 | 1.2 | | million
per million
ictance value | Chlo- | ride
C 1 | | 14 | 2000 | 0.39 | 1.52 | 58 | 179
5•05
13 | 0.20 | | 553
15•54
52 | 173 | | 0 | Sulfate | 804 | | 1 | 120 | i | l | 1 | 1542
32•10
81 | - | | 592
12•33
41 | 420
8•74
54 | | parts per
equivalents
percent re | Bicor- | bonote
HCO ₃ | | - | 184
3 • 0 2
2 9 | - | 1 | 1 | 135
2•21
6 | | | 136
2.23 | 2.57 | | par
equ
per | Carbon- | ate
CO3 | | i | 0 | i | 1 | 1 | 0 | 1 | | 0 | 0 | | in | Potos - | | ED) | 1 | 0.15 | 1 | 1 | 1 | 0.28 | 1 | | 0 0 0 | 0.03 | | constituents | Sodium | 0 2 | CONTINUED) | 46 | 4.30 | 24 | 131 | 235 | 277
12•04
30 | 34 | | 412
17•91
58 | 250
10•87
66 | | Mineral co | , a c c W | | 52241 | 1 | 2.63 | 1 | 1 | 1 | 131 10.77 | 1 | 52242 | 1.97 | 8 9 9 9 | | Σ | E i c l c l | Ca | 52200 | 1 | 3.84 | 1 | 1 | 1 | 341
17.02
42 | 1 | | 224
11•18
36 | 100 | | Specific conduct- | ance (micro- | mhas
at 25°C) | a | 368 | 066 | 564 | 1580 | 2530 | 2900 | 352 | STORAGE | 2990 | 1660 | | | Hd | | A AREA | - | 7.9 | 1 | 1 | 1 | 0 • | 1 | WATER S | 7.8 | 8.1 | | Temp. | when | sampled
° F | EY
RICOPA | 72 | 73 | 77 | 78 | 78 | 77 | 74 | ΤA | 67 | 9 | | well | , | ed Agy. | JOAQUIN VALL | 2F 1 M
5124 | 5M 2 M
5124 | 4M 1 S
5124 | 8R 1 S
5124 | 5K 1 S
5124 | 5124 | 3R 1 S | BUENA VIS | 11P 1 M 5640 | 8G 2
M | | State well | | Date sampled | SAN JOAQU | 325/28E-12F 1 M
7- 2-63 5124 | 325/29E-35M 2
7- 2-63 512 | 11N/18W-14M 1 S
8-22-63 5124 | 11N/20W- 8R 1 S
7- 2-63 5124 | 11N/20W-25K 1 S
7- 2-63 5124 | 11N/22W- 8G 1 S
7- 2-63 5124 | 12N/19W-33R 1
7- 2-63 51 | n
B | 275/22E-21P 1 M
2- 7-63 5640 | 275/22E-28G 2 M
2- 8-63 5640 | | | | á | S | 20 | 8 | = | | | 7 | - | | 7 | . 2 | TDS by Evop ct 105° TABLE E-I ANALYSES OF GROUND WATER 1963 | | 1 | · · | | | - | .0 | ~ | m | .+ | | | 21 | ~ | |---|-----------------|----------------------------|--|---------------------------------|---------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------|---------------------------------|---------------------------------| | | Total | hardness
CoCO 3 | | 309 | 244 | 316 | 357 | 28 | 4 4 | 31 | | 12 | 127 | | lion | TDS | Ош | | | | 788 | | | | | | 176 | | | sanstil
er mi | Sili | | | - | - | 2 | - | ļ | 1 | 1 | | CC
CC | 1 | | Mineral canstituents
parts per millian | Baron | | | 0.74 | 0.56 | 0 • 4 9 | 0.71 | 0.41 | 0.47 | 0 .32 | | 0.20 | 0000 | | | -0114 | r i de | | 1 . | 1 | 0 | 1 | 8 | 1 | 1 | | 0 | i | | | Z | trate
NO3 | | 1 | 1 | 1.1 | 1 | 1 | - | 1 | | 0 | 1 | | million
e value | Chio+ | ride
C1 | | 443 | 101 | 58
1•64
14 | 105 | 150 | 0.50 | 10 | | 15 | 310.87 | | parts per million
equivalents per million
percent reactance value | Sulfate | 804 | | ! | 1 | 334 | 1 | 1 | 1 | İ | | 33 0 . 69 26 | 8 | | parts per
equivalents
percent re | Bicor | bonote
HCO ₃ | | 1 | 1 | 215 | i
i | 1 | 1 | 8 | | 1.57 | 1 | | por | Corbon- | ote
CO3 | | 2 | 1 | 0 | 1 | 1 | 1 | 1 | | 0 | 1 | | .5 | Potos : | siu x | ED) | 0.03 | 0 0 0 | 0 | 0.05 | 0.03 | 0.03 | 0.03 | | 0 | 1 | | constituents | Sadina | 0 2 | 52242 (CONTINUED) | 397 | 188 | 141
6•13
49 | 198
8•61 | 114 | 3.26 | 3.04 | | 2.52 | 1.57 | | Mineral co | 1 0 | | 52242 | ! | 1 | 1.32 | i | 1 | 1 | 1 | 52243 | 0.08 | î
I | | Σ | Coloina | 0 0 | 52200 | 1 | i | 100 | 1 | 1 | i
t | 1 | | 0.100 | å
1 | | Specific conduct- | ance
(micro- | mhas
at 25°C) | TORAGE | 2400 | 1270 | 1170 | 1520 | 602 | 434 | 393 | WATER STORAGE | 270 | 445 | | | Ho | | TER S | 1 | 1 | 89 | 1 | 1 | 1 | 1 | ER ST | 8 • 2 | 1 | | Temp. | when | sampled
° F | EY
TA WA | 67 | 67 | 1 | 19 | 69 | 73 | 74 | | 74 | 73 | | State well | | Date sampled Agy. S | SAN JOAQUIN VALLEY BUENA VISTA WATER STORAGE | 28S/22E- 4A 1 M
2-18-63 5640 | 285/22E-10R 1 M
2- 7-63 5640 | 285/22E-26J 1 M
2- 7-63 5640 | 28S/22E-36N 1 M
2- 7-63 5640 | 30S/23E- 1C 3 M
2- 7-63 5640 | 31S/25E-25H 1 M
3- 4-63 5640 | 325/27E- 6D 1 M
3-13-63 5640 | SEMITROPIC | 255/22E- 2P 2 M
5-15-63 5124 | 255/25E- 40 1 M
8-15-63 5124 | | in | Total | | | 148 9
148 | 1786 400 | 0 | 50
50
60 | 00 | φ
4) | | 836 127
906 | 649 55 | 2493 651
2480 | |---|---------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------|------------------------------|---------------------------------|---------------------------------| | Mineral constituents
ports per million | TDS | Computed
Evap 180°c | | 24 | 19 17 | 2 5 | | !
! | | | 28 | 1 | 42 24 24 | | con | S.II. | sio ₂ | | | | | | | | | | | | | Mineral | Baron | Θ. | | 0 • 1 0 | 1.20 | 0 1 0 | 1 • 40 | 0.10 | 0.10 | | 0.70 | 1.10 | 2 • 80 | | | Fluo- | ride | | 9 | 1.0 | 1 | 1 | ! | | | 0 • 2 | ! | 4 • 0 | | | 1 - Z | trote
NO ₃ | | 0 | 0.0 | 1 | 1 | 1 | - | | 1.3 | 0 | 4.5 | | million
e volue | Ch10- | ride
C1 | | 16
0•45
21 | 677
19•09
66 | 0.20 | 1140 | 1.33 | 71 2.00 | | 411
11.59
84 | 169 | 3.50 | | parts per million
equivolents per million
percent reactance volue | Sulfate | 804 | | 17 0 35 | 403
8•39
29 | 1 | 1 | - | 1 | | 450.94 | 43
0.90
8 | 1458
30•36
82 | | parts per
equivolents
percent re | Bicar | bonote
HCO3 | | 1.26 | 1.48 | 1 | 1 | 1 | 1 | | 1.20 | 361 | 182
2.98
8 | | pa
ed
pe | Carbon- | ote
CO3 | | 0.07 | 0 | 1 | 1 | 1 | † | | 0 | 0 | 0 | | s in | Potas ~ | e in | ED) | 0 | 0 0 0 5 | 1 | 0.05 | 1 | 1 | | 0.05 | 0.05 | 0.23 | | onstituent | Sodium | 0 Z | CONT I NU | 2.04 | 490
21•31
73 | 1.39 | 722 | 2.39 | 3.52 | | 265
11.52
82 | 238
10.35
90 | 560
24 • 35
65 | | Mineral constituents | Magne | Sium
Mg | 52243 (CONTINUED) | 0.08 | 1.40 | 1 | 1 | l | 1 | 52244 | 0 44 6 | 0 0 4 0 4 | 7.32 | | Σ | Coleinm | 0 0 | 52200 | 0.10 | 132 6.59 | l | ŧ
1 | 1 | i
1 | | 41
2.05
15 | 0.60 | 114 5.69 | | Specific canduct- | (micro- | mhos
at 25°C) | STDRAGE | 217 | 2700 | 170 | 4080 | 281 | 537 | REA | 1340 | 1180 | 2875 | | | Hd | | | ω
 | 7.6 | l
l | 1 | 1 | 1 | ICK A | 7.8 | 8 .2 | 8 . 2 | | Temp. | when | sampled
° F | GUIN VALLEY
SEMITROPIC WATER | 73 | 75 | 77 | 74 | 80 | 72 | AVENAL-MCKITTRICK AREA | 80 | 78 | 92 | | el I | | Agy.
Call. | N VALL | 5 1 M
5124 | 5124 | 5124 | 2 M
5640 | J 1 M
5124 | P 1 M
5124 | NAL-MC | M 2 M
5126 | N 3 M
5126 | E 1 M
5126 | | State well | | Dote sampled | JOA | 265/22E-10G 1 M
8-15-63 5124 | 265/22E=270 1 M
8=15=63 5124 | 26s/24E- 3R 1 M
8-15-63 5124 | 275/22E- 20 2 M
2- 8-63 5640 | 275/23E-27J I M
6-26-63 5124 | 285/23E-25P 1 M
6-26-63 5124 | AVER | 22S/17E-15M 2
7=11-63 512 | 225/19E-20N 3 M
7-11-63 5126 | 235/18E-29E 1 M
7-11-63 5126 | | | | ٥٥ | SAN | 26 | 26. | 26.8 | 27 | 27. | 28 | | 22 | 22 | 23 | * TDS by Fvop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Total | CaCO 3 | | 964 | 476 | 1710 | 1470 | 980 | 761 | 736 | 1782 | 161 | |---|-----------------|--------------------------|---|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | uents in
Iion | T D S | Computed
Evap 180°c | | 1107 | 1745
1950 | | | 2764 | 3190 | 1851 | 585
830 | | | anstit
er mil | Sil. | SiO ₂ E | | 26 | - | i i | 1 | m
m | - | .U | 17 | 1 | | Mineral constituents
parts per million | Boran | <u>a</u> | | 1.60 | 1 • 80 | 2 • 2 0 | 7 • 70 | 2 • 80 | 7.60 | 1 • 80 | 7.20 | 13.00 | | ~ | Fluo- | r de
F | | 0 | 1 | 1 | ŧ
I | 4 • 0 | 1 | 0 • 4 | 0 | 1 | | | - <u>i</u> N | trate
NO ₃ | | 17.0 | 29.0 | 1 | 1 | 4.5 | 0 • 0 0 0 | 20.00 | 0 | 1 | | million
e value | Chla- | ride
C 1 | | 2.54 | 262
7.39 | 719 | 404 | 355
10.01
23 | 1180 | 223 | 1035
29.19 | 689 | | parts per million
equivolents per million
percent reoctonce value | Sulfate | 804 | | 513
10.68
60 | 810
16.86 | 1 | 1 | 1389
28.92
67 | 612
12•74
24 | 894
18•61
64 | 2620 | | | parts per
equivolents
percent re | Bicor- | banate
HCO3 | | 252
4•13
23 | 262
4.29 | 1 | i | 259
4.25
10 | 379 | 229
3•75
13 | 501
8•21
9 | 1 | | par | Carbon- | ate
CO3 | | 0.13 | 0 | 1 | į | 0 | 0 | 0 | 0 | 1 | | . <u>⊆</u> | Potas - | sium
K | ED) | 0.10 | 0.18 | 1 | 1 | 0.03 | 0.10 | 0.08 | 10 | 8 | | constituents | Sodium | 0 Z | CONTINUED) | 175
7•61
43 | 231
10•04
35 | 295 | 674 | 550
23.91
55 | 37.48
71 | 335 | 1325
57.61
62 | 818
35•44 | | Mineral co | Mogne- | sium
Mg | 52244 | 5.92 | 12.09
42 | 1 | å | 141
11.60 | 120
9.87
19 | 106 | 180
14.80
16 | ! | | 2 | Catcium | C O | 52200 | 8 % % % % % % % % % % % % % % % % % % % | 128
6•39
22 | 1 | | 160
7.98
18 | 107 | 120 | 417
20.81
22 | 1 | | Specific conduct- | ance
(micro- | mhos
at 25°C) | AREA | 1470 | 2560 | 4220 | 5310 | 3425 | 5120 | 2475 | 6700 | 0707 | | | Hd | | | 9 • 4 | 8.1 | 1 | 1 | 7.6 | 7.9 | 8 • 2 | 7.2 | 1 | | Temp. | when | LL. | EY | 7.1 | 76 | 73 | 78 | 0 8 | 99 | 76 | 1 | 8 | | State well | | Date sompled Agy. | SAN JOAQUIN VALLEY
AVENAL-MCKITTRICK | 245/18E-190 1 M
7-25-63 5126 | 245/19E-30N 1 M
7-11-63 5126 | 255/18E- 3N 2 M
8- 8-63 5124 | 255/19E- 7P 1 M
8- 8-63 5124 | 255/19E-238 1 M
8- 8-63 5124 | 265/18E- 1A 1 M
8- 8-63 5124 | 265/18E-23M 2 M
8- 8-63 5124 | 275/19E-28H 1 M
8-15-63 5124 | 275/20E-34G 1 M
6- 8-63 5124 | | Mineral constituents in parts per million | Totol | hardness
CoCO 3 | | 1010 | 3 | | 51 | 108 | 31 | | 108 | 1320 | 165 | |---|---------|--------------------------|--|---------------------------------|---------------------------------|---------------------|---------------------------------|---------------------------------|---------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------| | | TDS | ОШ | | | 273 | | | | | | | | | | | Sill. | ca
SiO ₂ | | 1 | 1 | | - | 1 | 1 | | 1 | l | ì | | | Boron | | | 7.60 | 0 • 2 0 | | 0.10 | 0 4 • 0 | 0 5 0 | | 1.10 | 2.20 | 1.30 | | | Fluo- | r - de | | 1 | ľ | | 1 | i
P | 1 | - | 1 | 1 | - | | parts per millian
equivalents per millian
percent reactance value | !-
Z | trote
NO
₃ | | 1 | 0 | | 1 | å
1 | 1 | | 1 | 1 | 1 | | | Chlo- | ride
C I | | 3450 | 15 | | 15 | 152 | 14 | | 300 | 699 | 586
16.53 | | | Sulfate | 504 | | 1 | 1.23 | | 1 | ł | 1 | | 1 | 1 | 1 | | ts per
ivalents
cent r | B.cor- | | | 1 | 188
3 • 08
6 5 | | 1 | | 1 | | i | 1 | 1 | | por | Carbon- | ote
CO3 | | 1 | 0 | | 1 | 1 | 1 | | 1 | 1 | 1 | | Ē | Potos - | | | 1 | 0.09 | | 1 | 1 | 1 | | 1 | + | 1 | | Mineral constituents | Sodium | 0 2 | | 2340 | 3.65 | | 2.00 | 212 | 2.35 | | 488 | 578 | 556 | | | Magner | | 52245 | 1 | 0 0 0 | 52246 | 1 | t | 1 | 52247 | 1 | 1 | 1 | | 2 | Calcium | D O | 52200 | 1 | 18
0•90
19 | | i
T | } | - | | 1 | 1 | 1 | | Specific canduct- | (micro- | mhas
at 25°C) | 577 | 11700 | 483 | DIST | 292 | 1120 | 294 | | 2450 | 4670 | 2930 | | | Ьd | | ST HI | 1 | 7.7 | ATION | 1 | ł | | AREA | 1 | 1 | 1 | | Temp. | when | sampled
° F | EY
KE-LO | 71 | 68 | IRRIG | 67 | 71 | 77 | URON | 16 | 73 | 87 | | State well | | Date sampled Agy. | SAN JOAQUIN VALUEY
TULARE LAKE-LOST HILLS | 235/21E-18D 1 M
7-11-63 5126 | 245/22E-35N 1 M
7-11-63 5126 | CORCORAN IRRIGATION | 215/22E-13G 1 M
7-11-63 5126 | 21s/22E-22M 2 M
7-11-63 5126 | 225/22E-10A 1 M
7-11-63 5126 | MENDOTA-HURON AREA | 135/14E-15B 1 M
8-26-63 5050 | 135/14E-34M 1 M
8-26-63 5050 | 145/13E-12N 1 M
8-13-63 5050 | | | | ۵ | S | 7 | 27 | | 2 | 2] | 22 | | 7 | Ξ. | 17 | * TDS by Evop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | o l
iness | 2003 | | 533 | 1390 | 159 | 103 | 133 | 711 | 1329 | 328 | 466 | |---|--------------------|----------|-------------------------------------|---------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | Mineral constituents in parts per million | Totol
d hardnes | O C C C | | | ======================================= | | | | | 3050 | | , | | | T D S Totol | Evop 180 | | | | 1398 | | | | | | | | | 5111- | Si02 | | 1 | - | 37 | 1 | 1 | - | 30 | 1 | 1 | | | Baron | | | 2.20 | 1.80 | 1 • 90 | 1.40 | 7 • 00 | 0.70 | 1.30 | 1.80 | 1.00 | | | Fluo- | L | | 1 | 1 | 0 | 1 | 1 | - | 0 • 2 | 1 | ! | | ports per milion
Mineral constituents in equivolents per milion
percent reactonce volue | Ni-
trate | NO 3 | | 1 | 1 | 0.0 | 1 | 1 | 1 | 0 | 1 | 1 | | | Chlo- | -0 | | 218 | 631 | 2.40 | 2.17 | 2.37 | 2.23 | 209
5•89
14 | 36 |

 | | | Sulfore | 804 | | 1 | ł | 16.03 | 1 | 1 | 1 | 1664
34.64
80 | 1 | 1 | | | Bicor-
bonate | нсоз | | ŧ | 1 | 3.39 | 1 | 1 | 4 | 176 | 1 | 1 | | | Carbon-
ate | C 0 3 | | - | 1 | 0 | 1 | ł | i | 0 | 1 | 1 | | | ١ ٢ | × | LED) | 1 | 1 | 0.15 | 1 | g g | 1 | 0.18 | i i | 1 | | | Sodium | 0 2 | CONTINUED | 390 | 439 | 193 | 273 | 301 | 143 | 395
17.17 | 195 | 148 | | | Magner | δ W | 52247 | 1 | 1 | 7.73 | 1 | 4 | İ | 161
13•24
30 | | | | | Calcium | Co | 52200 | 1 | 1 | 108 | 1 | 1 | | 13.32 | 1 | - | | Specific conduct- | (micra-
mhos | ot 25°C) | | 2600 | 4190 | 1675 | 1500 | 1650 | 1820 | 3100 | 1510 | 1490 | | H | | | AREA | 1 | 1 | 8 • 2 | 1 | 1 | 1 | 8 . 2 | 1 | 1 | | Temp. | when | - | NO. | 8 6 | 80 | 78 | 80 | 87 | 73 | 72 | 87 | 1 | | State well | Agy.
Coll | | SAN JOAQUIN VALLEY
MENDOTA-HURON | 145/13E-25N 1 M
8-13-63 5050 | 145/14E- 9E 1 M
8-13-63 5050 | 14S/14E-33N 1 M
8-26-63 5050 | 145/15E-28L 1 M
8- 1-63 5050 | 155/14E-36Q 2 M
8-13-63 5050 | 155/15E-20N 2 M
8-13-63 5050 | 155/15E-25N 1 M
8-13-63 5050 | 165/14E-100 1 M
8-13-63 5050 | 165/15E- 8N 1 M
8-13-63 5050 | * TDS by Even ct 105°c | | - 5 | | | | | | | | | | | | |--|---|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--| | | Total
hardness
CaCO = | | 614 | 350 | 127 | 265 | 301 | 1280 | 403 | 61 | 168 | | | ituents in | TDS Total Camputed hardness Evap 180°C CaCO 2 | | 1450 | 1094 | | | | | | | | | | ansti
er m | Sili. | u : | 32 | 36 | 1 | 1 | | 1 | 1 | 1 | - | | | Mineral canstituents
parts per million | Boron | | 1.20 | 1.10 | 1.70 | 0 | 0.70 | 2.20 | 2.70 | 1.40 | 1.60 | | | | Fluo-
ride
F | | 0.2 | 0.2 | l
I | 1 | 1 | 1 | 1 | ł | 1 | | | | Ni- | | 0 | 0.01 | 1 | 8 | 1 | 1 | 1 | - | 1 | | | million
e value | Chlo-
ride
Cl | | 2.17 | 1 • 80
1 1 1 | 3.16 | 1.41 | 51 | 166 | 202 | 143 | 768 | | | er million
its per million
reactance value | Sulfote | | 738
15.37
76 | 584
12.16
74 | 1 | 1 | 1 | 1 | ! | 1 | 1 | | | parts per
equivalents
percent re | Bicor-
bonate
HCO3 | | 168
2•75
14 | 150
2.46
15 | 1 | 1 | i | { | | i | 1 | | | bole | Corbon-
ote | | 0 | 0 | { | 1 | 1 | l | Į. | - 1 | 1 | | | i.e. | Potos: | JED) | 0.10 | 0.13 | 1 | 1 | ł | đ
t | 1 | 1 | | | | instituent | Sodium | CONTINUED) | 175
7•61
38 | 210 | 267 | 176 | 172 | 393 | 384 | 216 | 568 | | | Mineral constituents | Mogne-
sium
Mg | - | 7.48 | 2.71 | 1 | ŧ | 1 | į į | 1 | 1 | 1 | | | Σ | Colcium | 52200 | 96 | 4.29 | 1 | 1 | 1 | ŀ | 1 | 1 | 1 | | | Specific conduct- | (micro-
mhos | | 1570 | 1375 | 1530 | 1340 | 1370 | 3670 | 2470 | 1180 | 3020 | | | | E. | AREA | 8 . 2 | 8.1 | 1 | - | - | 1 | 1 | | 1 | | | Temp. | wnen
sampled
°F | EY | 78 | 76 | σ ₃ | 76 | 75 | 72 | 92 | ω
ω | i i | | | State well
number | Date sampled Agy. | AN JOADUIN VALLEY MENDOTA-HURON AREA | 65/15E-250 1 M
8-26-63 5050 | 65/16E- 9N 2 M
8-13-63 5050 | 75/16E-18E 1 M
8-22-63 5050 | 75/17E-23Q 1 M
8-22-63 5050 | 75/17E-27R 1 M
8-22-63 5050 | 75/17E-28R 1 M
8-22-63 5050 | 85/15E-24N 1 M
8-22-63 5050 | 85/17E-13N 1 M
8-22-63 5050 | 85/17E-30P 1 M
8-22-63 5050 | | * TDS by Fvop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Tatal | hardness
CaCO 3 | | М | 406 | 365 | 129 | 215 | 677 | 200 | 341 | 391 | |---|-----------------|--------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | fuents in | T D S | ОШ | | 194 | | | | 1091 | | | | | | cansti
er m | Sil. | | | 24 | [| 1 | 1 | ĺ | 1 | 1 | - | 1 | | Mineral constituents
parts per million | Boran | | | 0 + • 0 | 0 • 70 | 1 • 00 | 1.30 | 1.50 | 1.50 | 1.00 | 0 9 • 0 | 0 40 | | | Flua- | r de | | 1 • 2 | Ì | 1 | İ | 1 | - | 1 | 1 | 1 | | | - Z | trate
NO ₃ | | 0 | 1 | ł | 1 | 2.0 | 1 | 1 | 1 | - | | million
per million
ctonce volue | Chla- | ride
C.I | | 0.28 | 1.56 | 100 | 328 | 178
5•02
29 | 3.75 | 1.58 | 38 | 1.86 | | parts per million
equivolents per million
percent reactonce volue | Sulfate | \$04 | | 0.12 | ! | 1 | i
ī | 437
9.10
52 | 1 | 1 | 1 | 1 | | parts per
equivolents
percent rea | Bicor- | bonate
HCO3 | | 133
2.18
71 | 1 | 1 | 1 | 3.28 | 1 | ł | 1 | ł | | por | Curbon- | ate
CO3 | | 0.50 | - | 1 | <u> </u> | 0 | 1 | 1 | 1 | 1 | | . <u>e</u> | Potas - | Si. X | ED) | 0 | 1 | 1 | t
I | 0.05 | 1 | 1 | 1 | - | | onstituents | Sadium | o
Z | (CONTINUED) | 3.09 | 144 | 220 | 351 | 289
12.57
74 | 224 | 154 | 134 | 136 | | Mineral constituents | Mogner | m u m | 52247 (| 0 | - | ì | 1 | 0.41 | 1 | 1 | 1 | 1 | | 2 | Calcium | ٥٥ | 52200 | 0.05 | 1 | 1 | 1 | 3.89 | 1 | 1 | 1 | 1 | | Specific conduct- | ance
(micro- | mhos
at 25°C) | | 298 | 1400 | 1680 | 1870 | 1750 | 2170 | 1570 | 1330 | 1540 | | | Н | | AREA | 0 • 6 | 1 | 1 | ţ | 8 • 1 | - | 1 | 1 | 1 | | Temp. | when | sombled
° F | Z | 30 | 1 | 79 | 91 | 77 | 72 | 78 | 78 | 75 | | State well | | Date sampled Agy. | SAN JOAQUIN VALLEY
MENDOTA-HURON | 185/19E- 6A 1 M
8-19-63 5000 | 195/17E-13N 1 M
8-22-63 5050 | 195/18E-23D 2 M
8-22-63 5050 | 195/18E-28E 1 M
8-22-63 5050 | 195/19E-15N 1 M
7-11-63 5050 | 205/15E-25D 2 M
8-23-63 5050 | 205/17E-11N 1 M
8-23-63 5050 | 20s/17E-36D 1 M
8-23-63 5050 | 215/18E- 1D 1 M
7-11-63 5126 | ANALYSES OF GROUND WATER | | , | | _ | | | | | | | | | | | | |---|-----------|--------------------------|---------------------------------------|---------------------------------|----------------|---|---------------------------------|------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--| | | Total | hardness
CaCO 3 | | 362 | | 118 | 149 | | 76 | 121 | 26 | 1010 | 9 | | | tuents in | 0 C F | C) Li | | 814 | | 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 0 0 0 | | | | | | | | | | ansti | | sio ₂ | | 1 | | 18 | 1 | | 1 | + | ı | 1 | 1 | | | Mineral canstituents
ports per million | Boros | | | 0 7 • 0 | | 0 4 • | 0 30 | | 0.20 | 0 5 0 | 0000 | 0 * 4 0 | 0.10 | | | | | a de | | 1 | | 0.1 | 1 | | Î | 1 | 1 | 1 | 1 | | | | 1.2 | trate
NO ₃ | | 6.6 | | 0 | 1 | | 1 | 1 | 1 | 1 | 1 | | | parts per million
equivolents per million
percent reactonce value | 1014 | ride | | 28 | |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 3.78 | | 15 | 10 | 0.63 | 1320 | 10 | | | million
s per r | Sulfate | \$04 | | 487
10•14
79 | | 1.73 | 1 | | 1 | 1 | 1 | 1 | 1 | | | parts per
equivalents
percent rec | Biror- | bonote
HCO3 | | 106
1.74
14 | | 188
3 • 08
33 | 1 | | 1 | 1 | 1 | 1 | 1 | | | bar | Corbon- | ate
CO3 | | 0 | | 0 | 1 | | 1 | 1 | ł | 1 | 1 | | | .i. | Potos | E × | JED) | 0.08 | *** | 0.05 | 1 | | 1 | 1 | 1 | 1 | 1 | | | onstituent | Soding | 0 2 | CONTINU | 116 5.04 | | 157 6.83 | 118 | | 17 0 • 74 | 18 | 21 | 418 | 20 | | | Mineral constituents | 1 0 C C W | sium
Mg | 52247 (CONTINUED) | 3.04 | 52249 | 0.90 | ! | 52253 | 1 | ľ | - | 1 | 1 | | | Σ | Colcium | Co | 52200 | 84
4.19
34 | | 1.45 | 1 | | 1 | 1 | ! | 1 | 1 | | | Specific conduct- | (micro- | mhos
at 25°C) | | 1200 | ANY | 880 | 859 | | 268 | 336 | 307 | 4300 | 216 | | | | Hd | | AREA | 7 • 8 | COMPANY | 89 2 | 1 | PLAINS | 1 | 1 | 1 | 1 | - | | | Temp. | when | sompled | EY | 76 | CANAL | 65 | 1 | | 69 | 10 | 71 | 9 | 7.1 | | | State well | | Date sompled Agy. | SAN JOAQUIN VALLEY MENDOTA-HURON AREA | 215/18C-17M 1 M
7-11-63 5126 | SAN LUIS CANAL | 95/11E-26N 1 M
6-27-63 5050 | 10S/12E- 6K 1 M
7-18-63 5641 | STANISLAUS | 1N/10E-17G 1 W
8-14-63 5122 | 15/11E-25N 1 M
6-28-63 5122 | 35/11E- 4N 1 M
8-14-63 5122 | 35/12E-35C 1 M
6-28-63 5122 | 55/12E- 6D 1 M
6-28-63 5122 | | * TDS by Evap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Total
hardness
as
Coco z | | 115 | 228 | 170 | 73 | 205 | | 79 | 20 | 99 | | |---|-----------------------------------|--------------------------------------|--------------------------------|---|--------------------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|--------------------------------|--------------------------------|---| | tuents in | T D S
Camputed | | 604 | 394 | | 510 | 471 | | 199 | | 7 8 8 | | | onsti
er m | Sift. | 1 | 29 | 5 2 | 1 | 56 | 37 | | 57 | 1 | 13 | | | Mineral constituents
parts per million | Baron | | 0.20 | 90.0 | 0.0 • 0.0 | 0 1 0 | 0 • 10 | | 0.10 | 0 1 0 | 0 • 1 0 | | | | Flua-
ride
F | | 0 . | 0 . 2 | 1 | 0.2 | 0.5 | | | 1 | 0.2 | | | | Ni - | | 0 | 2.6
0.04 | | 0 | 0 | | 20.0 | 1 | • | | | n
million
ce value | Chla-
ride
Cl | | 2.43 | 24
0.68
10 | ® 0 • 0 | 148 | 147 | | 0.65 | 0.25 | 0.14 | | | millio
per
sacton | Sulfate
SO ₄ | | 1.05
13
13 | 0.31 | 1 | 1.44 | 0.21 | | 0.06 | 1 | 0.17 | 1 | | parts per
equivalents
percent re | Bicar-
banate
HCO2 | | 374 6.13 | 327
5•36
82 | | 160 | 132
2•16
27 | | 90
1 • 48
59 | 1 | 1.13 | | | par | Carban-
ate | | 0.33 | 0.17 | 1 | 0 | 0 | | 0 | 1 | 0 | | | ui in | Patas
sium
X | | 0.08 | 0.03 | 1 | 0.03 | 0.03 | | 0.03 | 1 | 0.03 | | | Mineral constituents | Sodium | | 185 | 2.04 | 1.04 | 160 | 3.91 | | 1.00 | 0.65 | 0.17 | | | ineral co | Magne-
sıum
Ma | 52254 | 0
4
0 0 m | 2.06 | 1 | 0 - 25 3 | 1.40 | 52255 | 0.58 | 1 | 99.0 | | | Σ | Calcium | 52200 | 36
1.80
17 | 2 2 2 2 2 2 3 8 2 2 3 8 3 8 3 8 3 8 3 8 | 1 | 1.20 | 2.69 | | 1.00 | 1 | 0.65
43 | | | Specific conduct- | (micra-
mhos | | 046 | 612 | 437 | 810 | 785 | | 239 | 156 | 143 | | | | Hď | | 8 • 4 | 8 . 4 | - | 8 . 2 | 80 | LAINS | 7.9 | 1 | 7.1 | | | Temp. | when sampled | EY | 1 | 6 | 67 | 6 9 | 74 | CED P | 73 | 74 | 7.8 | | | State well | Date sampled Agy. S | SAN JOAQUIN VALLEY
MERCED BOTTOMS | 75/10E- 7M 1 M
8-26-63 5641 | 85/13E=16H 1 M
7-18-63 5050 | 85/14E-24A 1 M
8-19-63 5525 | 95/12E-17B 1 M
8-28-63 5050 | 95/13E-29L 1 M
7-17-63 5050 | NORTH MERCED PLAINS | 45/14E- 8J 1 M
8-28-63 5050 | 55/12E-32P 1 M
7-18-63 5050 | 55/14E- 3P 1 M
7-18-63 5050 | | | | | | | | | | | | | | | | TABLE E-I ANALYSES OF GROUND WATER 1963 | | Tatol | hordness
CaCO 3 | | 75 | 71 | | 79 | 261 | 219 | 134 | | 165 | 183 | |---|---------|--------------------------|------------------|--------------------------------|---------------------------------|------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------|---------------------------------|---| | tuents in
Ilion | TDS | Computed
Evap 180°c | | | | _ | 183 | 376 | 312 | 237 | | 302 | 8
9
3 | | constituent
per million | Sill. | si02 | | 1 | - | | 71 | 2,4 | 4 5 | 3.2 | | 20 | 54 | | Mineral constituents
ports per million | Boran | 8 | | 00.0 | 0000 | | 0.10 | 0 | 0000 | 0 • 1 1 | | 09.0 | 0 | | _ | Fiuo- | r-de
F | | 1 | 1 | | 0 | 0 | 0 • 2 | 4.0 | | 0 • 2 | 4 • | | | - Z | trote
NO ₃ | | ł | 1 | | 2.7 | 0.10 | 14.0 | 10.0 | | 30.0 | 52.0
0.84
16 | | million
per million
ctance value | Ch10- | ride
C i | | 19 | 16 | | 0.31 | 0.65 | 18 0.51 | 0.31 | | 14
0 • 39
8 | 0.56 | | _ 0 | Sulfate | 504 | | i
I | 1 | | 0.10 | 0.35 | 0.21 | 0.35 | | 0.23 | 39
0.81
15 | | parts per
equivalents
percent re | Bicar- | bonote
HCO3 | | 1 1 | 1 | | 91
1•49
77 | 334
5 • 4 7
8 3 | 270
4.43
82 | 180
2.95
78 | | 218 | 3 0 8 8 5 5 8 8 | | par
equ
per | Carbon- | ate
CO3 | | 1 | i | | 0 | 0 | 0 | 0 | | 0 | 0 | | ei . | Potas - | | | 1 | ŀ | | 0 0 0 0 0 | 0.08 | 0.05 | 0.05 | | 0.08 | 0 | | constituents | Sadium | o
N | | 18 | 19 | | 0.78 | 1.30 | 1.09 | 1.17 | | 1.35 | 1.78 | | Mineral co | Magne- | sium
Mg | 52257 | 1 | 1 | 52259 | 0.58 | 2.63 | 2,88 | 0.58 | 52261 | 1.40 | 1.15 | | 2 | Calcium | | 52200 | 1 | ă
B | | 20
1.00
41 | 2,59 | 30
1.50
27 | 42
2•10
54 | | 38 1.90 | 2 50 4 6 | | Specific canduct- | (micro- | mhos
at 25°C) | | 240 | 238 | | 262 | 602 | 553 | 382 | | 447 | 544 | | | 됩 | | LAINS | 1 | 1 | AINS | 7.2 | 7 • 7 | 7.6 | 8 • 0 | AINS | 7.5 | 7.2 | | Temp. | when | o F | EY
ERA P | 73 | 75 | SNO PLAINS | 1 | 70 | 7.1 | 99 | ARE P | 70 | 67 | | State well | | Date sampled Agy. Call. | SAN JOAQUIN VALL | 95/15E-24F 1 M
8- 7-63 5050 | 10S/17E-25N 1 M
8- 7-63 5050 | NORTH FRE | 12S/21E- 6K 1 M
8-20-63 5000 | 12S/22E-20R 1 M
8- 8-63 5000 | 135/22E-14D 1 M
8- 8-63 5000 | 135/23E- 7N 2 M
8-13-63 5000 | NORTH TUL | 145/24E-36L 1 M
8- 8-63 5000 | 155/25E- 8C 1 M
8-13-63 5000 | | | | Do | SAN | 0 & | 10.5 | | 12.0 | 12.9 | 13.0 | 136 | | 14.9 | 150 | * TDS by Fvop ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | Total
hardness
os
CaCO ₃ | | 226 | 242 | 253 | | 242 | 101 | 230 | | 4.0 | 45 | |---|--|---|---------------------------------|---------------------------------|---------------------------------|---------------------|---------------------------------|-----------------|---------------------------------|-------------|---------------------------------|---------------------------------| | uents in
Lion | TOS Total Computed hardness Evap 180°c CaCO ₃ | · · · · | 880 | 401 | 452 | | | | | | | 308 | | onstit
er mil | Sili-
ca
SiO ₂ E | | 8 7 | 7 7 | 31 | | 1 | 1 | ŀ | | į. | <i>w</i> | | Mineral constituents
parts per million | Boran
B | | 0 0 | 0 • 10 | 0.10 | | 0.10 | 1.00 | 0.10 | | 0.20 | 0 5 0 | | | Fluo-
ride
F | | 0 • 2 | 0 • | 0 • 1 | | 1 | - | - | | 1 | • • | | | Ni-
trote
NO ₃ | | 4.7 | 29.0 | 78.0
1.26
17 | | 1 | 1 | 1 | | 1 | 0 • 0 3 | | million
e value | Chlo-
ride
Cl | | 1.64 | 1.00 | 0.62 | | 0.71 | 34 | 0.34 | | 25 | 1 • 4 1 | | parts per million
equivolents per million
percent reactonce value | Sulfate
SO4 | | 0.31 | 26
0 54
8 | 1.000
1.000 | | 1 | 1 | ł | | { | 1.29 | | parts per
equivolents
percent re | Bicar-
bonate
HCD3 | | 256
4 • 20
66 | 204
3.34
51 | 268
4 • 39
60 | | 1 | ; | 1 | _ | 1 | 1.97 | | par | Carbon-
ate | | 0.13 | 16
0 53
8 | 0 | | 1 | 1 | | | 1 | 0 | | . <u>c</u> | Patas .
Sium | ED) | 0.05 | 0.05 | 0.05 | | 1 | 1 | 1 | | - | 0 0 8 8 | | Mineral canstituents | Sadium | CONT INVED) | 1.87 | 1.83 | 2.26 | | 1.22 | 2.48 | 1.22 | | 2.17 | 3.91 | | linerol co | Magne-
slum
Mg | 52261 | 1.48 | 23
1.89
28 | 1.81 | 52262 | 1 | i (| 1 | 52263 | 1 | 0 • 0 8 | | Σ | Colcium | 52200 | 3.04 | 2.94 | 3.24 | | 1 | 1 | 1 | | 1 | 0 15 | | Specific conduct- | once
(micro-
mhas
at 25°C) | | 909 | 625 | 680 | | 572 | 492 | 540 | | 360 | 455 | | | Hd | AINS | 8 • 4 | 8 . 4 | 8.1 | LAINS | 1 | 1 | 1 | | 1 | 8 • 1 | | Тетр. | when
sampled
° F | EY
ARE PI | 7.1 | 6 8 | 67 | ARE P | 74 | 80 | 80 | NS | 76 | 8 6 | | State well | Agy. | SAN JOAGUIN VALLEY
NORTH TULARE PLAINS | 155/25E-16R 1 M
8- 9-63 5000 | 155/25E-19H 1 M
8- 9-63 5000 | 185/26E-10M 1 M
7-29-63 5123 | SOUTH TULARE PLAINS | 21s/27E-15P 2 M
8-28-63 5123 | 215/27E-27F 1 M | 225/27E-11C 1 M
9- 5-63 5123 | KERN PLAINS | 255/26E- 1R 1 M
6-11-63 5124 | 255/27E- 4C 1 M
6-20-63 5124 | ANALYSES OF GROUND WATER | | Total
hardness
CaCO z | | 697 | 131 | 283 | 81 | S | 0 | | 112 | 81 | | |---|-------------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------|---------------------------------|---------------------------------|--| | uents in | Camputed hardness Evap 180°C CaCO x | | | | | | | 164 | | 206 | 129 | | |
anstit
er mi | Sili-
ca
SiO ₂ | 1 | 1 | - | 1 | 1 | - | 15 | | 20 | 26 | | | Mineral canstituents
ports per million | Baran | | 0.10 | 0 5 0 | 0 • 0 | 0.10 | 00.0 | 00000 | | 0.18 | 00.0 | | | 2 | Fluo-
ride
F | | 1 | 1 | - | 1 | 1 | 0 • 0 | | 0.1 | 0 | | | | Ni-
trate
No z | | - | 1 | 1 | 1 | 1 | 0 | | 0.1 | 9.6 | | | million
per million
ctance value | Chla-
ride
Cl | | 222 | 78 | 199 | 103 | 39 | 19
0•54
22 | | 17 | 0.14 | | | 0 | Sulfate | | ; | 1 | 1 | 1 | 1 | 35 0 73 29 | | 0.29 | 0.15 | | | parts per
equivolents
percent re | Bicar-
banate
HCO3 | | } | 1 | 1 | - | - | 1.23 | | 172
2.82
79 | 1.56
1.56 | | | par | Carban-
ate | 2 | 1 | - | 1 | 1 | 1 | 0 | | 0 | 0 | | | Ë | Patas -
sium
K | ED) | 1 | - | 1 | ł | ł | 0 | | 0.05 | 0.05 | | | Minerol constituents | Sadium | CONTINUED | 110 | 2.17 | 96 | 3.22 | 2.57 | 2 639 | | 1.26 | 0.30 | | | linerol co | Magners | 52263 | ! | 1 | ; | 1 | 1 | 0.08 | 52264 | 0.74 | 10 0 82 42 | | | 2 | Calcium | 52200 | 1 | 1 | 1 | 1 | 1 | 0.10 | | 30 | 16
0.80
41 | | | Specific conduct- | mhos | 0.6318 | 1790 | 545 | 1050 | 610 | 276 | 238 | | 360 | 215 | | | | I. a | | 1 | 1 | 1 | 1 | 1 | 7 • 8 | BOTTOMS | 8 • 0 | 7.3 | | | Temp. | when
sampled
° F | RY | 74 | 76 | 73 | 78 | 78 | 80 | | 77 | 80 | | | State well | Dote sampled Agy. | SAN JOAQUIN VALLEY | 265/27E- 9G 1 M
6-11-63 5124 | 27S/26E-27R 1 M
6-20-63 5124 | 275/27E-29J 1 M
8-14-63 5124 | 285/26E-11A 1 M
7-15-63 5124 | 285/27E- 7C 1 M
6-11-63 5124 | 28S/27E-28L 1 M
7-15-63 5124 | CENTERVILLE | 145/22E-25P 1 M
8-12-63 5050 | 145/23E- 8D 1 M
8-13-63 5000 | | | | Dote | SAN | 265/ | 275/ | 275/ | 285/ | 285/ | 285/ | | 145, | 145/ | | * TDS by Evap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | | 3 5 | | 182 | | 250 | 8
8
8 | 330 | 402 | 336 | 933 | 2 | - | |---|-----------------|---|--|---------------------------------|---------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | | Total | hardne
CoCO | | 18 | | 22 | 8 | | 0 4 | w
w | 60 | 292 | 161 | | uents in | TDS | co Computed hardness
SiO ₂ Evop IBO°C CoCO ₃ | | | | | | 0
4
6
8
8 | | | | | | | onstit
er mi | Sili | co
SiO ₂ | | į. | | - | - | 21 | 1 | - | 1 | 1 | 1 | | Mineral constituents
parts per millian | Boron | | | 000 | _ | 0.30 | 0 • 4 0 | 0 | 0 • 20 | 0 • 5 0 | 0 9 0 | 0 8 0 | 00 | | | Fluo- | r de
F | | 1 | | 1 | ŧ, | 0 | ì | i | 1 | 1 | 1 | | | i.Z | trate
NO3 | | 1 | | 1 | 1 | 14.0 | 1 | 1 | ; | 1 | ! | | million
per million
ctonce volue | Ch10- | ride
C 1 | | 1.16 | | 18 | 2.37 | 106
2.99
26 | 277 | 1.92 | 2.09 | 2.51 | 142 | | | Sulfate | \$04 | | ł | | 1 | 1 | 115
2.39
21 | - | 1 | 1 | 1 | 1 | | parts per
equivalents
percent rea | Bicor- | bonate
HC03 | | 1 | | 1 | 1 | 349 | 1 | 1 | 1 | - | 1 | | par | Carbon- | ate
CO3 | | 1 | | 1 | 1 | 0 | 1 | ì | 1 | | 1 | | . <u>=</u> | Potas - | sic m | | 1 | | 1 | 1 | 0.08 | ł | - | 1 | 1 | - | | nstituents | Sodium | | | 1.91 | | 1.83 | 3.17 | 110
4•78
42 | 147 | 92 | 9
8 8
8 8 | 100 | 98 | | Mineral constituents | Magne- | E n is | 52266 | 1 | 52267 | 1 | i | 3.21 | 1 | 1 | • | 1 | 1 | | Σ | Calcium | | 52200 | 1 | | 1 | 1 | 3.39 | 1 | 1 | 1 | - | - | | Specific conduct- | ance
(micra- | mhas
at 25°C) | DIST | 552 | | 637 | 970 | 1000 | 1480 | 1030 | 986 | 986 | 802 | | | H | | ATER | - | I D | 1 | 1 | 8.1 | 1 | 1 | 1 | 1 | - | | Temp. | when | sombled
o F | EY
NTY v | 73 | ALIF | 1 | 1 | } | } | 1 | 1 | 1 | 1 | | State well | | Date sampled Agy. | SAN JOAQUIN VALLEY KINGS COUNTY WATER DIST | 194/26E- 3K 1 M
6-12-63 5123 | CENTRAL CALIF | 65/ 9E-18F 1 M
8-17-63 5641 | 75/ 8E-12P 1 M
8- 6-63 5641 | 75/ 8E-13F M
8- 6-63 5641 | 7S/ 8E=23R 1 M
8= 6-63 5641 | 75/ 9E-32H 1 M
8- 6-63 5641 | 85/ 9E-16E 1 M
7-23-63 5641 | 95/ 9E- 5B 1 M
7-23-63 5641 | 95/13E-31D 1 M
7-18-63 5641 | | | 80 80 | | ١٥. | | σ, | 2 | 0 | | <u>ال</u> | 4 | 0 | |---|--|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | Tatal
hardnes
CaCO | | 285 | 157 | 328 | 345 | 1460 | 417 | 205 | 134 | 200 | | tuents in | Sili- TDS Tatal ca Computed hardness SiO ₂ Evop 180°c CaCO ₃ | | | 485 | | | | | | | | | er m | Sili-
ca
SiO ₂ | | 1 | 15 | 1 | - | 1 | 1 | 1 | | | | Mineral constituents
ports per million | Boran | | 0 4 • 0 | 0 • 2 0 | 0 4 • 0 | 0.70 | 1.80 | 0 90 | 0 | 0 • 40 | 0 4 • 0 | | _ | Flua-
ride
F | | 1 | 7.0 | 1 | B
E | - | 1 | - | 1 | - | | | Ni-
trate
NO ₃ | | - | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | million
per million
ctonce value | Chlo-
ride
Cl | | 1.78 | 165 | 374 | 514 | 840 | 407 | 275 | 241 | 208 | | 0 | Sulfate
SO ₄ | | 1 | 1.21
1.51 | 1 | 1 | 1 | - | 1 | 1 | 1 | | ports per
equivolents
percent re | Bucar-
banate
HCO ₃ | | 1 | 143
2•34
29 | 1 | { | 1 | 1 | 1 | - | 1 | | pod | Carban-
ate | | } | 0 | 1 | 1 | ł | 1 | 1 | | 1 | | ë | Patas -
sium
K | JED) | 1 | 0.05 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | nstituent | Sadium | CONTINU | 38 | 119 5.17 62 | 195 | 284
12•35 | 500 | 192 | 195 | 195 | 160 | | Mineral constituents | Mogne-
sium
Mg | 52267 (CONTINUED) | ì | 12
0 • 99
12 | 1 | 1 | ì | • | 1 | 1 | ł | | Σ | Calcium | 52200 | ŀ | 2.15
2.15 | 1 | ł | 1 | 1 | 1 | 1 | 1 | | Specific conduct- | mhos | | 705 | 810 | 1640 | 2070 | 0094 | 1770 | 1360 | 1240 | 1190 | | | Ha. | 0 1 | ŀ | 8 2 | 1 | 1 | - | 1 | 1 | 1 | 1 | | Temp. | when
sompled
° F | EY
ALIF | 1 | - | 1 | | 1 | 1 | 1 | 1 | 1 | | State well | Agy. | SAN JOAQUIN VALLEY
CENTRAL GALIF. | 10S/10E-28D 1 M
7-23-63 5641 | 10S/12E-25L 1 M
7-18-63 5641 | 10s/12E-27K 1 M
7-23-63 5641 | 10S/12E-35K 1 M
7-23-63 5641 | 115/10E-23K 1 M
8-16-63 5641 | 115/12E-13J 1 M
7-23-63 5641 | 115/13E-17F 1 M
7-23-63 5641 | 115/13E-36B 1 M
7-23-63 5641 | 125/14E-29B 1 M
7-23-63 5641 | * TDS by Evap ct 105°c TABLE E-I ANALYSES OF GROUND WATER 1963 | | | Total | COCO 3 | | 7 | | 465 | 539 | 651 | 415 | 1018 | | 153 | 205 | |----------------------|-------------------|----------|----------------------------------|--------------------------------------|---------------------------------|----------------|---------------------------------|---|---------------------------------|----------------------------------|---|-----------------|---------------------------------|---------------------------------| | tuents in | llion | | Computed as
Evap 180°c CoCO 3 | | | | 937 | 1228 | | 882 | 2540 | | 293 | 372 | | constil | er mi | Sili | si0 ₂ | | 1 | | 22 | 52 | + | 64 | 000 | | 64 | τ
υ | | Mineral constituents | parts per million | Boron | В | | 0 * 0 | | 1.70 | 9 | 2 • 00 | 1.20 | 8 • 60 | | 0.07 | 0 • 10 | | | | FIno- | r - de | | { | | •
• | 0 • 3 | 1 | 0 | 0 | | 4 • | 4.0 | | | | <u>.</u> | trote
NO ₃ | | 1 | | 6 • 1
0 • 10
1 | 1.6 | 1 | 9 • 1
0 • 15 | 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | 6.5 | 10.0 | | million | e value | Ch10- | ride
C I | | 1.44 | | 1.41 | 1.78 | 1.49 | 1.24 | 231 | | 18
0•51
12 | 0.54 | | Ι. | 0 | Sulfate | 804 | | 1 | | 380
7.91
53 | 606
12.62
66 | 1 | 457
9.51
71 | 1430
29•77
76 | | 1.15 | 2.39 | | parts per | cent r | Bicar- | bonate
HCD3 | | | | 342
5.61
37 | 280
4.59
24 | i i | 150
2•46
18 | 188
3 • 08 | | 158
2.59
60 | 145
2•38
44 | | par | ber | Corbon- | co3 | | - | | 0 | 0 | 1 | 0 | 0 | | 0 | 0 | | .5 | | Potas - | E X | ED) | i i | | 0.10 | 0.13 | 0.15 | 0.08 | 0.15 | | 0.10 | 0.10 | | 0 | constituents | Sodium | 0 2 | (CONTINUED) | 98 | | 120 | 186
8.09
43 | 154 | 109 | 403
17•52
46 | | 1.22 | 1.32 | | | Mineral | Mogne- | M g | 52267 (| 1 | | 3.95 | 5 4 6 2 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 | 9 4 4
9 9 5
9 0 5 | 143 | | 0.90 | 0.90 | | 2 | Σ | Calcium | Ca | 52200 | 1 | 52300 | 107 | 107 | 1 | 4
0 9 4
0 9 4 4
0 9 9 9 | 172 8.58 23 | 52700 | 2.15 | 3.19 | | Specific | conduct- | (micra- | at 25°C) | | 480 | | 1350 | 1710 | 1780 | 1280 | 3310 | | 441 | 557 | | | | H. | | I.D. | t
1 | | 7.8 | 0 | 1 | 7.9 | 0 | | 8 | 0 | | | Temp. | sampled | 4 | EY
ALIF. | 1 | | 78 | 98 | 1 | 74 | 74 | | i | 1 | | o to to | number | 200 | Date sampled Coll. | SAN JOAQUIN VALLEY
CENTRAL CALIF. | 135/15E-18L 1 M
7-23-63 5641 | PANOCHE VALLEY | 155/10E-20D 1 M
4- 3-63 5050 | 155/10E-21C 1 M
4- 3-63 5050 | 155/10E-21L 1 M
4- 3-63 5050 | 155/10E-22D 1 M
4- 3-63 5050 | 155/11E-30C 1 M
4- 3-63 5050 | CUMMINGS VALLEY | 32S/31E-35N 1 M
6-10-63 5050 | 32S/32E-190 1 M
6-10-63 5124 | | 1015 | חת | | Date sar | SAN JOA | 135/15E | PANOCHE | 155/10E | 155/10E | 155/106 | 155/108 | 4- 3- | CUMMING | 325/31E
6-10- | 325/328 | # ANALYSES OF GROUND WATER | Stote well | | Тетр. | | Specific conduct- | Σ | ineral co | Mineral constituents | . <u>e</u> | por | ports per
equivolents
percent re | er million
ts per million
reactonce value | nillion
s value | | ٤ | Mineral canstituents
parts per million | canstituent
per
million | uents in
Ilion | | |---------------------------------|--------------|----------------|----------|-------------------|---------------------|------------------|----------------------|------------|------------|--|---|--------------------|--------------------------|-------|---|----------------------------|-------------------|--------------------| | | | when | Hd | once
(micro- | Colcium | Magner | Sadium | Potos = | Carbon- | Bicor- S | Sulfote | Ch10- | -i.Z | F100- | Boron | Siii- | TDS | Totol | | Date sampled | Agy. S | sampled
° F | | mhos
at 25°C) | ٥٥ | E n is | Z | síum
X | ate
CO3 | | 504 | ride | trote
NO ₃ | | | | p _o | os
os
CaCO 3 | | CUMMINGS VALLEY | LEY. | | | | 52700 (| CONTINU | ED) | | | | | | | | | | | | | 325/32E-27P M
6-14-63 5050 | M 0 5 0 5 | 62 | 7.7 | 477 | 2.84 | 1.15 | 18 0.78 16 | 0.03 | 0 | 215 | 43
0.90
18 | 0.23 | 14.0
0.23 | 0 • 1 | 0 • 0 | 32 | 293 | 200 | | 325/32E-28H M
6-11-63 5050 | 0 5 0 5 M | 1 | 7.7 | 545 | 3.49 | 20
1•64
28 | 18
0•78
13 | 0.03 | 0 | 263
4•31
75 | 43
0.90
16 | 0.25 | 16.0 | 0 • 2 | 0 • 0 | 53 | 360 | 257 | | TEHACHAPI VALLEY | ALLEY | | | | 52800 | | | | | | | | | | | | | | | 325/32E-13P
6-11-63 | 3P M
5050 | - | 9 4 | 459 | 2.40 | 0.66 | 30 | 0.05 | 0.10 | 187
3.06
70 | 36 0 75 | 13 | 5.9 | . 0 | 0.14 | 28 | 766 | 153 | | 325/32E-260 M
6-12-63 5050 | M
0 5 0 5 | Į
Į | 8 • 4 | 1060 | 167
8 . 33
69 | 1.97 | 38 | 0.05 | 0.40 | 299
4•90
41 | 258 | 0 8 8 8 8 | 16.0 | 0.2 | 600 | 36 | 735 | 515 | | 32S/33E-27D M
6-13-63 5050 | M
5050 | 1 | 80
60 | 672 | 4.84
71 | 0.90 | 1.09 | 0.03 | 0 | 182
2•98
49 | 1.17 | 35 0 99 | 0.90 | 0 | 0 | 22 | 343 | 287 | | 32S/33E-29P 1 M
6-12-63 5050 | 1 M
5050 | 1 | 7.9 | 243 | 1.35 | 0.41 | 0.52 | 0.03 | 0 | 86
1•41
61 | 0.15 | 0.23 | 32.0 | 0 0 | 0 • 0 | 36 | 171 | 8 8 | | 32S/33E-30C M
6-12-63 5050 | 0 5 0 5 M | 1 | ω
• | 498 | 3.34 | 0.90 | 1.13 | 0.05 | 0.17 | 241
3•95
74 | 42
0.87
16 | 0.31 | 4 • 3
0 • 0 7
1 | 0 . 2 | 0.07 | 25 | 306 | 212 | | 325/34E-34B M
6-13-63 5050 | 0405
0405 | 1 | ω
ιυ | 645 | 2.30 | 1.07 | 3.26 | 0.05 | 0.30 | 237 | 1.27 | 14
0•39
6 | 0.000 | 9 • 0 | 0
0
0 | 32 | 410 | 169 | k | | | | | | | | | | | | | | | | | | | * TDS by Evop ct 105°c TABLE E-2 HEAVY METAL ANALYSES OF GROUND WATER | - | | | |-------------------------|---|--|--|--
--|--|--|--|------------------|-----------
--|-------------------|---|---|---|-----------
--|----------|--|---|--|---|-----| | Zinc
(Zn) | | 0 | | 0 | 0 | 0 | 0 | | 9 | | 0 | 0 | 20 | | 0 | | 0 | | 0 | 0 | | | | | Vanadium
(V) | Titonium
(Tr.) | (Pb) | | 0 | | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 10 | | 0 | | 0 | 0 | | | | | Nickel
(Ni) | Malyb-
denum
(Ma) | Manga-
nese
(Mn) | | 0 | | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | | | | | Germa-
nium
(Ge) | Gallium
(Ga) | Iron
(Fe) | | 0 | | 0 | 10 | 0 | 0 | | 10 | | 07 | 0 | 1,50 | | 30 | | 30 | | 0 | 8 | | | | | (Cu) | ų | 0 | φ. | 0 | 0 | 0 | 0 | | 0 | | 0 | 8 | 0 | | 10 | dstrict | 0 | | of
Of | 0 | | | | | Chra-
mium
(Cr) | Distric | | Distric | | | | | dstrict | | rea | | | | Area | | ation I | | Area | | | | | | | Cabalf
(Ca) | rigation | | rigation | | | | | [gation [| | Mendota 4 | | | | ngs Rive | | r Conserv | | Kittrick | | | | | | | (Cd) | desto Ir | | rlock Ir | | | | | Mido Irr | | Delta | | | | Lower Ka | | lta Wate | | venal-Mc | | | | | | | Bismuth (Bi) | 2 | | | | | | | E | | | | | | | | (вмеві Де | | 4 | | | | | | | Beryt-
lium
(Be) | Arsenic
(As) | | 10 | | 0 | 0 | 0 | 0 | | 0 | _ | 0 | 0 | 10 | | 0 | | 8 | | 0 | 0 | | | | | Alumi-
num
(AI) | | 90 | | 20 | 8 | 110 | 0 | | 100 | | 8 | 8 | 30 | | 8. | | 120 | | 8 | 110 | | | | | Oate | | 5-26-63 | | 9-19-63 | 9-19-63 | | 9-13-63 | | 6-27-63 | | 7-17-63 | 7-23-63 | 7-22-63 | | 7-30-63 | | 7-11-63 | | 7-11-63 | 7-11-63 | | | | | Use | | rrigation | | | | | | |
rrigation | | rrigation | rrigation | rrigation | | rrigation | | Jon. & Irr. | | Irrigation | Irrigation | | | | | | | н | | Д | Ω | А | A | | Н | | | н | H | | Н | | п | | - | Н | | | | | Well Location Number | | 35/ TE - 13A2 - M | | 4s/ 9E - 30R1 - M | 45/11E - 21D1 - M | 55/10E - 28H1 - M | 65/11E - 9C1 - M | | 95/14E - 20B - M | | 45/ 7E - 34J1 - M | 98/ 9E - 21F1 - M | 95/10E - 36R1 - M | | 18s/19E - 6G1 - M | | 20S/22E - 1A1 - M | | 225/19E - 20N - M | 245/19E - 30Nl - M | | | | | | Use Code Alarm- Accepted the Code (Alarm- Accepted the Code (Code | Use Oole Alumname Alumname (Alumname Alumname Alumname (Alumname Alumname Alumname Alumname (Alumname Alumname Alumname Alumname (Alumname Alumname Alumname Alumname Alumname (Alumname Alumname Alu | Use Oose Alumi List Beryl Beryl Codmun Cobal (Co) Coper | Use Alumi Listerion 6-26-63 10 10 10 10 10 10 10 10 10 10 10 10 10 | Use Code Alamin Last Early Beryl Code Manual Code Co | Use Code Albard Code Albard Code | Parameter Use Cooke Co | Use Code Albard Code | Use | Use | Use Column Company Lay Column | Use | Use Other Atherical Cape Use Cape | Use Other | Use Other | | - M Iltigation Good One Alticol | - M | March Marc | Trightion Cario | March Marc | 1 | - N | > More than the amount indicated. < Less than the amount indicated. Blank space indicates constituent not analyzed, | | | | 6494 | | I | I | | I | | 11 | I | I | I | I | 14 | - | | |----------------------------------|---|--------------------------|----------|------------------------|---------------------|---------------|---------------------------|----------|--|----------------|------------------|-----------|-------------------|-----------|---------|-----------|--| | | t ne grow | | | | | | | | | | | | | | | 7 | | | | 11.0 | | | | | | | | | | | | | | | - | | | | 100 | | E | | | ī | | | | I | I | - | | | | - | | | | 1841 | | | | | | | | | | | | | | | 4 | | | | Mentyle
Merrollo
(FAM) | | | | | | | | | | | | | | | | | | | HE HANNIE | | Į. | | r | I | | Harry. | | | | π | : | ÷ | | 1 | | | Hari- | E INTE | | | | | | | | | | | | | | | ¥ ± | | | He too Re | III H | | | | | | | | | | | | | | | - | | | s neitherde in father in Billion | == | | HHH + | | # | π | | + | | = | H | Ŧ | - | _ | Ξ | ÷ | | | iiiai (| E = 0 | | He see | | Ξ | I | | Ξ | Figure 1 to the training of training of training of training of training of the training of tr | ~ | I | x | 14 | Ξ | I | - | | | | E E | 11.8 | | N H H | | | - H | | 11 1 11 | | | | | | | - | | | | 77. | # + H | | Heart In this is Albin | | | HHH (18) I DHHH C M F 881 | | He for t | | | | | | | 20 - | | | | H # 4 | THE PERSON IN THE PERSON | | f feet f | | | HHH (B | | 41144 | | | | | | | ± - | | | | 11 (14) | = | | | | | | | Maria M | | | | | | | H | | | | Hery to the state of | | | | | | | | | | | | | | | · = | | | | 2 T | | HA! | | × | Z. | | X | - | I | 2 | I | z | i | 2 | | | | | 1174 | | 2114 | | 100 | H | | X | | 111 | 平 | - | H-4 | ~ | | | | | | #Hotel | | 1 11 51 | | 1 11 13 | 1 11 11 | | 1 10 11 | | 1111 | 1 4 1 1 | | - (() - | 1 ! | | - | | | | Hab | | 2 4 11 | | 4117 14 10 4 11 4 5 | 41 1 41 41 41 | | to takes | | treated better | FIFTHERIT OF FEE | 4 1 4 1 4 | t their a thick t | t trait o | 1 10 11 | 0 7 - | I Her | | 111 | | H1 H | 1111 | | 7 | | 11 14 14 | 11 11 | 111 | HH HH | , , | - | 2 | | | | MATE II II THE | | + 40-101 | | 1111/1111 | 11. With/wt | | 11.14 | | 10 11/4 | 1 +1 /-1 | 11 /11 | 11 +1/-4 | - 11 - | 41/44 | 4 / 4 > 4 | | Table E-3 QUALITY OF GROUND WATERS IN CALIFORNIA RADIOASSAY OF GROUND WATER 1963 | WELL NUMBER | DATE
SAMPLED | GROSS ACTIVITY | DATE ANALYZED | | | | | | |----------------|--|------------------|---------------|--|--|--|--|--| | Central Ca | Central California Irrigation District | | | | | | | | | 6S-9E-18F1-M | 8-17-63 | 9.5 <u>+</u> 4.8 | 11-07-63 | | | | | | | 7S-8E-12P1-M | 8- 6-63 | 10.3 + 4.8 | 11-12-63 | | | | | | | 7S-8E-13F1-M | 8- 6-63 | 13.0 + 4.8 | 11-12-63 | | | | | | | 7S-8E-23R1-M | 8- 6-63 | 4.0 + 4.6 | 11-07-63 | | | | | | | 7S-9E-32H1-M | 8- 6-63 | 1.7 + 4.6 | 11-07-63 | | | | | | | 8s-9e-16el-m | 7-23-63 | 5.8 <u>+</u> 4.6 | 11-07-63 | | | | | | | 9S-9E-5B1-M | 7-23-63 | 0 + 4.6 | 11-07-63 | | | | | | | 9S-13E-31D1-M | 7-18-63 | 0.6 + 4.6 | 11-07-63 | | | | | | | 10S-10E-28D1-M | 7-23-63 | 3.1 + 4.7 | 11-07-63 | | | | | | | 10S-12E-25L-M | 7-18-63 | 4.0 + 4.6 | 11-07-63 | | | | | | | 10S-12E-27Kl-M | 7-23-63 | 0 + 4.5 | 11-07-63 | | | | | | | 10S-12E-35K1-M | 7-23-63 | 3.2 + 4.6 | 11-07-63 | | | | | | | lls-10E-23K1-M | 8-16-63 | 9.0 + 4.7 | 11-07-63 | | | | | | | lls-12E-13Jl-M | 7-23-63 | 0.3 + 4.6 | 11-07-63 | | | | | | | 11S-13E-17F1-M | 7-23-63 | 2.2 + 4.6 | 11-07-63 | | | | | | | 11S-13E-36B1-M | 7-23-63 | 9.5 + 4.7 | 11-07-63 | | | | | | | 12S-14E-29B1-M | 7-23-63 | 7.0 + 4.7 | 11-07-63 | | | | | | | 13S-15E-18L1-M | 7-23-63 | 7.1 + 4.6 | 11-07-63 | | | | | | Table E-3 | WELL NUMBER | DATE
SAMPLED | GROSS ACTIVITY® | DATE ANALYZED | | | | | | | |-----------------------------|-----------------------------|-------------------|---------------|--|--|--|--|--|--| | Oakdale Irrigation District | | | | | | | | | | | 1S-10E-33R1-M | 8-19-63 | 9.3 <u>+</u> 4.8 | 11-15-63 | | | | | | | | 2S-10E-10D1-M | 8-14-63 | 0 + 4.6 | 11-26-63 | | | | | | | | 2S-10E-27G1-M | 8-14-63 | 0 + 4.7 | 11-26-63 | | | | | | | | 3S-10E-13A1-M | 6-28-63 | 7.6 <u>+</u> 4.8 | 11-15-63 | | | | | | | | Mode | Modesto Irrigation District | | | | | | | | | | 4S-10E-1D1-M | 7-30-63 | 7.3 + 4.8 | 11-26-63 | | | | | | | | | | _ | | | | | | | | | Turl | ock Irrigati | on District | | | | | | | | | 4S-11E-5M1-M | 9- 5-63 | 0 + 4.7 | 11-26-63 | | | | | | | | Merc | ed Irrigatio | on District | | | | | | | | | 6s-11E-27K1-M | 7- 1-63 | 1.3 <u>+</u> 4.6 | 11-15-63 | | | | | | | | 6S-11E-36P1-M | 7- 9-63 | 0.9 + 4.7 | 11-15-63 | | | |
| | | | 6s-12E-21N1-M | 7- 9-63 | 4.2 + 4.7 | 11-15-63 | | | | | | | | 7S-llE-1:Ml-M | 7- 2-63 | 45.9 <u>+</u> 5.3 | 11-15-63 | | | | | | | | 7S-12h-1Q1-M | 9-10-63 | 0 + 4.7 | 11-15-63 | | | | | | | | 7S-12E-19A1-M | 6-20-63 | 3.3 <u>+</u> 4.7 | 11-15-63 | | | | | | | | 7S-13E-4P1-M | 7- 9-63 | 3.4 ± 4.7 | 11-15-63 | | | | | | | | 7S-13E-22C1-M | 7-23-63 | 6.1 <u>+</u> 4.8 | 11-15-63 | | | | | | | | 7S-14E-9R1-M | 8- 8-63 | 1.6 + 4.7 | 11-15-63 | | | | | | | | 7S-11/E-31M1-M | 8- 8-63 | 6.6 <u>+</u> 4.8 | 11-15-63 | | | | | | | | 7S-15E-18K1-M | 8- 7-63 | 7.9 + 4.8 | 11-15-63 | | | | | | | | 7S-15E-30E1-M | 8- 7-63 | 6.4 + 4.8 | 11-15-63 | | | | | | | | 8S-14E-2D1-M | 8-21-63 | 0 + 4.6 | 11-15-63 | | | | | | | ⁹ PICOCURIES PER LITER Table E-3 | WELL NUMBER | DATE
SAMPLED | GROSS ACTIVITY ⁰ | DATE ANALYZED | | | | | |----------------------|------------------|-----------------------------|---------------|--|--|--|--| | Delta-Mondota Area | | | | | | | | | 3S-7E-33Cl-M | 7-12-63 | 0 + 4.7 | 11-26-63 | | | | | | 5S-8E-8G1 - M | 8- 5-63 | 0 + 4.6 | 11-26-63 | | | | | | 5S-8E-27ML-M | 8- 5-63 | 0 + 4.7 | 11-26-63 | | | | | | 8s-9e-12el-M | 7-23-63 | 6.7 + 4.7 | 11-07-63 | | | | | | 9S-9E-2L1-M | 7-23-63 | 4.9 + 4.6 | 11-07-63 | | | | | | 9S-9E-21F1-M | 7-23-63 | 0 + 4.6 | 11-07-63 | | | | | | 95-10E-36R1-M | 7-22-63 | 1.3 + 4.6 | 11-07-63 | | | | | | Made | era Irrigatio | on District | | | | | | | 13S-17E-5P1-M | 8-15-63 | 61.6 + 5.6 | 9-18-63 | | | | | | West | Chowchilla | - Madera Area | | | | | | | 10S-13E-1A1-M | 7-23-63 | 14.3 + 4.7 | 11-07-63 | | | | | | 13S-15E-22J1-M | 8-19-63 | 10.2 + 4.9 | 9-20-63 | | | | | | Fres | sno Irrigatio | n District | | | | | | | 12S-20E-32J1-M | 11-12-63 | 12.0 + 4.7 | 11-12-63 | | | | | | 12S-21E-31P1-M | 7-11-63 | 3.7 <u>+</u> 5.1 | 9-17-63 | | | | | | 13S-17E-22B1-M | 6-25-63 | 42.9 + 5.6 | 9-17-63 | | | | | | 13S-17E-29L1-M | 6-20 - 63 | 25.3 ± 5.4 | 9-17-63 | | | | | | 13S-19E-29E1-M | 7-17-63 | 6.6 <u>+</u> 4.8 | 9-18-63 | | | | | | 13S-20E-27J1-M | 6-26-63 | 10.6 + 3.6 | 8-07-63 | | | | | | 13S-21E-15N2-M | 6-12-63 | 10.5 + 4.7 | 11-12-63 | | | | | | 13S-22E-28C2-M | 7-11-63 | 2.4 + 5.1 | 9-17-63 | | | | | | 13S-23E-30J1-M | 7-19-63 | 16.4 + 4.8 | 11-12-63 | | | | | a-PICOCURIES PER LITER DATE GROSS ACTIVITY WELL NUMBER DATE ANALYZED SAMPLED Fresno Irrigation District (Continued) 14S-17E-13H1-M 6-25-63 5.8 + 5.1 9-17-63 145-18E-26N1-M 6-25-63 20.0 + 5.39-17-63 14S-19E-7ML-M 6-12-63 26.7 + 4.9 11-12-63 9.3 + 4.7 14S-19E-14P1-M 6-12-63 11-12-63 14S-19E-22R1-M 6-26-63 15.0 + 3.7 8-07-63 14S-20E-27C1-M 6-12-63 12.8 + 4.8 11-12-63 14S-21E-12P1-M 6-29-63 11.8 + 3.78-07-63 Fresno Slough Area 15S-17E-10R1-M 8-12-63 18.4 + 5.2 9-18-63 15S-17E-34A1-M C-12-63 5.2 + 4.9 9-18-63 17.8 + 4.8 15S-18E-16G1-M 6-12-63 11-12-63 15S-19E-35L1-M 8-12-63 13.5 + 5.1 9-18-63 8-26-63 16S-17E-10G-M 68.5 + 5.89-20-63 16S-18E-10Al-M 8-12-63 15.4 + 5.0 9-19-63 Consolidated Irrigation District 15S-21E-24L1-M 8-12-63 21.4 + 5.2 9-18-63 Lower Kings River Area 17S-18E-35Q1-M 8-26-63 0 + 4.8 9-20-63 Orange Cove Irrigation District 15S-24E-23K1-M 0 + 4.8 8-23-63 9-18-63 Table E-3 | WELL NUMBER | DATE
SAMPLED | GROSS ACTIVITY ⁰ | DATE ANALYZED | | | | | |-------------------------|-----------------|-----------------------------------|---------------|--|--|--|--| | Mendota-Huron Area | | | | | | | | | 13S-14E-15B1-M | 8-26-63 | 8.7 + 4.9 | 9-20-63 | | | | | | 13S-14E-34M1-M | 8-26-63 | 5 .6 <u>+</u> 4 . 9 | 9-20-63 | | | | | | 14S-13E-12N1-M | 8-13-63 | 3.0 <u>+</u> 4.9 | 9-18-63 | | | | | | 14S-13E-25N1-M | 8-13-63 | 6.6 + 4.9 | 9-18-63 | | | | | | 14S-14E-9M-M | 8-13-63 | 21.2 + 5.2 | 9-18-63 | | | | | | 14S-14E-33N1-M | 8-26-63 | 9.0 + 4.7 | 11-12-63 | | | | | | 14S-15E-28L1-M | 8-13-63 | 7.5 <u>+</u> 5.0 | 9-18-63 | | | | | | 15S-14E-36Q2-M | 8-13-63 | 0 + 4.8 | 9-18-63 | | | | | | 15S-15E-20N2-M | 8-13-63 | 5.0 <u>+</u> 5.0 | 9-18-63 | | | | | | 15S-15E-25N1-M | 8-13-63 | 9.0 <u>+</u> 5.1 | 9-18-63 | | | | | | 16s-14e-10Q1-M | 8-13-63 | 3.3 <u>+</u> 4.6 | 11-12-63 | | | | | | 16s-15E-8N1-M | 8-13-63 | 7.1 + 4.8 | 9-19-63 | | | | | | 16s-15E-25Q1-M | 8-26-63 | 13.8 <u>+</u> 5.0 | 9-20-63 | | | | | | 16S-16E-9N2-M | 8-13-63 | 3.6 + 4.8 | 9-19-63 | | | | | | 17S-16E-18E1-M | 8-22-63 | 0 + 4.7 | 9-20-63 | | | | | | 17S-17E-23Q1-M | 8-22-63 | 3.9 <u>+</u> 4.6 | 11-12-63 | | | | | | 17S-17E-27R1-M | 8-22-63 | 2.1 <u>+</u> 4.9 | 9-20-63 | | | | | | 17S-17E-28R1-M | 8-22-63 | 7.1 + 4.8 | 9-20-63 | | | | | | 18S-15E-24N1-M | 8-22-63 | 4.5 + 4.9 | 9-20-63 | | | | | | 18S-17E-13N1-M | 8-22-63 | 0 + 4.9 | 9-20-63 | | | | | | 18S-17E-30P1-M | 8-22-63 | 4.8 + 4.9 | 9-20-63 | | | | | | 19 S-17 E-13N1-M | 8-22-63 | 6.8 + 4.8 | 9-20-63 | | | | | | 19S-18E-23D2-M | 8-22-63 | 3.1 ± 4.9 | 9-20-63 | | | | | o PICOCURIES PER LITER Table E-3 1963 | WELL NUMBER | DATE
SAMPLED | GROSS ACTIVITY ⁰ | DATE ANALYZED | | | | | | |------------------------|--------------------------------|-----------------------------|-------------------|--|--|--|--|--| | Mendot | Mendota-Huron Area (Continued) | | | | | | | | | 19S-18E-28 E1-M | 8-22-63 | 0.5 + 4.9 | 9-20-63 | | | | | | | 20S-15E-25D2-M | 8-23-63 | 3.3 <u>+</u> 4.6 | 11-12-63 | | | | | | | 20S-17E-11N1-M | 8-23-63 | 3.5 <u>+</u> 4.9 | 9-20-63 | | | | | | | 20S-17E-36D1-M | 8-23-63 | 5.1 <u>+</u> 4.8 | 9-20-63 | | | | | | | San Luis Canal Company | | | | | | | | | | 10S-12E-6K1-M | 7-18-63 | 0 <u>+</u> 4.6 | 11-07-63 | | | | | | | | Stanislaus | Plains | | | | | | | | lN-10E-17G-M | 8-14-63 | o <u>+</u> 4.8 | 11 -2 6-63 | | | | | | | 1S-11E-36E1-M | 6-28-63 | 0 + 4.7 | 11-26-63 | | | | | | | 3S-11E-9D1-M | 8-14-63 | 0 + 4.7 | 11-26-63 | | | | | | | 3S-12E-26P1-M | 6-28-63 | 15.7 <u>+</u> 5.0 | 11-26-63 | | | | | | | 5S-12E-6D1-M | 6-28-63 | 0 + 4.6 | 11-26-63 | | | | | | | | Merced Bot | toms | | | | | | | | 7S-10E-7M1-M | | 20.0 + 4.9 | 11- 7-63 | | | | | | | 8s-14E-24A1-M | 8-19-63 | _ | 11-15-63 | | | | | | | | 27. 41 16 7 | 7.7 | | | | | | | | | North Madera | Plains | | | | | | | | 9S-15E-24F1-M | 8- 7-63 | 0 + 5.0 | 9-17-63 | | | | | | | | Centerville | Bottoms | | | | | | | | 14S-22E-25P1-M | 8-12-63 | 2.6 <u>+</u> 5.0 | 9-18-63 | | | | | | ## $\begin{tabular}{ll} \begin{tabular}{ll} \be$ | | | CONSTITUENTS IN PARTS PER MILLION (ppm) | | | | | | |-----------------------------|--------------|---|-----------------|--|--|--|--| | WELL LOCATION NUMBER | DATE | ABS* | LITHIUM
(Li) | | | | | | Turlock Irrigation District | | | | | | | | | 45/8E - 24Al-M | 9/18/63 | 0.00 | | | | | | | | Delta 1 | Mendota Area | | | | | | | 8s/9E - 2P-M | 6/27/63 | 0.00 | | | | | | | | Lower Ki | ngs River Ar | ea | | | | | | 19S/19E - 25L-M | 8/30/63 | 0.00 | | | | | | | | Orange Cove | Irrigation D | istrict | | | | | | 15S/24E - 23Kl-M | 8/23/63 | 0.00 | | | | | | | Kawea | h Delta Wate | r Conservati | on District | | | | | | 20S/26E - 3Fl-M | 8/28/63 | 0.00 | | | | | | | | Lindmore Ir | rigation Dis | trict | | | | | | 20S/27E - 3LJ1-M | 9/ 5/63 | 0.00 | | | | | | | | Shafter-Wasc | o Irrigation | District | | | | | | 28s/26E - 30Al-M | 6/20/63 | | 0.0 | | | | | | | Kern Ri | ver Delta Ar | rea | | | | | | 30S/24E - 14H1-M | 6/13/63 | | 0.0 | | | | | | 32S/27E - 16R1-M | 3/13/63 | | 0.0 | | | | | ^{*} Alkyl-Benzene-Sulfonate (Detergents) TABLE E-4 ANALYSES OF MISCELLANEOUS CONSTITUENTS | | | CONSTITUENTS IN PARTS PER MILLION (ppm) | | | | | |----------------------|----------|---|-------------------|--|--|--| | WELL LOCATION NUMBER | DATE | ABS* | LITHIUM
(Li) | | | | | | Edison- | Maricopa Are | ea | | | | | 30S/29E - 20Al-M | 6/11/63 | | 0.0 | | | | | 11N/20W - 8R1-S | 7/ 2/63 | | 0.0 | | | | | 11N/20W - 25K1-S | 7/ 2/63 | | 0.0 | | | | | 12N/21W - 33N1-S | 6/12/63 | | 0.0 | | | | | | Avenal-N | McKittrick Az | rea | | | | | 26S/18E - 1A-M | 8/ 8/63 | | <3.8 ¹ | | | | | 27S/20E - 34Gl-M | 6/ 8/63 | | 0.0 | | | | | | Merc | ed Bottoms | | | | | | 8s/13E - 16H-M | 7/18/63 | 0.00 | | | | | | | South | Tulare Plair | ıs | | | | | 21S/27E - 27F1-M | 9/ 5/63 | 0.44 | | | | | | | Ke | rn Plains | | | | | | 26S/27E - 9Gl-M | | | 0.2 | | | | | | . , , | | | | | | | | Center | ville Bottom | ıs | | | | | 14S/22E - 25P1-M | 8/12/63 | 0.00 | | | | | ^{*} Alkyl-Benzene-Sulfonate (Detergents) [≺]Less than amount indicated. ¹ Approximation due to interference in determination. ## LEGEND - WELLS MEASURED MONTHLY - WELLS MEASURED ANNUALLY AND SEMI-ANNUALLY - A GROUND WATER QUALITY MONITERING WELLS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA LOCATION OF SELECTED OBSERVATION WELLS 1962-1963 SCALE OF MILES 12 STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH POSO SOIL CONSERVATION DISTRICT COOPERATIVE PROGRAM AREA SCALE OF MILES STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH KERN COUNTY COOPERATIVE PROGRAM AREA SCALE OF MILES SCALE OF MILES U.S.G.S. DA Z Z 0 ELEVA ## MILL CREEK GROUND WATER AREA AREA 12825 SOUARE MILES AVERAGE GROUND SURFACE ELEVATION 305 ## TULARE GROUND WATER AREA AREA 12107 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 363' ## ELK BAYOU GROUND WATER AREA AREA 676 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 295 OUND STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA 1962-1963 FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1963 IN 19 HISTORIC GROUND WATER AREAS IN SAN JOAQUIN VALLEY 1965 N FEET - USGS DATC Z 0 < > < LEGEND CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE GROUND LEVEL STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA 1962-1963 FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY N JOAQUIN VALLEY (5-22.00) TER IRRIGATION DISTRICT
(5-22.26) WELL 185/27E-29DI.M.D.B.GM. GROUND SURFACE ELEVATION 446 LEGEND — CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE ____ GROUND LEVEL Z - Z O - F 4 > H - J S. DATUI O FEET - U.S. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA 1962-1963 FLUCTUATION OF WATER LEVEL BELECTED WELLS IN SAN JOAQUIN VALLEY FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY 22.36) SAN JOAQUIN VALLEY (5-22.00) NORTH KERN WATER STORAGE DISTRICT (5-22.37) WELL 275/25E-22AI, M.D.B.A.M. GROUND SURFACE ELEVATION 382' VATOR TEET I CO 40 S 0 STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA 1962-1963 FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY U.S.G.S. DATU M M L Z Z 0 1 Ш ## SAN JOAQUIN VALLEY (5-22.00) MENDOTA-HURON AREA (5-22.47) WELL 17S/16E-24RI, M.D.B 8.M GROUND SURFACE ELEVATION 236' LEGEND — — CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE ___ GROUND LEVEL STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA 1962-1963 FLUCTUATION OF WATER LEVEL SELECTED WELLS IN SAN JOAQUIN VALLEY Plate D-1 Surface Water Sampling and Recorder Stations | Station name | Station
number | |--|-------------------| | Big Creek above Pine Flat Dam | 33d | | Chowchilla River near Raymond | 114 | | Delta-Mendota Canal near Mendota | 92 | | Delta-Mendota Canal near Tracya | 93 | | Fresno River near Daulton | 113 | | Kaweah River below Terminus Dam | 35 | | Kern River near Bakersfield | 36 | | Kern River below Isabella Dam | 36a | | Kern River at Kernville | 36b | | Kings River below North Fork | 33c | | Kings River below Peoples Weir | 34 | | Kings River below Pine Flat Dam | 33b | | Merced River below Exchequer Dam | 32a | | Merced River near Stevinsonb | 32 | | Salt Slough at San Luis Ranch | 24c | | San Joaquin River at Crows Landing Bridge | 26b | | San Joaquin River at Fremont Ford Bridgeb | 25 c | | San Joaquin River at Friant Dam | 24 | | San Joaquin River near Grayson | 26 | | San Joaquin River at Hills Ferry Bridge ^C | 25b | | San Joaquin River at Maze Road Bridge | 26a | | San Joaquin River near Mendota | 25 | | San Joaquin River at Patterson Bridgeb | 27a | | San Joaquin River near Vernalisb | 27 | | Stanislaus River near Mouth ^D | 29 | | Stanislaus River below Tulloch Dam | 29a | | Tule River below Success Dam | 91 | | Tuolumne River below Don Pedro Dam | 31a | | Tuolumne River at Hickman-Waterford Bridge | 30 | | Tuolumne River at Tuolumne Cityb | 31 | | a Not shown on plate as station is outside | | | boundary. Driginally monitored by Delta | Branch, | - a Not shown on plate as station is outside of bran boundary. Driginally monitored by Delta Branch, transferred to San Joaquin Valley Branch as of July 1, 1963. - b Conductivity recorder installed at this surface water station. - c Discontinued as of July 1, 1963. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY 1963 STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA GROUND WATER QUALITY BASINS AND AREAS SAN JOAQUIN VALLEY OCT.1,1962-SEPT.30,1963 SCALE OF MILES STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN VALLEY BRANCH HYDROLOGIC DATA MINERAL TYPES OF GROUND WATER OCT.1,1962 - SEPT.30,1963 SCALE OF MILES O 6 16 ## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW ## RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL 1 30 1 JUN 4 REC'D TOV 17 1573 NOV 11 REC'D LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-50m-12,'64(F772s4)458 399686 California. Dept. of Water Resources. Bulletin. PHYSICAL SCIENCES LIBRARY C2 A2 no.130:63 v.l. LIBRARY UNIVERSITY OF CALIFORNIA DAVIS Call Number: 399686 California. Dept. of Water Resources. Bulletin. TC824 A2 no.130:63